十六烷基卵磷脂

仪器信息网十六烷基卵磷脂专题为您提供2024年最新十六烷基卵磷脂价格报价、厂家品牌的相关信息, 包括十六烷基卵磷脂参数、型号等,不管是国产,还是进口品牌的十六烷基卵磷脂您都可以在这里找到。 除此之外,仪器信息网还免费为您整合十六烷基卵磷脂相关的耗材配件、试剂标物,还有十六烷基卵磷脂相关的最新资讯、资料,以及十六烷基卵磷脂相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

十六烷基卵磷脂相关的资料

十六烷基卵磷脂相关的论坛

  • 蛋黄油卵磷脂

    我用钼篮比色法测试蛋黄油中的卵磷脂,蛋黄油的颜色一直是呈现绿色,跟标准品的颜色不太一样,不是蓝色,我做了两次都是一样,有没有做过的大神,这个现象对吗?好奇怪啊[img]https://ng1.17img.cn/bbsfiles/images/2021/04/202104131523482895_1475_3878797_3.png[/img]

  • 化妆品中卵磷脂的测定方法

    化妆品中卵磷脂的测定方法卵磷脂为黄色到棕色半透明蜡状物。具有吸湿性,在空气中色变深,能溶于醇、醚等,在任何pH下均以两性离子状态存在,所以具有表面活性作用。卵磷脂广泛用作化妆品的乳化剂及颜料的悬浮剂。(一)钼蓝定性法1 适用范围本方法适用于化妆品中卵磷脂的测定。2 原理(1)卵磷脂通过层析柱与无机磷和油类杂质等分离后,将卵磷脂无机化,用钼蓝法测定其中的无机磷。3 试剂3.1 硅胶(SiO2·χH2O):100目,层析用。3.2 二氨基酚溶液:称取1g2,4-二氨基酚(2,4-Diaminophenol Dihydrochloride)盐酸盐及30g亚硫酸氢钠溶于水中,并稀释至100ml,过滤,保存于暗处,可使用一周。3.3 8.3%钼酸铵溶液:称取8.3g钼酸铵溶于14ml水和6ml氨水的混合溶液中,并加水至100ml。3.4 1%氯化胆硷标准溶液:取0.1g氯化胆硷,加水至10ml。3.5 显色剂:取1ml10%氯铂酸(H2PtCl6)加25ml4%KI溶液,混匀,并加水至50ml。4 仪器层析柱:内径20mm、长110mm附有刻度的玻璃管,底部有No.1半熔玻板及活栓,并联接减压瓶及减压泵。5 分析步骤5.1 样品预处理取5g样品于水浴上加热融化,加20ml氯仿+甲苯(4+1),加温溶解。取2g硅胶于层析管中,于硅胶上复盖少量玻璃棉,用10m1石油醚淋洗柱子。待石油醚几乎全部流出时,将上述氯仿-甲苯样品溶液乘热过柱,调节活栓及减压泵,使溶液流出量保持在4~6ml/min。继续以20ml、20ml、10ml分次淋洗柱内残存油分。

  • 【求助】关于卵磷脂的提取问题

    今天上生化实验课做卵磷脂的提取与鉴定,后来老师提了个问题让我们作为思考题回去想。就是在卵磷脂的提取实验中加入热的95%乙醇的目的是什么?左想右想除了作为溶剂还有什么用处,想请教下各位高人这个问题的答案。欢迎大家一起讨论[em0808]谢谢大家支持此贴。[em0805]

十六烷基卵磷脂相关的方案

  • 微波消解卵磷脂
    卵磷脂,又称为蛋黄素,被誉为与蛋白质、维生素并列的"第三营养素",然而,真正了解卵磷脂的人却很少。磷脂和蛋白质是构成细胞膜的最主要成分。蛋黄中含有丰富的卵磷脂,牛奶、动物的脑、骨髓、心脏、肺脏、肝脏、肾脏以及大豆和酵母中都含有卵磷脂。卵磷脂在体内多与蛋白质结合,以脂肪蛋白质的形态存在着,所以卵磷脂是以丰富的姿态存在于自然界当中,所以建议人们尽量摄取足够多种类的食物。我们选择一种卵磷脂样品,采微波消解进行前处理,有利于后续对其中多种无机元素的快速准确测定。
  • 氮吹仪在卵磷脂的提取和定性鉴定中的应用
    机体的各组织和细胞均含卵磷脂,其中在脑、神经组织、肝、心脏、肾上腺和精液中含量较为丰富,卵黄中含量最多(约含10%)。卵磷脂易溶于乙醇、乙醚等亲脂溶剂,可利用此类溶剂提取。它不溶于丙酮,利用此性质可与中性脂肪分离。纯卵磷脂中的胆碱基在碱性溶液中分解成三甲胺,三甲胺有特异鱼腥臭味,可鉴别。
  • 微波消解卵磷脂
    卵磷脂,又称为蛋黄素,被誉为与蛋白质、维生素并列的"第三营养素",然而,真正了解卵磷脂的人却很少。磷脂和蛋白质是构成细胞膜的最主要成分。蛋黄中含有丰富的卵磷脂,牛奶、动物的脑、骨髓、心脏、肺脏、肝脏、肾脏以及大豆和酵母中都含有卵磷脂。卵磷脂在体内多与蛋白质结合,以脂肪蛋白质的形态存在着,所以卵磷脂是以丰富的姿态存在于自然界当中,所以建议人们尽量摄取足够多种类的食物。我们选择一种卵磷脂样品,采微波消解进行前处理,有利于后续对其中多种无机元素的快速准确测定。

十六烷基卵磷脂相关的资讯

  • 天然提取物:现代化妆品的健康新趋势
    在当前消费者越来越注重产品成分天然健康的市场环境下,植物提取物因其独特的功效和相对较低的副作用风险,成为化妆品研发的重要方向。化妆品中的天然提取物以其绿色、自然和健康的特性,在现代化妆品行业中的应用日益广泛,据不完全统计,天然化妆品在整个化妆品中的比例已经达到40%。本文汇总了天然提取物在美白祛斑、防晒、抗衰老、保湿、乳化、防腐、透皮吸收促进、香料等8个方面的应用情况,供大家阅读参考。1、天然提取物-美白剂传统美白剂有稳定性不佳,刺激,功效显现缓慢等劣势。而天然来源的美白剂可结合多成分、多靶点与多功效的优势,同时还兼具温和、安全、持久的特点,已成为美白化妆品行业的一个趋势。常见的天然美白成分有金银花、茶多酚、石榴、花青素、珍珠等。化妆品常见天然美白提取物汇总2、天然提取物-抗衰剂以天然提取物为原料的抗衰老化妆品同样越来越多的被应用于化妆品中。根据衰老学说,天然提取物的抗衰机制主要有以下几点:①通过提取物中的抗氧化组分,减少皮肤的自由基损伤,来调节皮肤免疫和提高自我保护作用。②通过抑制MMP表达,或促进组织型抑制剂(TIMP)表达来维持真皮层的结构。此外,防晒组分可有效防止紫外线对皮肤的伤害。而由于天然物种中组分较为复杂,往往能够多靶点协同作用起到抗衰老的效果,因此备受市场欢迎。常见天然抗衰剂有番红花素、人参皂苷、姜黄提取物、丹参酮、牡丹花等。化妆品常见天然抗衰提取物汇总3、天然提取物-保湿剂天然提取物在保湿方面的机制一般为:1、天然多酚羟基与水以氢键形式结合,形成锁水膜。2、其中的神经酰胺成分可以修护皮肤屏障,从而提高锁水能力。3、抑制透明质酸酶活性,减少皮肤保湿剂-HA的降解。常见的天然保湿成分有白及成分、竹叶黄酮、甘草提取物、芦荟有机酸、百合提取物等。化妆品常见天然保湿提取物汇总4、天然提取物-防晒剂目前市面上的防晒产品多为物理紫外屏蔽剂、化学紫外吸收剂,这两种类型的防晒剂均会给皮肤造成不同程度的负担,同时对水体生态环境也是造成了不小的压力。天然来源的防晒剂则具有广谱防晒、副作用小等特点。我国目前已将芦荟、黄岑、甘草、桂皮、沙棘等用于防晒产品中。化妆品常见天然防晒剂汇总5、天然提取物-毛发用剂发用化妆品中添加一些中药提取物已经比较常见,主要是可以使头发柔软、促进头发生长等。如何首乌、五味子、黑芝麻、人参、侧柏叶等都具有不错的养发护发的功效。此外,有一部分的收涩药含有的有机酸和鞣质能与美发剂中的铁、铜结合,用于染发剂的制备。化妆品常见天然护发剂汇总6、天然提取物-防腐剂化妆品中常用的防腐剂有尼泊金酯类、咪唑烷基脲、苯甲酸及其衍生物、醇类及其衍生物类等。安全的天然防腐剂一直成为化妆品研究的热点。常用的天然防腐剂有芦荟、益母草、黄岑、月见草、金缕梅等。化妆品常见天然防腐剂汇总7、天然提取物-香精天然香料是指以自然界存在的动植物的芳香部位为原料提取加工而成的原态香材天然香料。动物香料常用的有香、龙涎香、灵猫香、海狸香和香鼠香等,一般作定香剂使用,价格比较昂贵。植物性香料由植物的花、果、叶、茎、根、皮或者树木的木质茎、叶、树根和树皮中提取的易挥发芳香组分的混合物。常见的天然香精有玫瑰、薰衣草、苦橙叶、迷迭香、茉莉等。化妆品常见天然香精汇总8、天然提取物-其他功能① 乳化乳化剂是化妆品的重要辅助原料,具有乳化作用的天然提取物一般含有皂苷、树胶、蛋白质、胆固卵磷脂、明胶等。② 头皮吸收促进剂如月桂氮卓酮之类的化学合成促进剂,毒性大,长时间会对皮肤造成伤害。对比之下,天然的促进剂如薄荷油、桉油、丁香油、蛇床子油、当归挥发油、川芎挥发油等则有促渗作用强,不良反应小等特点。9、品牌天然提取物及功效举例
  • 难溶性药物的溶出度测试系列一:表面活性剂(上)
    前言:溶出是药物吸收和暴露的限速步骤,因此,难溶性药物的体外测试尤其具有挑战性和重要性,需要明确此方法必须能够利用这一特征,通过提供有意义的释放速率的解释,或在某些情况下,解释实际的释放机制,从而提供重要的临床相关信息。 难溶性药物在制剂处方和制造工艺中需要特别注意,如减小颗粒大小的方法以及更复杂的制剂操作和工程技术领域,以提高药物的有效性、增加体内浓度和吸收。有一些新兴课题正在进行深入的探索和理解,特别是诸如溶出方法中的漏槽与非漏槽方面的条件、固态性质的贡献、表面活性剂的化学性质、计算机模拟、剂量倾泻和胶囊属性。 目前,正在开发的口服剂型在水性介质中具有不同水平的溶解度,为了促进具有较低水溶性的药物的溶出测试,管理机构允许使用低浓度的表面活性剂,以提高溶解度。1添加主要目的是提高药物在测试介质中的溶解度以实现漏槽条件,由于正在开发的药物中有很多是难溶性的(统称BCSII类和IV类),尤其要注意在溶出介质中加入表面活性剂,并不是方法开发中增加溶解度的唯一选择。 01表面活性剂“表面活性剂”是“表面活性物质”的一组化学物质的通用术语。表面活性剂分子中存在疏水基团(尾部)和亲水基团(头部),决定了表面活性剂是具有两亲属性(亲水性和疏水性环境的亲和性)的有机化合物。因此,表面活性剂分子同时含有水不溶性(油溶性)和水溶性成分。表面活性剂分子将迁移到水表面,其中不溶性疏水基团可以延伸出大部分水相,或者如果水与油混合,则进入油相,而水溶性头部组保持在水相中。表面活性剂分子的这种排列和聚集起着改变水/空气或水/油界面处水的表面性质的作用(图1)。 02在溶出方法开发中的表面活性剂类型 在溶出方法的开发中,表面活性剂可以通过其离子电荷分为四大类用于筛选目的:• 阴离子:例如十二烷基硫酸钠/月桂基硫酸钠(SLS / SDS)• 阳离子:例如十六烷基三甲基溴化铵(CTAB)• 非离子型:如聚山梨酯20和80,泊洛沙姆• 两性/两性离子:例如卵磷脂,椰油酰胺丙基甜菜碱此外,为了体外评估GIT的性能,可以考虑更复杂的“生物相关的”表面活性剂介质体系。这些制剂模拟人GIT中的禁食(FaSSIF)和进食状态(FeSSIF)环境。2FaSSIF和FeSSIF介质配方可商购。 03溶出介质中的表面活性剂浓度 如上所述,基于表面活性剂的介质的溶解度增加是浓度依赖性的,而较高浓度的表面活性剂会溶解更多的药物,3必须优化表面活性剂浓度以平衡溶解度和漏槽条件与检测制造或稳定性变化方法的区分能力。通常,设定表面活性剂浓度的目标是在溶出介质中使用尽可能少的表面活性剂,以实现所需的漏槽条件和方法的稳健性,同时实现并保持对药品关键质量属性的区分。 在早期的开发过程中可以评估溶解性和漏槽条件,但是在开发的后期阶段,例如在验证方法可靠性以检测配方/工艺中的有意变化的过程中,该方法的区分特征往往被揭示出来。另外,对于基于表面活性剂的溶出介质,应该考虑两个因素:(i)应提供表面活性剂介质系统以确保方法可转移性。表面活性剂的各种来源有时在制备时导致可变的pH。SDS介质尤其如此,因为这种表面活性剂典型地来自乙氧基化中和过程。(ii)在表面活性剂介质中使用的填充剂的pH值需要在添加表面活性剂之前进行调整。当表面活性剂改变电极的表面环境时,所得到的溶液应被认为是表观pH值。 04表面活性剂在溶出介质开发中的应用 当表面活性剂被添加到溶出介质时,亲水端将与水性介质结合,疏水尾部遇到排斥力,有效地寻找与之相联系的替代相。相之间的“推拉”降低了水相内的分子间作用力,由此降低了表面和界面张力。事实上,界面张力的降低是表面活性剂增溶的关键驱动力。想象一下一种药物由于高疏水性而不溶于水或溶出介质的情况。添加表面活性剂并将其溶解在介质中,它作为延伸/线性单体或自缔合球形存在,分布在介质中。表面活性剂浓度的进一步增加将最终产生胶束,多个表面活性剂分子的自缔合产生表面活性剂尾部的疏水核心的新胶体相。发生这种相变的浓度称为临界胶束浓度(CMC)。 在纯水相存在下,溶剂与任何疏水表面的相互作用不是在能量上有利的,导致润湿差和低溶解度。疏水性固体(不溶性药物)与溶解的表面活性剂的疏水性尾部之间的相互作用,降低了润湿和溶解固体所需的能量,从而增加了药物的溶解度。通过随后将溶解的物质分配到表面活性剂胶束的疏水核心中可以进一步提高溶解度。在方法开发中选择最佳的表面活性剂浓度必须考虑胶束的存在与否对体外释放的基本机制的影响。 05表面活性剂对溶解气体的影响 如前所述,溶出介质中表面活性剂的存在改变了介质的表面和界面张力。这导致溶解氧在介质中的溶解度的变化。Fliszar等人4评估了含有表面活性剂的溶出介质中溶解氧的作用。使用含有0.5%SLS,2.0%SLS和0.5%吐温80的含水(不含表面活性剂)介质和溶出介质,研究了几种标准制剂对氧溶解的作用。 在这项研究中,含有表面活性剂的介质的氧含量由于表面张力的降低而被发现为7.5-8.5mg/mL。然而,不含表面活性剂的水性介质更低,为5.5mg/mL。不管所用的脱气方法(在真空下搅拌,加热,超声处理,氦气喷射和膜过滤),一旦脱气完成,所有介质准备重新获得或重新生成。初始氧含量和通气达到平衡的持续时间取决于用于脱气的方法(图2-4)。评估氧含量的增加对其溶解的影响。研究证实,含有表面活性剂的介质在初始时间点没有发现任何结果值(误差范围内)(图5和6)。 此外,已知对溶解氧敏感的化合物(泼尼松)在通气和脱气(换句话说,含氧量)反应中的溶出曲线显示出显著的变化,如图7所示。从这项工作可以得出结论,含表面活性剂的介质迅速恢复其平衡氧含量,并且变化具有最小误差。该研究证实,在实验开始之前,介质中的溶解气体达到平衡是很重要的。 LOGAN将持续分享难溶性药物的溶出度测试系列的相关文献! 参考文献:1. Noory, C., Tran, N., Ouderkirk, L., Shah, V. Steps for development of a dissolution test for sparingly water-soluble drug products. Dissolut.Technol., 2000, 7(1), 16–18. 2. Bhagat, N. B., Yadav, A. B., Mail, S. S., Khutale, R. A., Hajare, A. A., Salunkhe,S. S., Nadaf, S. J. A review on development of biorelevant dissolution medium. J. Drug Deliv. Ther., 2014, 4(2), 140–148. 3. Shah, V. P., Konecny, J. J., Everett, R. L., Mc Cullough, B., Noorizadeh,A. C., Skelly, J. P. In vitro dissolution profile of water-insoluble drug dosage forms in the presence of surfactant. Pharm. Res., 1989, 6(7), 612–618. 4. Fliszar, K. A., Forsyth, R. J., Zhong, L., Martin, G. P. Effects of dissolved gases in surfactant dissolution media. Dissolut. Technol., 2005, 12(3), 6–10.
  • 岛津成像质谱显微镜应用专题丨食品类
    大米中磷脂类化合物的空间分布质谱成像分析 “五谷者,万民之命,国之重宝”,粮食生产是安天下、保供给、促发展、稳民心的战略产业。大米是地球上主要的粮食作物之一,里面含有90%以上人体所需的营养物质,是全世界一半人口的主要食粮。磷脂是大米中重要的脂类化合物,占谷物总脂质含量的10%,具有重要的营养价值。然而,大米在储藏过程中,磷脂会发生水解产生醛、酮、酚等挥发性有机化合物,导致大米产生腐败气味,降低其食用和利用价值。因此,系统性研究大米中磷脂类化合物的空间分布分析,对改善大米存储条件、减缓大米陈化、保障食品安全、提高大米的食用品质等具有十分重要的意义。 基质辅助激光解吸电离-飞行时间质谱成像(MALDI-TOF-MSI)是近年发展起来的新型分子成像技术,可直接分析样品组织,同时获得多种生物分子,如蛋白、多肽、脂质、糖类等内源性代谢物的空间分布信息。本研究工作利用具有高空间分辨率、高灵敏度的MALDI-TOF-MSI质谱成像技术成功实现了大米中磷脂类化合物的空间分布分析(Fig.1)。 Fig. 1. 基于MALDI-TOF-MSI技术的大米中磷脂类化合物空间分布分析示意图 1. iMScope TRIO 成像质谱显微镜测试条件 10% 明胶水溶液包埋大米,-80°C 冷冻8小时, 采用CM1950 切片机 (Leica, Wetzlar, 德国) 进行冷冻切片,切片厚度为16 μm。所得组织切片放置在ITO导电载玻片上 (100Ω/ m2,日本大阪松浪玻璃),用基质升华仪iMLayer (Shimadzu,Kyoto,日本) 在大米组织切片上均匀沉积 2,5-二羟基苯甲酸(DHB)基质。采用成像质谱显微镜iMScope TRIO (Shimadzu,Kyoto,日本) 对大米组织切片进行MALDI 质谱成像,使用Imaging MS solution Ver.1.30 (Shimadzu) 软件分析质谱数据,根据二级质谱图与文献、脂质数据库联用进行分析物鉴定。质谱条件如下:正离子模式,质量扫描范围为m/z 500-1000;激光强度25,激光斑点大小设置为1(大约为10 μm,an arbitrary unit of iMScope),激光频率为1000 Hz;检测电压1.85 kV;步长35μm。 iMScope TRIO 2. 基于 iMScope TRIO 成像质谱显微镜进行大米中磷脂类化合物的空间分布分析 采用iMScope TRIO成像质谱显微镜在分子水平上对大米中磷脂类化合物的空间分布进行精准分析。如图Fig.2,正离子模式下,m/z 500-1000 范围内共获得12个代表性磷脂分子的空间分布图像,显然,磷脂分子的分布模式与糙米植物学结构密切相关,在糙米组织切片中显示出不同的空间分布模式。溶血卵磷脂类化合物(LPC)分布于整个糙米籽粒中,内胚乳中的含量相对较高。卵磷脂类化合物(PC)主要位于胚芽和种皮中,胚芽中含量相对较高,内胚乳中含量极少。本研究实现了大米中磷脂化合物的可视化,为大米营养价值的评价提供了理论依据。 3. 基于iMScope TRIO 成像质谱显微镜进行大米加工过程中磷脂类化合物变化规律探究 粮食安全是事关国家和社会稳定的重大问题,个别商贩通过低价收购陈化大米,经二次加工添加矿物油、石蜡、色素等物质改变陈米外观形态,将其推向市场牟取利益。因此,为保证粮食安全,采用MALDI-TOF-MSI质谱成像技术,对大米加工过程中磷脂类化合物变化规律进行探究,结果表明(图Fig.3),糙米经过研磨、抛光,美白等系列加工过程,去除了米糠层和胚芽成为精白米,这一加工过程中随着研磨、抛光程度的增加,大米表层卵磷脂的含量逐渐减少直至消失,由此说明大米表面的卵磷脂可以作为重要指标用以大米加工程度的鉴定。 Fig. 2. 糙米组织切片中12个磷脂化合物MALDI-TOF-MS质谱图像Fig. 3. 精白米和糙米中磷脂类化合物的MALDI-TOF-MS质谱图像 本文相关内容由中国科学院兰州化学物理研究所张燕霞博士生提供,详细研究内容已正式发表于Journal of Chromatography A 1651 (2021) 462302。 文献题目《Spatial distribution analysis of phospholipids in rice by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging》 使用仪器岛津iMScope TRIO 作者Yan-Xia Zhang a, b, Xiao-Bo Zhao a, Wei Ha a, Yi-Da Zhang a,*, Yan-Ping Shi a,*a Chinese Academy of Sciences Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, Chinab University of Chinese Academy of Sciences, Beijing 100049, China

十六烷基卵磷脂相关的仪器

  • ROTAN内齿轮典型应用:1、化工石化:石油、添加剂、聚合物、润滑油、油、蜡、沥青、松香2、塑料聚酯:聚酯、环氧树脂、硬化剂、异氰酸酯、缓和剂、树脂3、油漆涂料:油墨、墨水、染料、油漆、溶剂、油墨、橡胶溶液、粘胶、乳胶4、纸浆造纸:胶水、粘合剂、黑液、烧碱5、日化行业:磺酸、烷基苯、脂肪醇、洗涤剂、剃须膏、面霜、洗发精、皂液6、食品行业:植物油、卵磷脂、糖浆、巧克力酵母、蛋白、蜂蜜、甘油、香精7、化纤行业:粘胶、烧碱、染料8、设备成套:聚脂设备、巧克力设备、润滑油循环、印刷机械、沥青机械、沥青车苏州埃立特流体设备有限公司20年致力于特殊流体一站式解决方案,提供欧美进口高品质泵,为500家客户提供专业服务,详情请致电:,想了解更多信息请关注微信公众号“流体设备”,登录埃立特流体设备,网址:
    留言咨询
  • ROTAN内齿轮泵是由DESMI ROTAN公司生产的正排量齿轮泵,主要特点:1、可以双向输送2、超强的自吸能力3、仅有两个旋转部件和一个轴封4、 泵体稳固,设计简洁5、采用模块化设计,易于维护检修6、真正的背拉式结构7、拥有多种标准的配置可供选择8、可选磁力驱动无泄漏结构 典型应用:1、化工石化:石油、添加剂、聚合物、润滑油、油、蜡、沥青、松香2、塑料聚酯:聚酯、环氧树脂、硬化剂、异氰酸酯、缓和剂、树脂3、油漆涂料:油墨、墨水、染料、油漆、溶剂、油墨、橡胶溶液、粘胶、乳胶4、纸浆造纸:胶水、粘合剂、黑液、烧碱5、日化行业:磺酸、烷基苯、脂肪醇、洗涤剂、剃须膏、面霜、洗发精、皂液6、食品行业:植物油、卵磷脂、糖浆、巧克力酵母、蛋白、蜂蜜、甘油、香精7、化纤行业:粘胶、烧碱、染料8、设备成套:聚脂设备、巧克力设备、润滑油循环、印刷机械、沥青机械、沥青车
    留言咨询
  • 主要特点M300S蒸发光散射检测器可以方便的与分析及制备的HPLC系统联机使用,平衡时间短,操作简单!选择预置优化设置,该参数条件能满足中国药典载入的样品的HPLC-ELSD检测方法。l 应用SofTA热分流技术,控制蒸发。l 能制冷运行的ELSD,对有机流动相和无机流动相均可实现低温操作。l 使用Teflon喷雾器的ELSD。l 雾化区温度控制,实现分流。l 明亮易于观察的真空荧光显示屏(Vacuum Florescent Display)l 可内存10个不同的检测方法。蒸发光散射检测器技术指标:喷嘴Teflon喷嘴,抗堵塞,抗磨损,抗腐蚀液雾分流模式通过控制雾化区温度实现分流控制,因而无论是高沸点、低沸点或梯度分离的应用,都可得到分流设置。雾化区温度10º C–70º C漂移管温度室温-120º C光源近红外激光(650nm),小于5mW,符合FCC眼安全标准。检测元件内置高倍放大器全密封大面积硅光二极管灵敏度100pg, Glucopyranoside, Micro-HPLC(微径色谱)峰宽3秒(10%峰高,2ul直接进样)给定增益下的动态范围正常增益:3个数量级 低增益:3个数量级动态范围扩展:4-4.5个数量级液相流量多达5mL/min气相要求50psi,氮气或其它惰性气体气体消耗≤2.5L/min气量控制内置稳压阀,使用者无须调节进气压力或流速。内置过压保护。内置进气阀,进气阀可自动延时关闭,防止由于使用后忘记关闭气罐而放光整罐气体。液路材料Teflon,不锈钢,氧化铝,玻璃(镜头)用户界面4个多功能按钮仪表显示与控制检测信号,温度,压力,滤波常数,实时自检信息蜂鸣器控制智能仪表状态提示,出错报警。信号输出固定:10mV,5V 自选:0-5V计算机接口RS232后面板接口进气阀控制,清零控制,仪表状态输出,操作错误输出电源120V/240V, 60/50Hz, 600W重量15kg尺寸25W×45D×29H(cm)
    留言咨询

十六烷基卵磷脂相关的耗材

  • 北京绿百草现货提供化妆品微生物检验干粉培养基 各种规格
    北京绿百草现货提供化妆品微生物检验干粉培养基 北京绿百草现货提供化妆品微生物检验干粉培养基:伊红美蓝琼脂,乳糖胆盐培养基,乙酰胺琼脂培养基,十六烷三甲基溴化铵琼脂,蛋白胨水培养基,卵磷脂吐温80营养琼脂,SCDLP液体培养基,Baird-Parker琼脂基础,绿脓菌素测定培养基(PDP),7.5%氯化钠肉汤,普通琼脂斜面培养基,硝酸盐蛋白胨水培养基,明胶培养基基础,甘露醇发酵培养基,血琼脂基础培养基,TTC卵磷脂-吐温80-营养琼脂,双倍乳糖胆盐(含中和剂)培养基。 需要详细供货信息请联系北京绿百草:010-51659766. 登录网站获得更多产品信息: www.greenherbs.com.cn
  • 北京绿百草现货提供化妆品微生物检验干粉培养基
    北京绿百草现货提供化妆品微生物检验干粉培养基 北京绿百草现货提供化妆品微生物检验干粉培养基:伊红美蓝琼脂,乳糖胆盐培养基,乙酰胺琼脂培养基,十六烷三甲基溴化铵琼脂,蛋白胨水培养基,卵磷脂吐温80营养琼脂,SCDLP液体培养基,Baird-Parker琼脂基础,绿脓菌素测定培养基(PDP),7.5%氯化钠肉汤,普通琼脂斜面培养基,硝酸盐蛋白胨水培养基,明胶培养基基础,甘露醇发酵培养基,血琼脂基础培养基,TTC卵磷脂-吐温80-营养琼脂,双倍乳糖胆盐(含中和剂)培养基。 需要详细供货信息请联系北京绿百草:010-51659766. 登录网站获得更多产品信息: www.greenherbs.com.cN
  • 胰蛋白大豆琼脂含卵磷脂和吐温80

十六烷基卵磷脂相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制