乙酸二碳基钌聚合物

仪器信息网乙酸二碳基钌聚合物专题为您提供2024年最新乙酸二碳基钌聚合物价格报价、厂家品牌的相关信息, 包括乙酸二碳基钌聚合物参数、型号等,不管是国产,还是进口品牌的乙酸二碳基钌聚合物您都可以在这里找到。 除此之外,仪器信息网还免费为您整合乙酸二碳基钌聚合物相关的耗材配件、试剂标物,还有乙酸二碳基钌聚合物相关的最新资讯、资料,以及乙酸二碳基钌聚合物相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

乙酸二碳基钌聚合物相关的资料

乙酸二碳基钌聚合物相关的论坛

  • 胶黏剂-丙烯酸酯聚合物标准

    根据GBT--13553-1996 胶黏剂分类,丙烯酸酯聚合物的编号是531,分在大类5 合成热塑性材料/小类 5.3丙烯酸酯聚合物类/组别 丙烯酸酯聚合物,是否有这一类产品的相关标准?国标/行标等?谢谢

  • 聚合物基质色谱柱的优缺点

    聚合物基质的色谱柱大家有接触过吗?聚合物填料多为聚苯乙烯-二乙烯基苯或聚甲基丙酸酯等,优点:PH值为1~14均可使用。相对与硅胶基质的C18填料,这类填料具有更强的疏水性;大孔的聚合物填料对蛋白质等样品的分离非常有效。缺点:相对硅胶基质填料,色谱柱柱效较低。

乙酸二碳基钌聚合物相关的方案

乙酸二碳基钌聚合物相关的资讯

  • 季胺化反应的发展及P-SAX季胺盐高分子聚合物的使用场景
    季铵盐中由于含有季铵基甚至有的还含有双键,故可以和诸多的不饱和单体共聚,在水溶液中带正电荷,生成阳离子型或两性离子型水溶性聚合物,很容易吸附于固一液或固一气界面上而被用作絮凝剂、抗静电剂、导电纸涂层及油田化学剂。另外,在现代社会中,表面活性剂的应用日趋广泛。季按盐类表面活性剂具有重要的用途,此外也可被用作柔软剂、抗静电剂、颜料分散剂、矿物浮选剂和沥青乳化剂、金属缓蚀剂及相转移催化剂等,在纺织印染、塑料加工、医疗卫生、日用化工、石油化工、金属加工等行业得到广泛应用。能够合成季铵盐的反应就是季胺化反应。过去几年,大部分是通过简单的合成反应获得季铵盐,例如:○ 在乙酸乙酯作溶剂的条件下与三乙胺混合加热、回流、搅拌进行季胺化反应得到三乙基对(邻)硝基苄基氯化铵;○ 以N-乙基苯胺为原料,经羟乙基化、氯乙基化、季铵化合成N-苯基-N-乙基氨基乙基三甲基氯化铵;○ 通过γ-氯丙基甲基硅氧烷—二甲基硅氧烷共聚物和N,N-二甲基苄基胺的季铵化反应合成了带有苄基二甲基γ-硅丙基氯化铵侧基的聚硅氧烷;○ 用雌二醇经溴乙基化、咪唑乙基化、季铵化和水解反应,合成一类新型的取代苯甲基雌甾咪唑鎓盐;○ 由1,3,5-三甲基-2,4,6-三(咪唑甲基)苯与1,3,5-三(溴甲基)苯直接合成了洞状咪唑鎓环番3(C30H33N63+Br-33H2O)等。P-SAX季铵盐高分子聚合物就是Welchrom® P-SAX固相萃取小柱中主要的填料原料,其聚合物的合成方法就是会用到季胺化的反应方法。P-SAX是一种混合型阴离子交换反相吸附剂,对酸性化合物具有高的选择性和灵敏度。Welchrom® P-SAX固相萃取小柱设计用于克服传统高分子聚合物基质混合型固相提取吸附剂的局限性。它是一种在pH0~14范围内稳定的混合型强阴离子交换、水可浸润性合物吸附剂。现在可使用可靠的固相提取来检测、确认或定量各种样品基质中的酸性化合物及其代谢物。利用Welchrom® P-SAX固相萃取小柱的选择性和稳定性,可通过固相提取步骤从复杂的样品中将分析物分成两部分:酸性化合物和碱性/中性化合物。分流提取物可通过多种分析方法或多种联用分析技术(LC/MS和GC/MS)进行分析。Welchrom® P-SAX固相萃取小柱广泛应用于净化不同基质如血清、尿液、塑料制品或者食品中的酸性和中性化合物,如奶粉及奶制品中三聚氰酸的检测。
  • 新材料情报,科学家发明新型环保型聚合物粘合剂!
    【科学背景】聚合物粘合剂在消费品、工业和医疗产品中扮演着至关重要的角色。随着人们对多功能性和环保要求的不断提高,聚合物粘合剂的研究逐渐成为热点。然而,现有的大多数粘合剂性能通常针对特定用途,难以适应多样化的需求,且大多源于不可再生资源,对环境造成负担。特别是α-硫辛酸(αLA)聚合物作为一种潜在的环保粘合剂,虽然在各种应用中表现出色,并具备闭环回收的能力,但在某些条件下容易发生自发解聚,这一挑战限制了其广泛应用。为解决这一问题,加州大学伯克利分校的Phillip B. Messersmith教授课题组开发了一种新型的无催化剂αLA聚合方法,显著提高了聚合物的稳定性,并拓展了其应用范围。研究团队通过对单体成分的微调,成功制备出一种在干燥和潮湿条件下均能良好发挥作用的压敏粘合剂,以及强度相当于传统环氧树脂的结构粘合剂。特别是,αLA手术强力胶在封住小鼠羊膜囊破裂的实验中,成功将胎儿存活率从0%提高到100%。这些成果表明,αLA聚合物不仅能满足多种应用需求,还支持闭环回收,具有显著的环境和应用价值。相关研究成果已在《Science》上发表。【科学亮点】1. 实验首次开发了稳定的α-硫辛酸(αLA)聚合物粘合剂,并成功避免了在存储和使用过程中自发解聚的问题。这一成果通过在聚合物中添加电亲核试剂来实现,使粘合剂在闭环回收系统中表现稳定。2. 实验通过调整单体成分,制得了适应不同环境条件的粘合剂。其中,压敏粘合剂在干燥和潮湿条件下均能良好工作,而结构粘合剂的强度与传统环氧树脂相当。这种多功能性使得粘合剂可广泛应用于各种场合。3. 实验展示了αLA手术强力胶的医疗应用。该胶成功密封了小鼠羊膜囊的破裂,显著提高了胎儿的存活率,从0%提升至100%。这一成果表明,αLA聚合物在医疗领域具有重要的应用潜力。【科学图文】图 1. 单体结构和前体溶液聚合的一般方案。图 2. S1 稳定的 αLA 聚合物的整体机械性能。图 3. αLA 强力胶的离体和体外表征。图 4. αLA 强力胶作为胎膜密封剂的体内生物学性能。图 5. 稳定αLA粘合剂的压敏和结构粘合剂性能以及生命周期图。【科学结论】本文开发了一种新型的环保型聚合物粘合剂,这些粘合剂不仅具有广泛的应用潜力,还能在多种环境条件下稳定发挥作用。通过在α-硫辛酸(αLA)聚合物中引入电亲核试剂,研究人员成功防止了闭环解聚现象,从而显著提高了粘合剂的稳定性和使用寿命。这一突破为粘合剂的设计提供了新的思路,即通过调整单体成分来优化粘合剂在干湿条件下的表现。这种粘合剂在医疗领域的应用尤为突出,如在小鼠羊膜囊修复中的成功案例,展示了其在提高胎儿存活率方面的巨大潜力。最重要的是,该研究强调了材料的可持续性和闭环回收的重要性,提出了可持续发展的解决方案,以应对传统粘合剂带来的环境挑战。总体而言,这项研究不仅推动了粘合剂领域的技术进步,也为其他材料的绿色设计提供了宝贵的参考。参考文献:Subhajit Palet al. ,Recyclable surgical, consumer, and industrial adhesives of poly(α-lipoic acid).Science385,877-883(2024).DOI:10.1126/science.ado6292
  • 高分子表征技术专题——透射电子显微镜在聚合物不同层次结构研究中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。更多专题内容详见:高分子表征技术专题 高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读. 期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!透射电子显微镜在聚合物不同层次结构研究中的应用Applications of Transmission Electron Microscopy in Study of Multiscale Structures of Polymers作者:王绍娟,辛瑞,扈健,张昊,闫寿科 作者机构:青岛科技大学 橡塑材料与工程省部共建教育部重点实验室,青岛,266042 北京化工大学材料科学与工程学院 化工资源有效利用国家重点实验室,北京,100029作者简介:辛瑞,女,1990年生. 青岛科技大学高分子科学与工程学院副教授,2018年在北京化工大学获得博士学位,2014~2018年在中国科学院化学研究所进行联合培养,2018~2020年在青岛科技大学从事博士后研究并留校任教. 获“国家青年科学基金”资助. 主要研究方向是多晶型聚合物的晶型调控与相转变研究.摘要聚合物材料的性能与功能取决于各级结构,其中化学结构决定材料的基本功能与性能,而不同层次聚集态结构能够改变材料的性能和赋予材料特殊功能,如高取向超高分子量聚乙烯的模量比相应非取向样品提高3个数量级,聚偏氟乙烯的β和γ结晶结构则能赋予其压电、铁电等特殊功能. 因此,明确聚合物不同层次聚集态结构的形成机制、实现各层次结构的精准调控和建立结构-性能关联具有非常重要的意义,致使对聚合物各级结构及其构效关系的研究成为高分子物理学的一个重要领域. 本文将着重介绍透射电子显微镜在聚合物不同层次结构研究中的应用,内容包括仪器的工作原理、样品的制备方法、获得高质量实验数据的仪器操作技巧、实验结果的正确分析以及能够提供的相应结构信息.AbstractThe performance and functionality of polymeric materials depend strongly on the multiscale structures. While the chemical structure of a polymer determines its basic property and functionality, the structures at different scales in solid state can change the performance and even enable the polymer special functions. For example, the modulus of highly oriented ultrahigh molecular weight polyethylene is three orders of magnitude higher than that of its non-oriented counterpart. For the polymorphic poly(vinylidene fluoride), special piezoelectric and ferroelectric functions can be endowed by crystallizing it in the β and γ crystal modifications. Therefore, it is of great significance to disclose the structure formation mechanism of polymers at all levels, to realize the precise regulation of them and to correlate them with their performance. This leads to the study of polymer structure at varied scales and the related structure-property relationship a very important research field of polymer physics. Here in this paper, we will focus on the application of transmission electron microscopy in the study of different hierarch structures of polymers, including a brief introduction of the working principle of transmission electron microscopy, special techniques used for sample preparation and for instrument operation to get high-quality experimental data, analysis of the results and correlation of them to different structures.关键词聚合物   透射电子显微镜   样品制备   仪器操作   结构解释 KeywordsPolymer   Transmission electron microscopy   Sample preparation   Instrument operation   Structure explanation  聚合物是一类重要的材料,其市场需求日益增长,说明聚合物材料能够满足使用要求的领域越来越广,这应归因于聚合物材料性能和功能的各级结构依赖性. 首先,包括组成成分、链结构及构型、分子量及分布等的化学结构决定材料的基本性能和功能. 例如:高密度聚乙烯(即直链型聚乙烯)的热稳定和机械性能明显优于低密度聚乙烯(支化型聚乙烯),而分子链的共轭双键结构则能赋予聚合物导电能力[1~5]. 对化学结构固定的同一聚合物材料而言,不同形态结构可以展示出完全不同的物理、机械性能. 以超高分子量聚乙烯为例,其非取向样品的模量与强度分别为90 MPa和10 MPa,分子链高度取向后,模量增加到90 GPa,增幅为3个数量级,强度(3 GPa)也增加了近300% [6]. 另外,有机光电材料的性能也与分子链排列方式密切相关[7~12]. 对结晶性聚合物材料而言,聚集态结构调控不仅影响性能,而且可以实现特殊功能,如常规加工获得的α相聚偏氟乙烯属于普通塑料,特殊控制形成的β或γ相聚偏氟乙烯则具有压电、铁电等功能[13~20]. 由此可见,揭示聚合物不同层次聚集态结构的形成机制,明确各级结构的影响因素,发展聚合物多层次聚集态结构的可控方法,对发掘聚合物材料的特殊功能和提高性能进而拓展其应用领域具有十分重要意义,致使对聚合物各级结构及其构效关系的研究一直是高分子物理学的一个重要领域.高分子不同层次结构既与高分子的链结构有关,又与加工过程有关. 因此,高分子形态结构的研究内容十分丰富,且对形态结构的研究不仅是深入理解聚合物结构-性能的基础,而且能为聚合物加工过程结构控制提供依据. 经过长期研究积累,目前已经发展了针对聚合物不同层次聚集态结构表征的多种成熟技术手段,如光谱技术[21~28]、散射与衍射技术[29~37]、显微技术[38~50]以及理论计算模拟[51]等,这些方法在聚合物聚集态结构表征中各有优势. 如光谱技术的长处在于表征高分子链结构、晶区与非晶区的链取向和晶态中分子链相互作用等.散射和衍射可用于表征聚合物的结晶态结构、结晶程度与取向和微区结构尺寸等. 相对于光谱、散射和衍射技术,显微术的优势在于能够直观地展示微观尺度结构,如光学显微镜用来展示聚合物的微米尺度结构、跟踪球晶的原位生长过程等[38,39],而原子力显微镜能显示纳米尺度结构及片晶的生长行为,甚至给出聚合物的单链结构信息[42]. 当然,大多数情况下,需不同技术相结合来准确揭示一些聚合物的不同层次结构[52~59]. 例如:聚(3-己基噻吩)(P3HT)因其b-轴(0.775 nm)和c-轴(0.777 nm)的晶面间距基本相同,无法用衍射技术精准确定其分子链取向,而衍射与偏振红外光谱结合可以明确其晶体取向[54]. 透射电子显微镜(本文中简称为电镜)是集明场(BF)和暗场(DF)显微术以及电子衍射(ED)技术于一体的设备,能够直接关联各类晶体的不同形态结构[60]. 例如:对聚乙烯单晶的电镜研究[61~63],证明了片晶仅有十几个纳米厚,但分子链沿厚度方向排列,根据这一电镜结果提出了高分子结晶的链折叠模型,对推动结晶理论的迅速发展做出了巨大贡献. 然而,电镜对观察样品要求苛刻,且样品在高压电子束轰击下不稳定,导致电镜研究高分子形态结构具有很大挑战性.针对电镜研究高分子形态结构面临的挑战,本文将着重介绍电镜在聚合物不同层次结构研究应用中的一些技巧,主要内容包括电镜的工作原理、不同类型样品的制备方法以及稳定手段、获得高质量实验数据的仪器操作技术、实验结果的正确分析,并结合具体示例解释相关数据对应的聚合物结构信息.1电镜工作原理显微术是将微小物体放大实现肉眼观察的技术. 实际上,人们常用放大镜对细小物体的直接观察就是一种最原始的显微手段,只是受限于放大能力仅能实现对几百微米以上物体的观察. 为观察更细小物体,人们通过透镜组合来提高放大能力,从而诞生了光学显微镜. 如图1所示,光学显微镜是通过对中间像的投影放大提升了放大本领,其两块透镜组合的放大能力是两块透镜的放大率之积. 基于这一原理,增加透镜数目可进一步提高光学显微镜的放大能力,而透镜本身缺陷造成的求差、色差、象散、彗差、畸变等象差会使图像随透镜数目增加变得不清晰. 另外,考虑到人眼的分辨本领大概为0.1 mm,而光学显微镜的极限分辨率为0.2 μm,500倍是光学显微镜有效放大倍率,即500倍就能使一个尺寸为0.2 μm放大到人眼能分辨的 0.1 mm. 由此可见,要观察更细微结构需要提高显微镜的分辨率. 根据瑞利准则,光学显微镜的分辨本领可表示为:Fig. 1Sketch illustrating the working principle of optical microscope.其中,λ为光源的波长,NA为数值孔径,其值是透镜与样品间的介质折射率(n)与入射孔径角(α)正弦的乘积,即NA = nsinα. 可见,减少波长能有效提高光学显微镜的分辨能力,例如以紫外光为光源的显微镜分辨率可提高到0.1 μm,欲进一步提高显微镜分辨能力须选择波长更短的光源.电子波的波长与加速电压(V)相关,可用λ=12.26 × V−−√式表示,根据该公式,100 kV和200 kV电压加速电子束的波长分别为0.00387 nm和0.00274 nm,经相对论修正后变为0.0037 nm和0.00251 nm,如以高压加速电子束为光源,能使显微镜的分辨率得到埃的量级,这就促使了电子显微镜的开发. 如图2所示,电子显微镜工作原理与光学显微镜相似,只是使用高压技术的电子束为光源,而相应的玻璃聚光镜(condenser)、物镜(objective lens)以及投影镜(projection lens)均由磁透镜替代了光学显微镜的玻璃透镜. 另外,电子束能与样品中原子发生多种不同作用(图3),除部分电子束被样品吸收生热外,还产生不同种类的电子,如透过电子、弹性和非弹性散射电子、背散射电子、X-射线、俄歇电子以及二次电子等,采用不同特征的电子成像就产生了不同类型的电子显微镜. 例如:扫描电子显微镜用二次电子和背散射电子成像,透射电子显微镜用弹性和非弹性散射电子成像,借助具有能量特征的X-射线或具有电子能量损失特征非弹性散射电子可使扫描电子显微镜或透射电子显微镜具备材料成分分析功能.Fig. 2Sketch illustrating the working principle of electron microscope.Fig. 3Sketch shows different electrons generated after interaction of the incident electrons with the atoms in the sample.2样品制备由于电子的穿透能力非常差,只能穿透几毫米的空气或约1 µm的水. 因此,要求电镜观察用样品非常薄,在200 nm以内,最好控制在30~50 nm. 用于高分辨成像的样品需更薄,最好为10 nm左右. 因此,电镜样品的制备十分困难但非常重要,需要一定的技巧性. 一方面,要求样品足够薄,能使电子束透过成像;另一方面,要确保制备过程不破坏样品的内在微细结构. 另外,尽管电镜样品用不同目数的铜网支撑(通常为400目),如此薄的样品在上百万伏电压加速的电子束下并不稳定,如电子束轰击破碎、电子束下抖动等,从而需进一步加固样品. 基于需观察材料的品性和形态不同,甚至是同一种材料因不同的研究目的,制样方法也各不相同,从而发展了各种各样的制样方法. 下面将重点介绍一些常用的不同类型聚合物材料的电镜样品制备方法.2.1支撑膜制备支撑膜在电镜实验中十分常用,在纳米胶囊与颗粒等本身无法成膜样品的形态结构观察时,是必须使用的. 支撑膜的厚度一般为10 nm左右,要求稳定且无结构,常用的支撑膜有硝化纤维素(又称火棉胶)、聚乙烯醇缩甲醛和真空蒸涂的无定型碳,针对这些常用材料的薄膜制备方法如下.2.1.1硝化纤维素支撑膜制备硝化纤维素支撑膜可通过沉降和滤纸捞膜2种方法获得.沉降制膜法相对简单,初学者容易实现. 如图4(a)所示,用一个制膜器,在底部放置网格,将电镜铜网置于网格上方,然后注入蒸馏水,在蒸馏水表面滴加硝化纤维素的乙酸戊酯溶液,待乙酸戊酯溶液挥发成膜后,打开底部阀门排尽蒸馏水,硝化纤维素支撑膜便覆盖在铜网上,由此得到的带有硝化纤维素支持膜的铜网烘箱中50~60 ℃干燥后便可投入使用. 根据所需膜的厚度要求,硝化纤维素的乙酸戊酯溶液浓度可设定在0.5 wt%~1.5 wt%范围内. 对有经验的学者而言,滤纸捞膜法更简洁. 如图4(b)所示,用浓度为0.5 wt%~1.5 wt%的硝化纤维素乙酸戊酯溶液直接浇注在蒸馏水表面成膜后,将铜网整齐地放置在膜上,然后用滤纸平放在硝化纤维素膜的上面,并快速反转捞起带有硝化纤维素支撑膜的铜网,干燥后即可备用.Fig. 4Sketch illustrating the ways for preparing nitro cellulose (NC) supporting membrane used in electron microscopy experiments. (a) Sedimentation of the NC membrane on copper grids. (b) Filter paper fishing of copper grids supported by the NC membrane.2.1.2聚乙烯醇缩甲醛支撑膜制备硝化纤维素支撑膜制备方法也同样适用于聚乙烯醇缩甲醛(PVF)支撑膜的制备,但考虑到PVF的溶剂为氯仿,挥发速率很快,还可以通过玻片蘸取的方法获得. 如图5(a)所示,将沉浸于0.1 wt%~0.2 wt% PVF氯仿溶液中的表面光洁的载玻片(图5(a)左半部分)缓慢提起,并在充满这种溶液饱和气体的气氛中干燥(图5(a)右半部分),干燥后用刀片将载玻片边缘的PVF薄膜划破,通过漂浮的方法将PVF薄膜转移到蒸馏水表面(图5(b)),放置铜网后用滤纸捞起干燥即可获得含PVF薄层支撑膜的铜网.Fig. 5A diagram illustrating the preparation of PVF support film through dipping a clean glass slide into its chloroform solution (a) and then floating the thin PVF layer onto the surface of distilled water (b).2.1.3无定型碳支撑膜制备用电镜研究微粒状材料的结构、形状、尺寸和分散状态时,根据微粒材料的分散状况,主要有如下几种电镜样品的制备方法.(a) 悬浮法. 对在液体里分散均匀、沉降速度慢且无丝毫溶解能力的微粒,可制备浓度适当的均匀分散悬浮液,用微量滴管将悬浮液滴到有支撑膜的铜网上,干燥后使用.(b) 微量喷雾法. 用悬浮法将悬浮液直接滴在支撑膜上,在干燥过程中可能会引起微粒间的聚集. 为避免这种情况,可将悬浮液装入微量喷雾器,利用洁净的压缩气体使其产生极细雾滴,直接喷到带支撑膜的铜网上. 微量喷雾法能获得单分子分散的样品,是研究聚合物单分子结晶行为理想制样方法.(c) 干撒法. 对在干燥状态,相互间凝聚力不强且无磁性的微粒材料,可直接撒在带硝化纤维素或聚乙烯醇缩甲醛支撑膜的铜网上,用吸耳球吹掉未很好附着的微粒后即可使用.

乙酸二碳基钌聚合物相关的仪器

  • 仪器简介:热塑性聚合物在加热时熔融或流动,由无规缠结的(无定形热塑性塑料)或以微晶方式部分有序的(半结晶热塑性塑料)线性大分子组成。它们在农业、汽车工业、航空业、建筑工业、电气工业、纺织等行业广泛运用。本书不仅可作为应用手册查询,也可以作为实验指南,对热分析工作者及热分析学习者有帮助和裨益。目录应用列表1 热分析导论 Introduction to Thermal Analysis1.1 差示扫描量热法 (DSC)Differential Scanning Calorimetrv1.1.1 常规 DSC Conventional DSC1.1.2 温度调制 DSC Temperature&mdash modulated DSC1.1.2.1 ADSC1.1.2.2 IsoStep1.1.2.3 TOPEMTM1.2 热重分析(TGA) Thermogravimetric Anaiysis1.3 热机械分析(TMA) Thermomechanical Analysis1.4 动态热机械分析(DMA) Dynamic Mechanical Analysis1.5 与TGA的同步测量 Simultaneous Measurements with TGA1.5.1 同步DSC和差热分析 (DTA,SDTA) SimuItaneous DSC and Differential Thermal Analysis1.5.2 析出气体分析(EGA) Evolved Gas Analysis1.5.2.1 TGA&mdash MS1.5.2.2 TGAF&mdash TIR2 聚合物的结构和性能 Structure and Behavior of Polymers2.1 聚合物领域的一些定义 Some Definitions in the Field of Polvmers2.2 聚合物的物理结构 Physical Structure of Polymers2.3 热塑性聚合物 Thermoplastic Polymers2.3.1 无定形塑料 Amorphous Plastics2.3.2 半结晶塑料 Semicrystalline Plastics3 热塑性聚合物的重要领域 Important Fields of Thermoplastic Polymers4 热塑性聚合物的应用一览表 Application Overview of Thermoplastic Polymers5 热塑性聚合物的特征温度表 Table of characteristic temperatures of thermoplastic polymers6 重要热塑性聚合物的性能和典型的热分析应用 Properties of Important Thermoplastic Polymers and Typical TA Applications6.1 聚乙烯,PE Polyethylene6.2 乙烯/醋酸乙烯共聚物,E/VAC Ethylene/Vinylacetate Copolymer6.3 聚丙炳,PP Polypropylene6.4 聚苯乙烯,PS Polystyrene6.5 聚氯乙烯,PVC Polyvinyl Chloride6.6 聚醋酸乙烯,PVAC Polyvinyl Acetate6.7 聚酰胺,PA Polyamide6.8 聚对苯二甲酸乙二醇酯,PET Polyethylene Terephthalate6.9 聚碳酸酯,PC Polycarbonate6.10 聚甲醛,POM Polyoxymethylene6.11 聚四氟乙烯,PTFE Polytetrafluoroethylene7 热塑性聚合物的应用 Applications of Thermoplastic Polymers7.1 聚乙烯测试 Measurements on Polyethylene7.2 聚丙烯测试 Measurements on Polypropylene Based Material7.3 聚苯乙烯的玻璃化转变 Glass Transition of Polystyrene7.4 聚氯乙烯的热分析测试TA Measurements on Polyvinyl Chloride7.5 聚酰胺及其共混物 Polyamides and Their Blends7.6 聚对苯二甲酸乙二醇酯的热行为 Thermal Behavior of Polyethylene Terephthalate7.7 其它聚合物测试 Measurements on Other Polymers7.8 热塑性弹体 Thermoplastic Elastomers7.9 聚合物共混物和共聚物 Polymer Blends and Copolymers7.10 热塑性塑料及其产品的进一步测试 Further
    留言咨询
  • 开创聚合物分离的新纪元以更高分离度的体积排阻分离进行聚合物色谱表征通过实现快速的日常校准提升数据一致性和数据质量利用系统先进的技术实现自动化的方法开发以更快的速度获取目标聚合物的更多信息增强对聚合物化学结构的了解,加速创新如今,聚合物科学家所处的市场环境日趋活跃,对高性能材料、生物材料创新的需求不断增长,愈发激烈的竞争导致产生了更强的紧迫感。有了ACQUITY APC系统,聚合物色谱表征脱去极长运行时间的标签。得益于超高效聚合物色谱的优势,分析人员能以快于传统GPC/SEC技术5-20倍的速度,获取准确且可重现的聚合物分子量信息,从而加快创新速度,同时改善实验室运营环境。缩短聚合物样品实验室检测周期:更快地为研发实验室、生产运营团队以及您的客户提供可供决策的结果。推动创新:更快获取结果并掌握更多信息,帮助整个环节更快速地做出响应,从而缩短开发周期并加快上市步伐。简化工艺监测并灵活实现批次一致性控制,可对工艺和合成优化做出灵活的“动态”决策。显著降低每个样品的分析成本:减少溶剂消耗和废液处理量。通过快速溶剂切换和强溶剂兼容性优化方法开发配备聚合物四元溶剂管理器(p-QSM)的APC系统赋予了化学家和聚合物科学家出众的灵活性,让他们能够在同一套系统上使用标准聚合物色谱、梯度聚合物洗脱色谱(GPEC)和反相LC分析非常复杂的共聚混合物和聚合物添加剂。附加的系统功能支持自动化选择多达六种不同的溶剂。自动化色谱柱切换功能结合ACQUITY APC色谱柱的刚性和可灵活溶剂切换的颗粒配合使用,为体积排阻色谱法分离聚合物的方法开发,率先提供了全世界真正意义上的自动化解决方案。这套解决方案支持在数小时内完成聚合物的方法开发到检测,而无需数天时间。全方位多维色谱细节决定一切 — 更优的细节是我们不懈努力的目标当与PSS Polymer Standards Service GmbH的WinGPC UniChrom&trade 软件结合使用时,沃特世APC系统有助于研究人员使用多维分离方法深入了解复杂的聚合物材料,从而增加单次色谱分析的峰容量。应用多维色谱方法能够通过两种不同的连续保留机制分离分析物。该方法可以使分析物与单维色谱分离中通常发生共洗脱的其它化合物实现分离。这有助于大幅提升多维分离度,并提供有关复杂聚合物样品化学结构和组成的详细信息。始终能满足您研究需求的色谱柱技术BEH色谱柱技术采用亚乙基桥杂化(BEH)技术的颗粒可确保色谱柱在恶劣的运行条件下仍具有高柱效和长使用寿命。先进的反相和HILIC HPLC色谱柱BEH色谱柱适用于常见的反相色谱分析,此外,这款色谱柱在极端pH条件下可保持稳定,并且广泛适用于多种化合物,因此也是方法开发的理想选择。使用先进的检测解决方案获取有关聚合物样品的更多信息ACQUITY APC系统配备先进的检测器,可通过单次分析为聚合物研究人员提供有价值的决策支持信息。将沃特世APC系统与先进的检测解决方案相结合,可通过引入示差折光(RI)检测器、紫外(UV) PDA、光散射(LS)和粘度检测器(IV)显著提升SEC分析的信息获取能力。借助第三方先进检测功能集成,科学家还能对样品进行更全面的表征,从而更好地掌握新型复杂聚合物的结构-性能关系。利用业内率先推出专用校准套件提升数据质量和一致性由于运行时间小于10 min,使用ACQUITY APC校准标准品在30 min内即可校准一套串联ACQUITY APC色谱柱。这些标准品套件与ACQUITY APC色谱柱的分子量范围相匹配,可通过简单的稀释后进样为任何串联色谱柱生成10点校准图。这是一款有助于为特定应用选择理想色谱柱和校准标准品的便捷工具。得益于可对串联色谱柱进行日常校准的优势,数据一致性得到了极大改善,提供批次间测量结果始终如一的可靠性。功能和优势加速创新:亚3 μm刚性大孔径ACQUITY APC色谱柱与ACQUITY APC系统的超低系统扩散优势相结合,实现高分离度的聚合物分离。优化方法开发:快速溶剂切换和强溶剂兼容性,有助于应对聚合物分析中的严苛分离条件。提高分析范围和实验室效率:一套系统支持多种应用,包括基础LC、梯度、等度、反相和GPC分析。更深入地了解您的聚合物样品:可兼容多种检测器技术包括第三方先进的检测器,例如示差折光、紫外/可见光、光电二极管阵列或蒸发光散射检测器,还可兼容多角度光散射和粘度检测器等。缩短聚合物样品实验室检测周期:以快于传统SEC/GPC技术5-20倍的速度为您的研发实验室、生产运营团队和客户提供可供决策的结果。简化并优化串联色谱柱的校准:提供与串联色谱柱分子量范围匹配的标准品。多样化的色谱柱管理功能:可自动从多达两套串联ACQUITY APC色谱柱和多达两套串联传统GPC色谱柱中进行选择 - 所有色谱柱都安装在稳定的恒温环境中。溶剂管理器提供的精确流量:可确保分子量数据的准确性始终如一。
    留言咨询
  • 对于聚合物和塑料产业而言,研发各种聚合物和开拓可持续发展道路至关重要。 当前GPC/SEC 方法分辨率低,分离时间长并且溶剂消耗量大。沃特世 ACQUITY APC&trade (Advanced Polymer Chromatography)超高效聚合物色谱系统是基于体积排阻色谱分离基本原理的突破性技术产品,以前所未有的分析速度为您提供更详尽的聚合物材料信息。 这就意味着可以更好的表征、提高资产利用率,为企业创新和可持续发展目标提供卓越的解决方案。主要特性新色谱柱技术 &ndash ACQUITY APC色谱柱采用小颗粒的大孔径亚乙基桥杂化颗粒,显著提高了稳定性、多用性和分离速度。稳定的示差检测器 &ndash 针对低扩散进行了优化,即便在低聚合物浓度时也能达到精确表征所需的低噪音和漂移性能。精确的溶剂管理器 - 等度溶剂管理器精确流速确保经校准的系统日复一日地提供准确分子量数据。先进的色谱柱加热模块 - 确保 ACQUITY APC色谱柱所需的温度环境的重现性。配有GPC 选项的Empower® 3软件 &ndash 快捷方便地浏览、比较和报告聚合物分析数据。主要优势聚合物表征 - 提供无与伦比的聚合物峰值解析度,尤其适用于低分子量的低聚物。加快分析速度 - 获得可重复的精确聚合物分子量信息的速度比传统 GPC/SEC 方法快5到20倍。降低成本 - 通过减少溶剂消耗量和废液处置量从而降低分析成本。系统多用性 - 在单一系统中运行不同聚合物分析工作。使用 ACQUITY APC 系统分析聚苯乙烯与传统 GPC 相比分离度更高、速度更快,(100K、10K、1K)。注意:本页面内容仅供参考,所有资料请以沃特世官方网站()为准。
    留言咨询

乙酸二碳基钌聚合物相关的耗材

  • 反相聚合物填料
    Uni系列反相填料是纳微科技全球领先的专利技术专门为在分析及工业规模分离有机化合物、天然产物、蛋白、多肽、核酸等所设计聚合物反相填料,采用单分散均一粒径,因其在耐碱性、长寿命与避免碱性化合物拖尾上具有显著优势,与硅胶色谱填料在分离性能和溶剂兼容性上优势互补,可提供全球品种规格最多的单分散聚合物色谱填料类型,从亚微米UPLC填料、HPLC填料及中低压FPLC填料,在实验室分析、生物制药、中药、化药、食品饮料等领域得到广泛应用。按照不同的基质及特性,提供UniPS、UniPMM、UniPSN、UniPSA、NM五种聚合物反相填料,其中前四种为单分散均一粒径填料,最后一种为非单分散粒径填料。反相聚合物色谱填料基本属性一览表订货信息
  • 转移二维晶体材料的高纯聚合物
    1、企业介绍泰州巨纳新能源有限公司:巨纳集团(Sunano Group)是能源行业的知名品牌。泰州巨纳新能源有限公司(Sunano Energy)是国内最早的从事石墨烯制备、性能检测及应用产品开发的公司之一,注册资本11000万元,有办公用房300多平方米,厂房和洁净室3000多平方米。核心研发团队主要由国内外知名高校博士组成,部分成员来自于2010年诺贝尔物理学奖小组,项目技术处于国际领先地位,在石墨烯领域拥有专利30余项。企业管理团队有丰富的成功创业经验,创新意识强,公司客户遍布全球。2、高质量二维晶体材料简介:二维晶体材料指的是以石墨烯为代表的单原子层及少数原子层厚度的晶体材料。巨纳集团除了提供石墨烯材料、设备、检测等一体化服务外,还联合荷兰HQ Graphene为全球客户提供高质量的类石墨烯二维晶体材料,并提供定制服务,以满足客户的不同需求。 转移二维晶体材料的高纯聚合物
  • 有孔/无孔单分散聚合物色谱填料
    详细介绍sin单分散聚合物色谱填料 不但有高度的粒径均一性、精确的粒径大小、优化的孔径结构和比表面积,而且具有低反压、高选择性、高分辨率、高回收率、洗脱集中、重现性好等特点。我们可以提供涵盖了正相、反相、离子交换、疏水、亲和、体积排阻等色谱介质,可满足从实验室分析,到大工业规模分离的各种需求, 如有机化合物、天然产物、 抗生素、多肽、蛋白质、多糖和寡核苷酸等物质的高效分析和分离。可提供从2 μm到50 μm任意尺寸的无孔和有孔单分散高效色谱填料,常规孔径有100A, 300A, 500A, 800A和1000A。 也可根据客户的要求定制特殊的色谱填料。sin 聚合物色谱介质的特点和优势特点优势球形,粒径高度均一易装柱、高分辨率优化的孔径结构高载量、高选择性卓越的化学和pH稳定性便于在线清洗、使用寿命长无泄漏、无碎片和小颗粒洁净的产品高机械强度低反压、柱床稳定提供多个基质品种以及广泛的粒径和孔径选择多样的选择和最优化的填料大规模生产能力以及批与批的稳定性稳定的产品质量和产量供应聚合物和硅胶色谱填料的互补性能 硅胶和聚合物为基质的填料是在色谱分离和分析领域必不可少的两种性能互为补充的色谱介质。硅胶基质机械强度大、柱效高、分辨率好,已广泛应用于有机化合物及中性分子的分析和大规模制备生产中;而聚合物基质填料则具有良好的化学稳定性及无与比拟的耐酸碱性, 因此寿命长,可在线清洗适合于生物分子的大规模纯化分离。研究证明,由于硅胶和聚合物色谱填料内在材料性能的差别,它们在对目标分子分离选择性方面具有极强的互补性,如一些用聚合物填料很难分离的物质,在硅胶填料上却能得到良好分离;相反地,一些在硅胶填料上很难分离的物质,而用聚合物填料能得到有效的分离。我们可同时提供硅胶、聚甲基丙烯酸酯或聚苯乙烯/二乙烯基苯为基质的三种性能互补的高质量的均粒色谱填料以满足不同客户的需求。高度的粒径均一性 从图1扫描电镜图及图3粒径分布图中可以看出sin聚合物色谱介质具有完美的球形,高度的粒径均一性和精确的粒径大小. 均一的粒径和完整的球形使得sin 聚合物色谱填料与大多数市场的色谱填料相比(图2)具有装柱容易,柱床稳定,反压低等特点。图1. 不同尺寸的PS/DVB色谱填料 (5, 10, 30, 40 mm)扫描电镜图图2. Sin (红) 与知名品牌 (绿) 色谱填料粒径分布图对比图3. 各种尺寸色谱填料的粒径分布图色谱填料的孔径大小及比表面积对填料的分离性能有很大的影响,因此对于目标分离物质,选择优化的孔径结构的色谱填料可以增加上样量,提高分离效率和纯度。我们不仅可以提供从2 μm到50 μm任意尺寸的单分散聚合物色谱填料,而且可以提供从50 ? 到 4000 ?不同孔径大小的色谱填料。常规色谱填料的孔径有100A, 300A, 500 A, 800A和1000 ?。特殊孔径的色谱填料也可根据客户的需求定制。图4是四种不同孔径的单分散色谱填料扫描电镜图。 低反压,高柱效 由于sin单分散聚合物介质粒径均一、球体、刚性强、耐压性好,在各种流速下都能装出较好的柱效,且柱床稳定,反压低。相对其他粒径分布广的色谱填料来说,该色谱介质装柱后渗透性好,柱床稳定,因此柱效和分辨率更好。粒径均一,无碎片和小颗粒的色谱介质也可避免筛板堵塞。图5表明了理论塔板数和线性流速的关系。PD10-300的塔板数可以达到50000 N/m,填料装柱后在各种溶剂条件下压力和流速的线性关系表明sin单分散聚合物填料较好的刚性结构。化学和pH稳定性sin系列反相色谱填料基质是高交联度的聚苯乙烯和二乙烯基苯,其化学键在全pH范围(pH 1-14)具有很好的稳定性,在极端的酸碱溶液(如1N NaOH/HCl)和有机溶液(包括甲醇、乙醇、丙酮、异丙醇、二甲基亚砜、n-丙醇、四氢呋喃、乙腈、6M盐酸胍等)中都可保持球体结构和稳定的性能。让客户拥有更宽的应用条件的选择,有利于开发工艺和优化分离条件,从而达到高分辨率和高产品回收率。 同时sin聚合物色谱填料由于其化学稳定性,非常适用于FDA规定下CIP/SIP要求的清洗方案。例如PD10-300在1M NaOH中浸泡40天后,胰岛素载量仍然保持稳定(图6)。 不同极性的单分散聚合物填料单分散的聚合物色谱填料主要组成是PS/DVB.我们提供了不同极性的聚合物基质的色谱填料。完整的产品线单分散聚合物色谱填料,采用世界最先进的生产技术,基质可为丙烯酸酯,苯乙烯/二乙烯基苯和二氧化硅,涵盖正向、反相、离子交换、亲和、体积排阻等色谱领域,可用于实验室分离、分析和工业化大生产。高真圆度,单分散性以及优化的孔径结构,使得单分散聚合物色谱填料具有更多的选择性。常规粒径大小有1.7 μm、3 μm、5 μm、10 μm、15 μm、20 μm、30 μm、40 μm 、50 μm、60 μm、100 μm;孔径可选择100 ?、300 ?、500 ?、800 ?、1000 ?。可满足从实验室分析测试到中试及工业化规模生产的各种分离纯化要求。有孔单分散聚合物色谱填料货号粒径(um)孔径(?)组成PD-33100, 300PS/DVB PD-55100, 300, 500, 800PS/DVBPD-1010100, 300, 500, 800, 1000PS/DVBPD-1515100, 300, 500, 800, 1000PS/DVBPD-2020100, 300, 500, 800, 1000PS/DVBPD-3030100, 300, 500, 800, 1000PS/DVBPD- 4040100, 300, 500, 800, 1000PS/DVBPD- 5050100, 300, 500, 800, 1000PS/DVBPDB- 3030300, 500, 1000PS/DVBPDB-4040300, 500, 1000PS/DVBPDB-5050300, 500, 1000PS/DVBPDB-6060300, 500, 1000PS/DVBPDA-1010300, 500Poly DVB/acrylicPDA-2020300, 500Poly DVB/acrylicPDA-3030300, 500Poly DVB/acrylicPDA-4040300, 500Poly DVB/acrylicPDA-6060300, 500Poly DVB/acrylicPAL-2020300, 500Poly acrylicPAL-4040300, 500Poly acrylicPAL-6060300, 500Poly acrylicSD10050-150300PS/DVBSD30050-150500PS/DVB 表2. 无孔单分散聚合物反相色谱填料产品名称粒径(μm)孔径(?)组成NP-1.71.7NP (Non-porous)PS/DVBNP-22.0NP (Non-porous)PS/DVBNP-33NP (Non-porous)PS/DVBNP-55NP (Non-porous)PS/DVBNP-1010NP (Non-porous)PS/DVB

乙酸二碳基钌聚合物相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制