育亨酸一水合物

仪器信息网育亨酸一水合物专题为您提供2024年最新育亨酸一水合物价格报价、厂家品牌的相关信息, 包括育亨酸一水合物参数、型号等,不管是国产,还是进口品牌的育亨酸一水合物您都可以在这里找到。 除此之外,仪器信息网还免费为您整合育亨酸一水合物相关的耗材配件、试剂标物,还有育亨酸一水合物相关的最新资讯、资料,以及育亨酸一水合物相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

育亨酸一水合物相关的资料

育亨酸一水合物相关的论坛

  • 部分水合物标准如何进行定量分析?

    用户如果购买了氯唑青霉素钠水合物(氯唑西林钠,邻氯青霉素钠) 标准品,进行定性分析时没有问题,但是里面没有明确是一水化合物还是二水化合物等,只是 氯唑青霉素钠xH2O,如题,这个标准品配成溶液后如何进行定量分析?

  • 哪些因素会影响酒石酸钠二水合物的溶解平衡

    哪些因素会影响酒石酸钠二水合物的溶解平衡 一、温度方面 1.温度高低 温度就像一个调皮的小助手,对溶解平衡影响可大了。如果温度升高,就像给酒石酸钠二水合物的溶解加了把劲儿。因为温度高了,分子运动就变得更活跃了,溶剂分子就更容易把溶质分子(酒石酸钠二水合物)包围起来,让它溶解。就好比天气热的时候,糖在水里溶解得更快更多一样。反过来,如果温度降低,分子运动就慢下来了,酒石酸钠二水合物的溶解能力也会跟着下降,可能本来溶解了不少,温度一低就有一部分析出来了。 二、溶剂的性质 1.溶剂种类 不同的溶剂就像不同的小房子,对酒石酸钠二水合物的容纳能力不一样。如果是一种和酒石酸钠二水合物 “合得来” 的溶剂,那它就容易溶解。比如说,在水里酒石酸钠二水合物能溶解得挺好,但是如果换一种有机溶剂,像乙醇之类的,可能溶解的量就少多了,甚至几乎不溶解。这是因为酒石酸钠二水合物分子和水分子之间的相互作用力比较强,能让它很好地分散在水中,而和乙醇分子的相互作用力就弱很多。 2.溶剂的量 溶剂的量也很关键。如果溶剂很多,就像有很大的空间来容纳酒石酸钠二水合物,那它就能溶解更多的溶质。就像你有一个大杯子装水,能放很多糖溶解在里面;如果杯子很小,水少,能溶解的糖也就少了。不过呢,这里有个极限,就是达到饱和状态后,再增加溶剂也不能再溶解更多的酒石酸钠二水合物了。 三、溶质的状态 1.溶质的颗粒大小 酒石酸钠二水合物本身颗粒的大小也会影响溶解平衡。如果颗粒很大,就像一个大石块,溶剂分子要把它慢慢 “啃碎” 才能溶解,溶解的速度就慢。要是颗粒很细小,就像沙子一样,溶剂分子就能很快把它们包围起来溶解掉。不过这主要影响的是溶解的速度,当时间足够长的时候,最终达到的溶解平衡状态是一样的,只是颗粒小的时候会更快达到平衡。 2.溶质的纯度 纯度高的酒石酸钠二水合物溶解起来比较单纯。如果里面混有杂质,这些杂质就像捣乱的小坏蛋。比如说,杂质可能会占据溶剂分子和酒石酸钠二水合物分子结合的位置,或者改变溶液的性质,从而影响酒石酸钠二水合物的溶解平衡。可能会使它溶解得少一些,或者达到平衡的速度变慢。 四、搅拌情况 1.搅拌与否 搅拌就像给溶液做按摩一样。如果搅拌溶液,就能让酒石酸钠二水合物周围的溶剂不断更新,这样溶剂分子就能更快地接触到溶质分子,加快溶解的速度。不搅拌的话,溶质周围的溶剂很快就饱和了,新的溶剂分子过不来,溶解就慢。不过搅拌不会改变最终的溶解平衡状态,只是影响达到平衡的快慢。

  • 天然气水合物的研究、调查现状

    [font=黑体][color=black]天然气水合物的研究、调查现状[/color][/font][align=left][font=黑体][color=black]1.[/color][/font][font=黑体][color=black]天然气水合物的研究[/color][/font][/align][align=left][font=宋体][color=black]近年来,我国对管辖海域做大量的地震勘查资料分析得出,在冲绳海槽的边坡、南海的北部陆坡、西沙海槽和西沙群岛南坡等处发现了海底天然气水合物存在的似海底地震反射层(BSR)标志。[/color][/font][/align][align=left][font=宋体][color=black]自1999年始,广州海洋地质调查局在我国海域南海北部西沙海槽区开展海洋天然气水合物前期试验性调查。完成三条高分辩率地震测线共543.3km。2000年9-11月,广州海洋地质调查局"探宝号"和"海洋四号"调查船在西沙海槽继续开展天然气水含物的调查。共完成高分辩率多道地震1593.39km、多波束海底地形测量703.5km、地球化学采样20个、孔隙水样品18个、气态烃传感器现场快速测定样品33个。获得突破性进展。研究表明:地震剖面上具明显似海底反射界面(BSR)和振幅空白带。"BSR"界面一般位于海底以下300-700m,最浅处约180m。振幅空白带或弱振幅带厚度约80-600m,"BSR"分布面积约2400km'。根据ODP184航次1144钻井资料揭示,在南海海域东沙群岛东南地区,l百万年以来沉积速率在每百万年400-1200m之间,莺歌海盆地中中新世以来沉积速度很大。资料表明:南海北部和西部陆坡的沉积速率和已发现有丰富天然气水合物资源的美国东海岸外布莱克海台地区类似。南海海域水含物可能赋存的有利部位是:北部陆坡区、西部走滑剪切带、东部板块聚合边缘及南部台槽区。本区具有增生楔型双BSR、槽缘斜坡型BSR、台地型BSR及盆缘斜坡型BSR等四种类型的水合物地震标志BSR构型。从地球化学研究发现南海北部陆坡区和南沙海域,经常存在临震前的卫星热红外增温异常,其温度较周围海域升高5-6℃,特别是南海北部陆坡区,从琼东南开始,经东沙群岛,直到台湾西南一带,多次重复出现增温异常,它可能与海底的天然气水会物及油气有关。[/color][/font][/align][align=left][font=宋体][color=black]综合资料表明:南海陆坡和陆隆区应有丰富的天然气水合物矿藏,估算其总资源量达643.5-772.2亿吨油当量,大约相当于我国陆上和近海石油天然气总资源量的1/2。[/color][/font][/align][align=left][font=黑体][color=black]2 [/color][/font][font=黑体][color=black]有关天然气水合物的现状调查[/color][/font][/align][align=left][font=宋体][color=black]西沙海槽位于南海北部陆坡区的新生代被动大陆边缘型沉积盆地。新生代最大沉积厚度超过7000m,具断裂活跃。水深大于400m。基于应用国家863研究项目"深水多道高分辨率地震技术"而获得了可靠的天然气水合物存在地震标志:1)在西沙海槽盆北部斜坡和南部台地深度200-700m发现强BSR显示,在部分测线可见到明显的BSR与地层斜交现象。2)振幅异常,BSR上方出现弱振幅或振幅空白带,以层状和块状分布,[/color][/font][font=宋体]厚度80-450m。3)BSR波形与海底反射波相比,出现明显的反极性。4)BSR之上的振幅空白带具有明显的速度增大的变化趋势。资料表明:南海北部西沙海槽天然气水合物存在面积大,是一个有利的天然气水合物远景区。[/font][/align][align=left][font=宋体][color=black]2001[/color][/font][font=宋体][color=black]年,中国地质调查局在财政部的支持下,广州海洋地质调查局继续在南海北部海域进行天然气水合物资源的调查与研究,计划在东沙群岛附近海域开展高分辨率多道地震调查3500km,在西沙海槽区进行沉积物取样及配套的地球化学异常探测35个站位及其他多波束海底地形探测、海底电视摄像与浅层剖面测量等。另据我国台大海洋所及台湾中油公司资料,在台西南增生楔,水深500-2000m处广泛存在BSR,其面积2×104km[sup]2[/sup]。并在台东南海底发现大面积分布的白色天然气水合物赋存区。[/color][/font][/align][font=黑体][color=black]3.[/color][/font][font=黑体][color=black]天然气水合物的意见与建议[/color][/font][align=left][font=宋体][color=black]鉴于天然气水合物是21世纪潜在的新能源,它正受到各国科学家和各国政府的重视,其调查研究成果日新月异,故及时了解、收集、交流这方面的情况、勘探方法及成果尤为重要,为赶超国际天然气水合物调查、研究水平,促进我国天然气水会物的调查、勘探与开发事业,为我国经济的持续发展做出新贡献,建议每两年召开一次全国性的"天然气水合物调查动态、勘探方法和成果研讨会"。[/color][/font][/align][align=left][font=宋体][color=black]我国南海广阔的陆坡及东海部分陆坡具有形成天然气水含物的地质条件,建议尽快开展这两个海区的天然气水含物的调查研究工作,为我国国民经济可持续发展提供新能源。[/color][/font][/align][align=left][font=宋体][color=black]天然气水合物的开采方法目前主要在热激化法、减压法和注人剂法三种。开发的最大难点是保证井底稳定,使甲烷气不泄漏、不引发温室效应。针对这一问题,日本提出了"分子控制"开采方案。天然气水合物矿藏的最终确定必须通过钻探,其难度比常规海上油气钻探要大得多,一方面是水太深,另一方面由于天然气水合物遇减压会迅速分解,极易造成井喷。日益增多的成果表明,由自然或人为因素所引起温压变化,均可使水合物分解,造成海底滑坡、生物灭亡和气候变暖等环境灾害。因而研究天然气水合物的钻采方法已迫在眉捷,建议尽快开展室内外天然气水合物钻采方法的研究工作。[/color][/font][/align]

育亨酸一水合物相关的方案

育亨酸一水合物相关的资讯

  • 中科院水合物中心与美国家实验室合作研究
    中科院网站报道:应美国Lawrence Berkeley国家实验室的邀请,中科院可再生能源与天然气水合物重点实验室博士李刚和苏正于8月2日起程到美国Lawrence Berkeley国家实验室地球科学部开展为期三个月的合作研究,并于11月1日顺利返回广州。   在美期间,李刚和苏正与该实验室George Moridis教授和Keni Zhang博士合作开展了南海北部陆坡天然气水合物开采潜力数值模拟研究,同时进行了深入的学术交流活动。此次合作研究是前期双方达成共识的基础上开展合作研究和交流的第一步。李刚和苏正采用美国Lawrence Berkeley国家实验室开发的TOUGH+Hydrate数值模拟软件分别对2007年成功取样的南海北部神狐海域SH2站位和SH7站位海底天然气水合物藏进行了开采潜力的数值模拟研究。数值模拟过程中主要采用降压法和注热法相结合的开采方法,对垂直井和水平井开采海底天然气水合物的异同进行了比较,根据现有的海底水合物实地数据对井口产气产水速率进行了评价,并对海底沉积物的渗透率、水合物饱和度、海底温压条件以及盖层情况进行了参数敏感性分析,比较全面地评价了神狐海域天然气水合物藏的开采前景。合作研究期间,两人分别完成了题为Evaluation of Gas Production Potential from Marine Gas Hydrate Deposits in the Shenhu Area of the South China Sea: Depressurization and Thermal Stimulation Methods和Numerical Investigation of Gas Production Strategy for the Hydrate Deposits in the Shenhu area的学术论文。   合作结束后,重点实验室副主任吴能友和George Moridis教授就未来双方进一步合作的方式、方向和内容进行深入讨论。
  • 科技部批准建设天然气水合物等企业国家重点实验室
    p style=" text-align: center " strong 科技部关于批准建设天然气水合物、认知智能2个企业国家重点实验室的通知 /strong /p p style=" text-align: center " 国科发基〔2017〕386号 /p p   国务院国有资产监督管理委员会、安徽省科技厅: /p p   企业国家重点实验室是国家创新体系的重要组成部分,主要任务是面向战略性新兴产业和行业发展需求,以提升企业自主创新能力和核心竞争力为目标,开展基础和应用基础研究及共性关键技术研发,研究制定国际标准、国家和行业标准,聚集和培养优秀人才,引领和带动行业技术进步。 /p p   为进一步完善企业国家重点实验室布局,科技部启动天然气水合物、认知智能企业国家重点实验室的建设工作。根据专家评审结果,经研究,现决定批准建设“天然气水合物国家重点实验室”、“认知智能国家重点实验室”2个实验室(名单见附件)。 /p p   请你们抓紧组织实验室依托单位编制《企业国家重点实验室建设与运行实施方案(2018 2022年)》 按照《依托企业建设国家重点实验室管理暂行办法》(国科发基〔2012〕716号)的规定和要求,落实有关政策和建设经费,组织相关单位凝练实验室发展目标、明确主要研究方向和重点、组织科研队伍、引进和培养优秀人才、完善和提升实验研究条件、建立“开放、流动、联合、竞争”的运行机制,做好企业国家重点实验室建设与运行管理工作。 /p p   特此通知。 /p p   附件:批准建设的企业国家重点实验室名单 /p p style=" text-align: right " 科 技 部 /p p   附件 /p p style=" text-align: center " strong 批准建设的企业国家重点实验室名单 /strong /p p style=" text-align: center " img title=" 001.png" src=" http://img1.17img.cn/17img/images/201712/insimg/e5e38231-dfe9-46f0-838b-820c434027ca.jpg" / /p p & nbsp /p
  • Picarro | 基于Picarro G2201-i碳同位素分析仪研究天然气水合物释放对青藏高原永
    青藏高原是地球上海拔最高的高原,被称为“世界屋脊”、“第三极”。青藏高原光照和地热资源充足。高原上冻土广布,植被多为天然草原。它扮演着重要的生态角色,影响着全球气候变化。这个区域的碳循环系统尤其引人注目。图片来源于网络,如有侵权请联系删除随着全球气候变暖,青藏高原的永冻层正在消融,导致大量的甲烷和其他温室气体被释放到大气中,从而影响了全球气候变化的速度。这种现象对人类社会和生态系统都产生了深远的影响,今天想向大家介绍的文章,正好与此相关。基于Picarro G2201-i碳同位素分析仪研究天然气水合物释放对青藏高原永冻层湿地甲烷排放的影响湿地甲烷排放是全球收支中最大的自然来源,在推动21世纪气候变化方面发挥着日益重要的作用。多年冻土区碳库是受气候变化影响的大型储层,对气候变暖具有正反馈作用。在与气候相关的时间尺度上,融化的永久冻土中的甲烷排放是温室气体收支的关键。因此,多年冻土区湿地甲烷排放过程与湿地碳循环密切相关,对理解气候反馈、减缓全球变暖具有重要意义。青藏高原是地球上最大的高海拔永久冻土区,储存了大量的土壤有机碳和天然气水合物中的热生烃。湿地甲烷排放源识别是了解青藏高原湿地甲烷排放和碳循环过程与机制的重要问题。基于此,来自中国地质调查局的研究团队于2017年测量青藏高原木里永冻层近地表和天然气水合层钻井(DK-8)的CH4和CO2排放量及其碳同位素组成(Picarro G2201-i碳同位素分析仪)。并计算CH4和CO2碳同位素分馏( Ԑ C:δ13CCO2- δ13CCH4)。旨在为木里多年冻土湿地甲烷排放的重要来源-天然气水合物释放提供新的证据,揭示天然气水合物释放对湿地甲烷季节性排放的影响,进一步揭示钻井等人为活动对青藏高原多年冻土湿地甲烷排放的影响。研究区域位置【结果】DK-8中CH4含量、δ13CCH4 及Ԑ C土壤层中CH4含量、δ13CCH4 及Ԑ C【结论】热成因天然气水合物分解是湿地甲烷排放重要的源季节性湿地甲烷排放受人类钻井活动的影响天然气水合物释放的甲烷特征:【δ13CCH4】 -25.9±1.4‰~-26.5±0.5‰,【Ԑ C】-25.3‰~ -32.1‰δ13CCH4和Ԑ C值可以区分复杂环境中的热成因和微生物成因甲烷秋冬季节以热成因甲烷为主导,春夏季节微生物成因甲烷贡献较大随着天然气水合物资源的进一步探索和开采,天然气水合物分解对永冻层湿地甲烷排放的影响会更显著

育亨酸一水合物相关的仪器

  • 中文名称:7-[(3-氯-6-甲基-5,5-二氧代二苯并[1,2]硫氮杂卓-11-基)氨基]庚酸半硫酸盐一水合物中文别名:噻奈普汀半硫酸盐一水合物;噻唑平-11-基氨基庚酸半硫酸盐一水合物英文名称:7-[(3-chloro-6-methyl-5,5-dioxo-diphenzo[1,2]thiazepine- 11-)amino]heptanoic acid hemisulfate monohydrate;Tianeptine Semisulfate Monohydrate;(Thiazepin-11-ylAmino)Heptanoic Acid Semisulfate MonohydrateCAS号:1224690-84-9分子式:C42H56Cl2N4O14S3分子量:1008.01344含量:99.5%外观:白色结晶粉末包装: 1公斤每袋
    留言咨询
  • 天然气水合物,作为一种潜在的清洁能源,其开采和利用对全球能源结构的优化具有重要意义。水合物三轴力学特性分析仪是研究水合物力学特性的重要工具,而低场核磁共振技术(LF-NMR)的应用,为水合物三轴力学特性的分析提供了新的视角和方法。低场核磁共振技术是一种基于核磁共振原理的分析方法,它通过检测样品中氢原子核的磁共振信号,分析其横向弛豫时间(T2)分布,从而获得储层的孔隙尺寸和流体类型信息。低场核磁共振技术具有设备成本低、使用门槛相对较低、分析测试快、精确度高、对样品无损耗、样品制备简单等优点,适用于土壤学、医学成像、高分子材料、环境科学等多个领域。水合物三轴压缩试验是模拟实际开采条件下水合物储层响应的一种有效方法。通过这种试验,研究人员可以观察到水合物在不同应力状态下的变形和破坏过程,从而更好地理解其力学特性。试验结果表明,含水合物沉积物的强度特性受到水合物饱和度、有效围压、反压和温度等因素的影响。水合物三轴力学特性分析仪,结合低场核磁共振技术实时监测水合物在三轴压缩过程中的孔隙结构变化,提供动态的数据支持。通过分析水分子中氢质子的弛豫时间差异,可以研究材料的物理化学特性,从而揭示水合物的力学行为和破坏机制。产品参数:产品型号:MacroMR12-150H-IMacroMR12-150H-HTHP(40Mpa-PMMR)MacroMR12-110H-I磁场强度:0.3T±0.03T磁体均匀度:≤50ppm磁体形状:C型开放式进样方向:横向/纵向产品特点:1. C型空间,进样轻松无压力专为大样品设计,适应直径1-4英寸的岩心样品 2. 高精度恒温探头,先进梯度系统数据采集稳定可靠,实现更多功能,更好的成像效果3. 种类丰富的附件扩展多规格岩心夹持器和样品腔实现各种真实环境(温度、压力、流体、气体等)的模拟产品功能:T1/T2弛豫谱测定,T1/T2/质子密度加权像温度、压力、流体场的施加(需要附件支持)产品应用:1.储层物性分析孔隙度/孔径分布含油/含水饱和度可动/束缚流体饱和度渗透率润湿性评价/分层含水率2. 油气藏开发评价压裂过程裂缝发育定量测试分析酸化过程孔隙发育在线分析聚合物驱、化学驱替在线测试分析油水两相高温高压可视化驱替实验分析及评价负载(围压/水压)条件下微观孔渗参数分析三轴压缩损伤分析渗吸过程及特性分析3.非常规能源页岩气/煤层气等温吸附解吸CO2竞争性吸附实验天然气水合物生成/分解气水两相动态驱替分析超临界CO2 压裂/置换瓦斯
    留言咨询
  • 水合物反应釜 400-860-5168转0811
    应用: 水合物形成过程观察 水合物抑制剂研究 水合物阻聚剂分析 热力学、动力学水合物抑制剂研究   水合物反应器(Gas Hydrate Autoclave),又可以叫水合物反应釜,或者叫天然气水合物反应釜。是最新一代研究可燃冰水合合成过程的设备。主要测量水合物抑制剂,动力学、热力学水合物抑制剂,水合物阻聚剂等。水合物反应器系统小巧紧凑,软件可以使8个水合单元同时工作,系统内置搅拌以及冷却装置,通过管道照相机,我们可以通过蓝宝石窗口获取水合过程中的图片以及视频。系统安全性能好,有自动重新启动的选择可确保我们能安全的长时间测试。另外,天然气水合反应釜GHA200还有锁定装置,只有操作者才能打开此系统,系统连接线十分简洁,操作起来非常安全。 技术参数: 1.压力范围:200bar(2900Psi),700bar(10000Psi) 2.压力测量:DMS,0.5% FS 3.液体体积:最大450ml,推荐200ml 4.温度范围:-5℃-50℃ 5.温度测量:PT100,精度0.1℃ 6.搅拌桨速度:关闭;100-2000RPM 7.相机分辨率:440,000 pixels 8.光学部分:大角度管道镜,卤素灯,光纤光学电缆 9.计算机控制:Hydrate 2.0软件,可同时控制8台系统 10.电源:240V,50/60Hz,2.2KW
    留言咨询

育亨酸一水合物相关的耗材

  • 1,10-菲啉一水合物 GR ACS
    1,10-菲啉一水合物 GR ACS
  • 1,10-菲啉一水合物 GR ACS 1.07225.0010 unit
    1,10-菲啉一水合物 GR ACS
  • 柠檬酸/碳酸氢钠提取管(4g硫酸镁,1g氯化钠,0.5g柠檬酸钠二元1.5水合物,1g柠檬酸钠三元二水合物)
    柠檬酸/碳酸氢钠提取管(4g硫酸镁,1g氯化钠,0.5g柠檬酸钠二元1.5水合物,1g柠檬酸钠三元二水合物) 12ml离心管,50根/包 适用于萃取 ~10g 食品/农产品样品。使用柠檬酸盐将提取液缓冲到 pH 5.0 - 5.5。在该 pH 值下,大部分酸和碱不稳定性农药均能保持稳定。使用碳酸氢钠进一步稳定酸不稳定性农药。 分散固相萃取(DSPE),通常被称为&ldquo QuEChERS&rdquo ,方法快速,简便,廉价,有效,耐用,安全,是一个新兴的样品制备技术,该方法使用散装固相萃取吸附剂提取和净化食品、农产品等样品用于农药残留分析,由于其操作简便正日趋普及。 使用QuEChERS方法,首先将食品和农产品样品加入到提取管中,提取管中装有 预先精确称量的高含量盐(如氯化钠和硫酸镁)和缓冲试剂(如柠檬酸盐),盐和缓冲试剂可以促进两相分离和稳定住遇酸碱容易变化的农药,然后在提取管中加入水溶性溶剂(如乙腈)进行提取。将提取管进行震荡和离心后取出部分有机相层加到分散SPE(dSPE)净化管中做进一步处理。分散SPE(dSPE)净化管不同于传统的SPE小柱,它是将精确称量好的SPE填料如Supelclean PSA,ENVI-Carb,Discovery DSC-18和Supel&trade QuE Z-Sep混合在一起的离心管,在净化管中加入提取液,样品在提取液和散装SPE填料之间进行分配或吸附,从而实现对基质样品的净化。这种方法简便快速。净化后的样品经过震荡离心后,上清液可直接或经过简单处理后进入到下一步分析中。 Supelco除了提供一系列预装好填料的分散SPE提取管和净化管用于欧盟EN 15662和美国AOCO2007.01方法,还可以根据用户定制不同规格的分散SPE产品

育亨酸一水合物相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制