二苄基二乙基膦氨

仪器信息网二苄基二乙基膦氨专题为您提供2024年最新二苄基二乙基膦氨价格报价、厂家品牌的相关信息, 包括二苄基二乙基膦氨参数、型号等,不管是国产,还是进口品牌的二苄基二乙基膦氨您都可以在这里找到。 除此之外,仪器信息网还免费为您整合二苄基二乙基膦氨相关的耗材配件、试剂标物,还有二苄基二乙基膦氨相关的最新资讯、资料,以及二苄基二乙基膦氨相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

二苄基二乙基膦氨相关的资料

二苄基二乙基膦氨相关的论坛

  • 水中邻苯二甲酸二乙基己基酯的测定

    水中邻苯二甲酸二乙基己基酯的测定

    [font='times new roman'][size=13px]前言[/size][/font]邻苯二甲酸酯化合物(PAEs)是一种环境激素类物质,具有雌激素活性及抗雄激素生物效应,可通过呼吸、饮食和皮肤接触,直接进入人和动物体内,对动物和人类造成很大的危害,已成为目前国际上广泛关注的一类环境激素污染物。水体中PAEs浓度较低(一般在ng/L数量级)但广泛存在。邻苯二甲酸二(2-乙基己基)酯(DEHP)是一种典型的酞酸酯类化合物,美国国家环保署将包括DEHP在内的六种酞酸酯列入重点控制的污染物名单中。本方法使用全自动固相萃取系统,参考《EPA Method3535a》方法,对自来水中的邻苯二甲酸二(2-乙基己基)酯进行测定,得到了良好的回收率和平行性。而且由于使用了全自动固相萃取系统,省去了人工繁琐的操作,提高效率,并减小了人工误差。[font='times new roman'][size=13px]关键词[/size][/font]全自动固相萃取系统 邻苯二甲酸二(2-乙基己基)酯 水 EPA Method 3535a[font='times new roman'][size=13px]1、仪器与试剂[/size][/font]固相萃取仪:Sepaths UP 全自动固相萃取系统;高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url]:LC600 二元高压梯度高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url];固相萃取膜:CPI 12HS C18 47mm;氮吹浓缩仪:[size=13px][color=#000000]MultiVap-8 平行浓缩仪[/color][/size];邻苯二甲酸二(2-乙基己基)酯标准品:1g;邻苯二甲酸二(2-乙基己基)酯标准工作液:取3mg邻苯二甲酸二(2-乙基己基)酯标准品,定容至10mL ,即该标准工作液的浓度为300μg/mL 。[font='times new roman'][size=13px]2、测试过程[/size][/font][font='times new roman'][size=13px]2.1 加标样品预处理[/size][/font]量取1L 自来水,加入5mL 甲醇,并用硫酸调节pH值至6。加入 20 μL的邻苯二甲酸二(2-乙基己基)酯标准工作液,摇匀待测。加标浓度相当于6μg/L。[font='times new roman'][size=13px]2.2 固相萃取浓缩过程[/size][/font]将加标样品置于SepathsUP的样品柜中,按照图1的固相萃取方法进行水中邻苯二甲酸二(2-乙基己基)酯的萃取富集。洗脱液经无水硫酸钠脱水后,在40[font='宋体']℃[/font][font='宋体']下氮吹[/font]浓缩,浓缩至体积小于1ml,停止浓缩。最后用乙腈定容至1mL 。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2022/10/202210101605012139_1939_5237388_3.png[/img][/align][align=center][font='times new roman'][size=13px]图1[/size][/font][font='times new roman'][size=13px] [/size][/font][font='times new roman'][size=13px]水中邻苯二甲酸二(2-乙基己基)酯固相萃取[/size][/font][font='times new roman'][size=13px]方法[/size][/font][/align][font='times new roman'][size=13px]2.3 HPLC-UV[/size][/font][font='times new roman'][size=13px]分析[/size][/font]色谱柱:C18柱,250mm×4.6mm,5μm流动相:乙腈流速:1.0mL/min波长:230nm进样量:20μL[font='times new roman'][size=13px]2.4 空白实验[/size][/font]除不加标样外,其余均按2.2、2.3测定条件和步骤进行。[font='times new roman'][size=13px]3、测试结果[/size][/font][font='times new roman'][size=13px]3.1邻苯二甲酸二(2-乙基己基)酯标样[/size][/font][font='times new roman'][size=13px]色谱[/size][/font][font='times new roman'][size=13px]图[/size][/font]图2 为邻苯二甲酸二(2-乙基己基)酯标样的色谱图,邻苯二甲酸二(2-乙基己基)酯的出峰时间为9.640min。[img=,519,214]https://ng1.17img.cn/bbsfiles/images/2022/10/202210101607474054_6384_5237388_3.jpg!w519x214.jpg[/img][align=center][img]" style="max-width: 100% max-height: 100% [/img][/align][align=center][font='times new roman'][size=13px]图[/size][/font][font='times new roman'][size=13px]2[/size][/font][font='times new roman'][size=13px]邻苯二甲酸二(2-乙基己基)酯标样[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]图[/size][/font][/align][font='times new roman'][size=13px]3.2 空白[/size][/font][font='times new roman'][size=13px]及[/size][/font][font='times new roman'][size=13px]加标[/size][/font][font='times new roman'][size=13px]样品色谱图[/size][/font]图3为空白样品的色谱图,图中可以看出空白样品中含有一定浓度的邻苯二甲酸二(2-乙基己基)酯。[align=center][img]" style="max-width: 100% max-height: 100% [/img][/align][align=center][font='times new roman'][size=13px][img=,533,228]https://ng1.17img.cn/bbsfiles/images/2022/10/202210101608032688_54_5237388_3.jpg!w533x228.jpg[/img]图3[/size][/font][font='times new roman'][size=13px] [/size][/font][font='times new roman'][size=13px]空白[/size][/font][font='times new roman'][size=13px]样品色谱图[/size][/font][/align]图4为加标样品的色谱图,由于空白样品中有检出微量的邻苯二甲酸二(2-乙基己基)酯,所以计算加标回收率时会扣除空白样品中邻苯二甲酸二(2-乙基己基)酯的峰面积后再与标样峰面积比较。得到的加标回收率及平行性结果详见3.3。[align=center] [img=,529,218]https://ng1.17img.cn/bbsfiles/images/2022/10/202210101608167719_3272_5237388_3.jpg!w529x218.jpg[/img][img]" style="max-width: 100% max-height: 100% [/img][/align][align=center][font='times new roman'][size=13px]图4 加标样品[/size][/font][font='times new roman'][size=13px]色谱图[/size][/font][/align][font='times new roman'][size=13px]3.3 加标[/size][/font][font='times new roman'][size=13px]回收率结果[/size][/font]4通道并行,1、2、3通道走加标样品,4通道走空白样品,通过计算得到该方法中邻苯二甲酸二(2-乙基己基)酯的加标回收率及平行性结果(见表1)。邻苯二甲酸二(2-乙基己基)酯的加标回收率为93.9~100.9%,平行性RSD 为3.1%。[align=center][font='times new roman'][size=13px]表[/size][/font][font='times new roman'][size=13px]1[/size][/font][font='times new roman'][size=13px] 测定结果[/size][/font][/align][table][tr][td][align=center][size=13px]通道[/size][/align][/td][td][align=center][size=13px]加标回收率/%[/size][/align][/td][td][align=center][size=13px]RSD%[/size][/align][/td][/tr][tr][td][align=center][size=13px]1[/size][/align][/td][td][align=center][size=13px]100.9[/size][/align][/td][td=1,3][align=center][size=13px]3.1[/size][/align][/td][/tr][tr][td][align=center][size=13px]2[/size][/align][/td][td][align=center][size=13px]93.9[/size][/align][/td][/tr][tr][td][align=center][size=13px]3[/size][/align][/td][td][align=center][size=13px]95.4[/size][/align][/td][/tr][/table][align=center][/align][font='times new roman'][size=13px]4、结果与讨论[/size][/font]本方法用全自动固相萃取系统,参考《EPA Method3535a》方法,对自来水中邻苯二甲酸二(2-乙基己基)酯进行萃取富集,其加标回收率93.9~100.9%,平行性RSD 3.1%。[font='times new roman'][size=13px]参考标准[/size][/font][font='times new roman'][size=13px]1、 [/size][/font][font='times new roman'][size=13px]美国[/size][/font][font='times new roman'][size=13px]EPA Method 3535a SOLID-PHASE EXTRACTION[/size][/font][font='times new roman'][size=13px]([/size][/font][font='times new roman'][size=13px]SPE[/size][/font][font='times new roman'][size=13px])[/size][/font][align=right][/align][align=right][/align][align=right][/align]

  • 邻苯二甲酸二(2-乙基己基)酯标准品有问题

    大家好!我买了瓶邻苯二甲酸二(2-乙基己基)酯 (DEHP)标准品(CAS号117-81-7), 用GC-MS检测后发现是邻苯二甲酸二异辛酯(DIOP) (CAS号27554-26-3),不知道各位大侠遇到过类似的情况没?

二苄基二乙基膦氨相关的方案

二苄基二乙基膦氨相关的资讯

  • 基因编辑巨头Horizon Discovery与罗格斯大学合作开发碱基编辑技术
    p style=" text-indent: 2em text-align: justify " Horizon Discovery Group 基因编辑和基因调控技术的全球领军者,宣布和新泽西州立大学(美国)罗格斯大学建立独家战略合作伙伴关系,共同开发一种称为碱基编辑的新的基因编辑技术并使之商业化。 /p p style=" text-indent: 2em text-align: justify " 获悉,2019年1月28日, Horizon Discovery Group plc(LSE:HZD),基因编辑和基因调控技术的全球领军者,宣布和新泽西州立大学(美国)罗格斯大学建立独家战略合作伙伴关系,共同开发一种称为碱基编辑的新的基因编辑技术并使之商业化。该技术将应用于新细胞疗法的开发,同时也将丰富Horizon集团的现有技术,帮助拓展其服务范围。 /p p style=" text-indent: 2em text-align: justify " 本次合作将进一步开发Rutgers Robert Wood Johnson医学院药理学副教授Shengkan Jin博士实验室的新型碱基编辑平台。作为协议的一部分,Horizon已向Rutgers提供了独家许可的碱基编辑技术,以用于所有治疗应用。此外,该集团还将在罗格斯大学进行基础编辑的进一步研究,并在集团内部继续进行评估和概念证明研究。& nbsp /p p style=" text-indent: 2em text-align: justify " 碱基编辑是一种新颖的技术平台,用于在细胞中设计DNA或基因,并通过使用酶修饰基因,纠正DNA中的错误或突变。与目前可用的基因编辑方法(例如CRISPR / Cas9)相比,这种新技术可以更准确地进行基因编辑,同时减少意外的基因组变化,避免在基因中产生可能导致负面影响的“切割”。 /p p style=" text-indent: 2em text-align: justify " 该技术将对通过临床开发和商业化促进细胞疗法的发展产生重大影响。Horizon集团首席执行官Terry Pizzie说:“碱基编辑对于基因编辑技术领域来说就像一场潜在的革新,极有可能实现靶向治疗众多迄今无法医治的疾病的目标。此次Horizon集团与Jin博士和罗格斯大学的合作将帮助我们在研究与应用市场扩展科学和知识产权能力。作为我们五年投资战略的一部分,Horizon将致力于投资保持市场领导地位的高价值技术,碱基编辑技术就是一个很好的例子。” /p p style=" text-indent: 2em text-align: justify " 罗格斯大学的Shengkan Jin博士表示:“单独使用该技术的胞苷脱氨酶可用于开发离体疗法,如用于镰状细胞贫血和β地中海贫血的基因修饰细胞、用于艾滋病的HIV抗性细胞,用于白血病的现成CAR-T细胞以及遗传性疾病的治疗,可谓潜力巨大。” /p p style=" text-indent: 2em text-align: justify " 罗格斯大学研究与经济发展部的临时高级副总裁David Kimball博士认为:“基因编辑技术真正彻底改变了科学家们思考如何在疾病治疗方面寻求更好结果的方法。我们期待通过与Horizon合作,发展这一新型碱基编辑平台以改善人类健康。” /p p style=" text-indent: 2em text-align: justify " 美国早在2018年1月就宣布将在未来6年出资1.9亿美元支持体细胞基因编辑研究,以开发安全有效的基因编辑工具,治疗更多人类疾病。显然,美国政府也对基因编辑市场前景十分看好。 /p p style=" text-indent: 2em text-align: justify " 另据中商产业研究院最新报告,预计2020年,全球精准医疗市场规模将破千亿,达到1050亿美元,而基因编辑技术将是撬动千亿级大市场的一把钥匙。 /p p style=" text-indent: 2em text-align: justify " 关于Horizon Discovery Group plc /p p style=" text-indent: 2em text-align: justify " Horizon Discovery Group plc(LSE:HZD)是基因编辑和基因调控技术的全球领军者,总部位于英国剑桥。 /p p style=" text-indent: 2em text-align: justify " Horizon集团提供广泛的技术产品和相关研究服务,以支持医学界和生物学界更好地了解所有物种的基因功能、人类疾病的遗传驱动因素以及个性化分子、细胞和基因疗法的发展。这些技术和产品已经被全球10000多家学术机构、药物研发机构、药物制造商和临床诊断公司所采用。 /p p style=" text-indent: 2em text-align: justify " 关于罗格斯大学 /p p style=" text-indent: 2em text-align: justify " 罗格斯大学,全称新泽西州立罗格斯大学,简称罗大(Rutgers, The State University of New Jersey )是美国新泽西州的最大高等学府,也是一所公立研究型大学。罗格斯大学的主要校园位于新布朗斯维克和皮斯卡特维,另有两所分校在纽瓦克和肯顿。 /p
  • 氨的过去,今天以及未来
    在碳达峰、碳中和的世纪热潮中,世界各国都在积极寻找下一代能源技术,氨能高效利用正在成为近期全球关注的焦点。目前,氨正从传统的农业化肥领域向新能源领域拓展。正是因为氢的储存和运输成本太高,氨开始受到更多的关注。资料显示,中国是全球氨生产大国,全世界每年生产合成氨2亿吨左右,我国的产能大约占到全球的四分之一。 图 碳达峰、碳中和是全球人类在21世纪的共同目标 从技术角度,氨由一个氮原子和三个氢原子组成,是天然的储氢介质;常压状态下,温度降低到零下33摄氏度就能够液化,便于安全运输。氨能是一种以氨为基础的新能源,既可以与氢能融合,解决氢能发展的重大瓶颈问题,也可以作为直接或者间接的无碳燃料直接应用,是实现高温零碳燃料的重要技术路线。 在进入新能源时代之前,氨已经是全球使用广泛的高产量(High Production Volume, HPV)的工业化学品之一,其中大约80%的商业化生产的氨进入农业并用于制造肥料。因此氨有完备的贸易和运输体系。所以,从理论上来看,可以用可再生能源生产氢,再将氢转换为氨,运输到目的地。 图 农业施肥为氨目前大的利用领域 除了化肥,氨在许多大型工业制冷系统中用作冷却剂,也时常是制造药品、塑料、纺织品、染料、杀虫剂、炸药和工业化学品的成分。在石油和天然气工业中,氨用于中和原油中常见的苛刻酸性化合物。采矿业使用“裂解”的 氨来提取铜、镍和其他金属,而燃煤和燃油发电厂则将氨添加到反应器中以净化烟雾并将有毒的氮氧化物转化为水和氮。氨还支持用于净化饮用水的氯胺消毒剂,并防止形成致癌副产品,这使得氨成为水处理应用的一种有价值的化合物。 如今,在船舶航运领域,氨即将以崭新替代能源的身份大展宏图。2021年10月28 日,国际可再生能源署(International Renewable Energy Agency, IRENA)发布报告称,氨在海运领域将成为清洁燃料的主力军。令人关注的是,挪威化肥巨头雅苒国际出资建造的全球一艘用氨能驱动的货船雅苒伯克兰号,已于2021年11月22日下水首航。 图 氨在海运领域将成为清洁燃料的主力军 全方位了解氨的危害 虽然氨在现代和未来社会的用途甚广,缺乏正确的氨气浓度测控和法规监管,过高的氨气浓度将会对人体健康和生态环境产生破坏性的影响。 l 健康危害接触低水平的氨会导致咳嗽以及对眼睛、鼻子、喉咙和呼吸道的刺激。虽然,高于25ppm浓度的氨可通过其刺激性气味被人类察觉,提供足够的早期预警信号。但氨的气味也会导致长时间接触后产生嗅觉疲劳,甚至损害人的嗅觉。 如果人体接触高浓度的氨,会立即灼伤鼻子、喉咙和呼吸道,导致呼吸道受损、甚至呼吸窘迫或衰竭,也可能导致死亡。由于儿童的肺表面积与体重之比较大,更容易受到氨的影响。 氨浓度 (ppm)对人体健康的影响50刺激眼睛、鼻子、喉咙(2小时暴露)100眼睛和呼吸道短时间内感到刺激性250大多数人能忍受(30-60分钟暴露)700眼睛和喉咙立即感到刺激性1500咳嗽、肺水肿、喉咙痉挛2500-4500致命(暴露30分钟以上)5000-10,000短时间内因气道堵塞立即致命,甚至造成皮肤损伤表一 暴露在不同的氨气浓度水平,可能会引起不同程度而的人体伤害(来源:Ammonia Toxicological Overview, Public Health England ) l 环境污染氨在二次气溶胶颗粒物生成中扮演着重要角色。其与大气中的硫酸和硝酸反应形成铵盐,作为颗粒物质在大气中停留几天至一周,然后再沉积回地面,是引发重霾污染和过量氮沉降的重要活性氮。图 大气中的氨是PM2.5的重要前体物 l 富营养化氨的排放以湿沉降和干沉降的形式返回地标,造成土壤和地表水的富营养化,从而影响植物和动物物种的生存。 氨气检测面面观 l 报警氨是一种有毒气体,暴露在一定浓度以上的氨气会对人体健康造成伤害,因此必须始终配备适当的安全监控程序和设备,以避免严重的意外伤害或死亡。 现有行业内氨分析仪器的常规标准为JJG 1105-2015《氨气检测仪检定规程》,适用于测量空气或氮气中氨含量的气体分析仪和检测报警器的检定,规程要求的两种量程范围其一为0-50 umol/mol(ppm),要求测试误差在±10%;其二为50-1000 umol/mol,要求测试误差在±6%。 JJG 1105-2015主要针对仪器检测原理的包含电化学、红外声光、非色散红外、化学发光、紫外等,采样方式有吸入式和扩散式两种。 l 氨逃逸燃煤锅炉烟气排放所含的氮氧化物,是空气污染的重要前体物,控制燃煤过程烟气排放的氮氧化物总量是各国环保法规的重点。选择性催化还原(SCR)和选择性非催化还原(SNCR)技术是目前烟气脱硝主流技术。通过在烟气中注入氨水或尿素,其主要成分氨与氮氧化物发生化学反应,生成对环境无害的氮气和水。 脱硝过程的还原反应结束后,残余的氨气称之为氨逃逸。考虑氨气本身也是有害污染物,必须对烟气中残余氨气浓度进行实时监控,一方面使喷氨效率达到优,一方面降低氨的消耗及排放。 2018年,国务院将“开展大气氨排放控制试点 ”写入新版空气污染整治目标和计划——《关于全面加强生态环境保护坚决打好污染防治攻坚战的意见》。随着各级政府对氨气污染的高度重视,工业氨气监测的需求也更加具有挑战。举例来说,2019年山东发布新的《火电厂大气污染物排放标准》重点增加了氨逃逸和氨厂界浓度控制指标要求,要求采用氨法脱硫或使用尿素、液氨或氨水作为还原剂脱硝的企业,其氨逃逸浓度应满足HJ2301中小于2.0mg/m3(约2.63ppm)的要求。 除了空气污染,氨逃逸对采用脱硝过程的企业还可能带来诸多危害:l 形成堵塞空预器的铵盐,增加维护成本(逃逸浓度2ppm时,半年后风机阻力增加约30%;3ppm时,半年后风机阻力增加约50%);l 频繁冲洗空预器,影响机组安全;l 使催化剂失活,缩短使用寿命;l 还原剂氨的耗材浪费;l 影响用于建材的飞灰(脱硝过程副产品)质量。 为了有效监测氨逃逸,一般情况下氨的监测仪表安装于脱硝系统的还原反应结束处,烟道处也会安装一台以监测最终烟气中的氨排放浓度。然而,传统的氨逃逸分析仪在实际监测中所遭遇的困难重重。传统基于近红外激光的分析仪,由于氨分子在近红外波段可用吸收光谱窄、吸收峰强度低,使得分辨率低(下限1ppm)并且易受其他气体干扰。从安装方式来看,对射式原位安装对法兰开孔精度要求高,烟道的振动、膨胀及收缩等都非常影响光精度与系统的稳定性,大大降低数据质量。同时原位式在线分析系统难以在线通入标气,对仪器进行有效的检验与标定。 海尔欣科技自主研发的LGM1600便携式高精度激光氨逃逸分析仪,基于新一代中红外激光吸收光谱技术,采用氨分子在中红外波段的强吸收峰,其强度高于近红外波段吸收100多倍,因此LGM1600检测精度比现有大多数氨逃逸分析仪器至少高出一个量级。结合德国进口高温采样预处理系统,LGM1600可实现无冷凝和极低吸附的氨气采样和分析。图 LGM1600便携式高精度激光氨逃逸分析仪 l 大气氨大气中的氨与农业活动密切相关。目前,农业活动例如施肥、畜牧养殖等是主要的人为氨排放源。对农业生产而言,施肥导致的氮挥发还是农田氮养分损失的重要途径。相对于氨的重要性,对其排放和沉降的观测研究工作却相对滞后,这主要受制于氨在线检测仪器及观测方法上的局限。 因氨具有强表面吸附力和水溶性等特性,大气氨浓度和地气氨交换通量的原位准确测量一直是学界的一大挑战,目前国际上主流的测量仪器大多采用闭路吸入式的构造,采样管路的吸附效应一直制约着大气氨浓度的快速高频高准度测量。与此同时,闭路仪器和搭配使用的外置抽气泵均要求交流供电,这意味着目前绝大多数的大气氨通量观测只能在少数电力条件允许的环境下开展。 例如,目前国内外对于氨干沉降通量的观测,大都采用基于低频(数日至数月)浓度采样的沉降速率经验系数法,其结果的准确度亟待检验。相较于氨气泄漏报警和工业排放,大气中的氨气浓度仅为0-50ppb,大多数情况下不超过10ppb,加之氨气在大气中相态转化多变,高频且准确的浓度和通量信息,是对大气氨实施有效调控的必要基础。 宁波海尔欣光电科技有限公司与中科院大气物理研究所碳氮循环团队深入合作,研发了HT8700便携式、高精度、快响应的开路多通池激光氨分析仪(图X)。这款仪器基于可调谐激光吸收光谱(TDLAS)技术,采用了分布反馈式量子级联激光(DFB-QCL)的光源,其开放式的光路结构,解决了传统闭路仪器管路吸附引起的测量误差,光机电软各个部分高度集成,可完全由太阳能驱动运行,适合野外条件使用。 图 HT8700 高精度大气氨本底激光开路分析仪 目前,HT8700在国内已为中科院大气物理所和中国农业大学所采用,研究成果发表于世界SCI期刊《Agricultural and Forest Meteorology》和《Atmospheric Environment》。HT8700同时获得海内外专家青睐,先后展示于国家碳中和北方中心、欧洲地理学会(EGU)年会、世界氮素倡议大会(INI)、亚洲通量观测联盟(AsiaFlux)年会,并出口英国与荷兰,参与欧洲高端科学机构的研究项目。
  • 第二届国际人类基因组编辑峰会将在香港举办
    p   第二届将于2018年11月27-29日在香港举办。该峰会会期预计三天,由香港科学院、英国伦敦皇家学会、美国国家科学院和美国国家医学院联合举办。第一届国际人类基因组编辑峰会曾于2015年在华盛顿特区举办。 /p p   近年来,基因编辑技术发展迅速,CRISPR等功能强大的编辑工具因为精确、简便等特性获得了爆发性的应用。但具体到人类基因组编辑,在应用伦理和技术管理等方面的诸多问题仍未得到完美解答。其中涉及到可遗传的基因编辑,以及治疗目的以外的基因编辑应用,更引起社会广泛忧虑。 /p p   第二届峰会将广泛召集基因编辑技术相关的各界人士,包括研究人员、伦理学家、决策部门、患者团体以及全球科学组织的代表等,继续推动相关的广泛讨论。 /p p   参与者将重点关注以下问题:一、自2015年首届峰会以来取得的科学进展 二、基因编辑应用于不可遗传的疾病治疗的进展 三、对生殖细胞基因编辑的科研状况及临床应用潜力 四、2015年首届峰会确定的技术挑战最新情况 五、制定国际监管框架的规划和前景 六、人类基因组编辑应用的可能伦理和社会问题 七、基因编辑话题的公众参与。 /p

二苄基二乙基膦氨相关的仪器

  • 氨氮总磷二合一在线分析仪TresCon采用模块化设计,最多允许3个模块随意组合,具有测试更准确稳定、抗干扰更强的特点,多参数监测系统具有无可比拟的成本优势。可以测试同一个测试点的3个不同参数,也可以测试3个不同测试点的相同参数或不同参数。氨氮总磷二合一在线分析仪将0P510总磷模块与0A110氨氮模块组合,可在线同时监测总磷和氨氮浓度各分析模块功能相互独立,互不干扰。测量原理氨氮:氨气敏电极法 总磷:钼蓝比色法典型应用污水处理厂进排口监测,一台仪器同时监测氨氮和总磷浓度。优势特点■ 自动校准,自动清洗 ■ 试剂无毒无害■ 温度自动控制功能:能对试样温度进行自动调节■ 流量自动控制功能:通过压力感测管路堵塞、泄漏以及试样的液位高度■ 自动读数功能:评估测试值的稳定性■ 自动调节测量间隔功能:依据浓度的变化调节以节省试剂用量氨氮模块 总磷模块 ■ 独特的氨气分离功能 ■ 自带冰箱,防止试剂变质 ■ 超快速测量(小于9分钟) ■ 钼蓝比色法,低浓度下也保证数据准确■ 可实现实时连续测量 ■ 多种温度和测试时间选择,最 低10分钟测试一个样■ 超宽量程设计,适合各种复杂水体 ■ 背景计算程序,排除浊度色度干扰■ 不受水体中颜色、浊度、酸碱度及多种离子的干扰 氨氮&总磷二合一在线分析仪 技术指标 氨氮模块总磷模块量程0.1~1000mg/L NH4-N0.01~3.00mg/L TP; 0.01~6.00mg/L(外接稀释)测试范围:准确度 1.0 mg/L NH4-N:±5 % 测试值±0.2 mg/L 3%测量值± 0.05mg/L1.0~100mg/L NH4-N:±5%测试值±0.1mg/L测试范围:分辨率;0.10~9.99mg/L: 0.01mg/L;3%0.01~3.00mg/L: 0.01mg/L;1.50%10.0~99.9mg/L : 0.1mg/;4%100~1000mg/L: 1mg/L;5%响应时间<3 分钟10 分钟测量间隔连续、10、15、20、25、30、60 分钟可选、自动调整模式或通过触发信号实现间歇运行 (2、4、6、12、24小时)10、15、20、25、30、60分钟、DIN消解方法(120℃, 60分钟)校准自动两点校正( AutoCal ),用两瓶标准液,标准液浓度范围:0.2~500 mg/L NH4-N自动2点校正,1、3、4、6、12、24小时间隔可选样品消耗和要求30 mL/次,悬浮颗粒<50 mg/L10 mL/次,悬浮颗粒<50 mg/L试剂消耗10 升试剂:与测试间隔有关,当测试间隔为连续/20/30 分钟时,可用14/30/50 天;1.5 升标准液A/B、1.5 升清洗液 :每24 小时校正一次,可用60天反应试剂 (A,B,C,D) 可用 60天(每小时测量一次);标准液和清洗液可用60 次保养周期6个月3个月接口3组 0/4-20 mA输出, 12组继电器, RS232, RS485环境条件;防护等级;证书贮存温度: -25~60℃;工作温度: 0~40℃;IEC 1010-1/EN 61010 -1, Class 1;CE更多产品信息,请咨询广州佰微仪器科技有限公司(佰科汇)
    留言咨询
  • 产品简介: HD-B03型便携式COD氨氮总磷检测仪采用高强度PVC工程塑料手提箱设计,消解检测一体式设计,其中消解模块具备双温区功能,检测部分同时具备360°旋转比色管检测和比色皿检测,安卓智能操作系统,8英寸高清液晶触摸屏,光纤检测技术,进口光源,内置大容量锂电池,便携多参数水质检测仪具有性能稳定、测量准确、测定范围广、功能强大、操作简单等特点。 广泛应用: 便携式COD氨氮总磷检测仪适用于生活污水、工业废水、地下水、地表水中多种水质污染物的检测;运用于水质检测实验室、市政、污水处理厂、环境监测站及教育科研高校、电厂、疾控中心、造纸电镀、水产养殖、生物制药、石化、煤炭、冶金、纺织、食品等行业的水质分析。 功能特点: 1、采用安卓智能系统7.1.1版本,更流畅的交互体验,运转速度更快速,稳定性更强。 2、双比色检测系统,同时支持预制试管比色和比色皿比色; 3、比色管检测部分采用360°精密旋转装置,有效保证精度,稳定性10倍提升。 4、内置双温区8孔消解仪,左右温区独立控制,可对COD总磷总氮等进行快速消解。 5、便携一体式检测设备,内置大容量锂电池,可一机实现户外水样消解、测定。 6、内置热敏打印机,支持自动、批量打印,可灵活选择、编辑打印内容,支持二维码打印。 7、仪器具有WIFi无线、4G远传和RJ45有线联网功能,将数据上传; 8、配备霍尔德数据云平台,可接收仪器的检测数据,应用于线上数据存储、长短期动态分析; 9、用户可自建标样曲线,提供系数曲线和样品曲线的自定义标定。 10、仪器内置教学演示视频,用户可边看视频边操作实验,更容易上手。 11、检测、消解可同时进行,大大提高效率。 12、可根据用户要求定制检测项目。 13、配备工厂预制试剂耗材,无需反复移液和配制浓硫酸,只需要在试管内加入水质样品即可进行检测。 14、内置人性化置顶功能,可将常测定指标进行置顶,置顶后显示在项目列表最上方,无需每次繁琐找取; 技术参数: 1、COD 依据标准:HJ/T399-2007水质化学需氧量快速检测法; 检测量程:10-15000mg/L(分段); 2、氨氮 依据标准:HJ535-2009水质氨氮的测定纳什试剂分光光度法; 检测量程:0.05-200mg/L(分段); 3、总磷 依据标准:GB11893-89水质总磷的测定钼酸铵分光光度法; 检测量程:0.02-30mg/L(分段); 比色方式:预制比色试管16mm;比色皿50mm(含)以下; 操作系统:安卓智能操作系统; 屏幕显示:8英寸高清触摸屏,1024*768分辨率; 波长配置:420nm、470nm、520nm、560nm、620nm、700nm; 示值误差:≤±5%; 重复性:<0.5%; 稳定性:<0.5%; 分辨率:0.001; 光学稳定性:≤±0.001Abs/20分钟(10万小时寿命); 自动校准:仪器具有自动校准功能; 打印方式:微型热敏打印机; 操作视频:≥4个项目的操作步骤演示视频; 上传功能:可无线联网上传数据至云平台,可在手机及电脑端实时查看; 电池容量:锂电池48V8AH; 满电使用时间:以COD为例,消解检测同时进行,可连续使用6小时以上; 数据传输:USB、RJ45、WIFI; 消解数量:8个,双温区独立控制; 加热速度:10min内升至165℃; 消解温度:室温-200℃可调; 消解容量:0-10ml; 控温模式:智能PID温控; 控温精度:±0.5℃; 预设消解模式:COD、总磷、总氮、高锰酸盐、硫酸盐、甲醛; 自定义消解模式:3条; 数据储存:1000万组,可自由调用查看; 仪器电源:DC48V2A; 仪器尺寸:430mmx350mmx200mm; 仪器重量:11kg;
    留言咨询
  • 氨氮总磷总氮分析仪 天尔TE-5901型适用于生活污水、工业废水、地下水、中水、地表水中污染物的检测 . 运用于水质检测实验室、市政、污水处理厂、环境监测站及教育科研高校、电厂、疾控中心、造纸电镀、水产养殖和生物药业、石化、煤炭、冶金、纺织、制药、食品等行业 .氨氮总磷总氮分析仪 天尔TE-5901型技术参数:1. *样品检测位:3个独立检测位(1个比色管检测位,2个比色皿检测位)2. 显示: 7寸彩色液晶触摸屏、8个触摸感应功能模块3. *进样装置:自动多通道检测装置(浓度直读)4. 检测方式:360°旋转比色管检测(预制试剂)、比色皿检测(固体试剂)5. *光学检测系统:光纤检测系统6. *测量项目:COD 7. 测量范围:COD(2-20000mg/L)8. 光源:进口12V/20W卤素灯(可达10万小时以上)9. 检测准确度:≤±5%10. 波长准确度:±1nm11. 波长范围:420nm、610nm12. 波长半宽:4nm13. 分辨率:0.00114. 重复性:≤±2%15. 通道间误差:≤±2%16. 参比通道:设有固定自动参比通道17. 存储:可存储100万组数据,可自由调用查看18. 预存曲线:预存320条曲线,可供用户进行选择、校准、修改等操作氨氮总磷总氮分析仪 天尔TE-5901厂家直销、支持定制、质保三年
    留言咨询

二苄基二乙基膦氨相关的耗材

  • 国产COD、氨氮、总磷测定仪 CNP-301
    国产COD、氨氮、总磷测定仪 CNP-301,技术指标,说明书,现货,环保标准,特价主机1. 测量范围:(超过稀释测定) COD:5~2000mg/L 氨氮:0.02~25mg/L 总磷:0.00~10mg/L2. 示值误差: COD:≤±5 % 氨氮:≤±3%及0.2中最大者 总磷: ≤±5%及0.2中最大者3. 重复性 :≤3%4. 光学稳定性:仪器吸光值在20min内漂移小于0.002A5. 抗氯干扰:≤2000mg/L(COD测定)6. 重量:4Kg7. 外形尺寸: 340mm×250mm×130mm8. 功耗<10W 国产COD、氨氮、总磷测定仪 CNP-301,技术指标,说明书,现货,环保标准,特价,消解仪 1.控温范围:室温~180℃可设定 COD消解温度165℃,总磷:120℃2.控温精度:±0.5℃3.消解时间:1-999min的可调。 COD:15min,总磷:30min4.批处理量:16个水样(可选25、36、20)5.功耗:<500W6. 重量:6kg7.外形尺寸:216mm×320mm×146mm 国产COD、氨氮、总磷测定仪 CNP-301,技术指标,说明书,现货,环保标准,特价,特点1.利用进口高亮度、长寿命冷光源,以及高稳定的窄带干涉光学系统,使仪器稳定性、重复性极高。2.消解仪和主机为独立仪器,不影响光学系统稳定性。3.消解仪温度PID自动控温、计时,精度高。4. 消解温度和时间可无级设定,以用于其它用途。5.消解、比色用同一消解比色管,其强度、硬度高,可多次重复使用6. 可各保存COD、氨氮、总磷和总氮的标准曲线10条及99个测定值,断电不丢失。7.具有打印功能:可对测试的记录立即打印或查询记录打印。8.具有USB接口数据上传功能,可把仪器存储的数据记录上传至电脑保存或编辑打印。9.具有出厂工作曲线恢复功能,以恢复误删曲线的操作。10.LCD大屏液晶显示,长寿命及低故障率,操作中文菜单显示。 国产COD、氨氮、总磷测定仪 CNP-301,技术指标,说明书,现货,环保标准,特价,配套清单: 1.主机一台,DIS-16(或可选DIS-1A,DIS-25,DIS-36)消解仪一台。2.消解比色管30支,试管架一个,COD试剂一套(可测200个水样),氨氮试剂一套(可测250个水样),总磷试剂一套(可测100个水样)。3.消解防护罩一个,使用说明书一份,产品合格证一份及保修卡一份。
  • 国产COD、氨氮、总磷、总氮测定仪 CNPN-401
    国产COD、氨氮、总磷、总氮测定仪 CNPN-401,技术指标,办事处,现货,特价,环保标准,主机1. 测量范围:(超过稀释测定) COD:5~2000mg/L 氨氮:0.02~25mg/L 总磷:0.00~10mg/L 总氮:0.05~100mg/L2. 示值误差: COD:≤±5 % 氨氮:≤±3%及0.2中最大者 总磷: ≤±5%及0.2中最大者 总氮: ≤±5%3. 重复性 :≤3%4. 光学稳定性:仪器吸光值在20min内漂移小于0.002A5. 抗氯干扰:≤2000mg/L(COD测定)6. 重量:4Kg7. 外形尺寸: 340mm×250mm×130mm8. 功耗<10W国产COD、氨氮、总磷、总氮测定仪 CNPN-401,技术指标,办事处,现货,特价,环保标准,消解仪1.控温范围:室温~180℃可设定 COD消解温度165℃,总磷:120℃,总氮125℃2.控温精度:±0.5℃3.消解时间:1-999min的可调。 COD:15min,总磷:30min,总氮30min4.批处理量:16个水样(可选25、36、20)5.功耗:<500W6. 重量:6kg7.外形尺寸:216mm×320mm×146mm国产COD、氨氮、总磷、总氮测定仪 CNPN-401,技术指标,办事处,现货,特价,环保标准,特点1.利用进口高亮度、长寿命冷光源,以及高稳定的窄带干涉光学系统,使仪器稳定性、重复性极高。2.消解仪和主机为独立仪器,不影响光学系统稳定性。3.消解仪温度PID自动控温、计时,精度高。4. 消解温度和时间可无级设定,以用于其它用途。5.消解、比色用同一消解比色管,其强度、硬度高,可多次重复使用6. 可各保存COD、氨氮、总磷和总氮的标准曲线10条及99个测定值,断电不丢失。7.具有打印功能:可对测试的记录立即打印或查询记录打印。8.具有USB接口数据上传功能,可把仪器存储的数据记录上传至电脑保存或编辑打印。9.具有出厂工作曲线恢复功能,以恢复误删曲线的操作。10.LCD大屏液晶显示,长寿命及低故障率,操作中文菜单显示。国产COD、氨氮、总磷、总氮测定仪 CNPN-401,技术指标,办事处,现货,特价,环保标准,配套清单:1.主机一台,DIS-16(或可选DIS-1A,DIS-25,DIS-36)消解仪一台。2.消解比色管30支,试管架一个,COD试剂一套(可测200个水样),氨氮试剂一套(可测250个水样),总磷试剂一套(可测100个水样),总氮试剂一套(可测50个水样)。3.消解防护罩一个,使用说明书一份,产品合格证一份及保修卡一份。
  • S-苄基氯化异硫脲
    SA02401338S-Benzylthiuronium Chloride OAS S-苄基氯化异硫脲1gPerkin Elmer 0240-1338Thermo 33835200

二苄基二乙基膦氨相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制