三苯甲基头孢地尼侧链酸

仪器信息网三苯甲基头孢地尼侧链酸专题为您提供2024年最新三苯甲基头孢地尼侧链酸价格报价、厂家品牌的相关信息, 包括三苯甲基头孢地尼侧链酸参数、型号等,不管是国产,还是进口品牌的三苯甲基头孢地尼侧链酸您都可以在这里找到。 除此之外,仪器信息网还免费为您整合三苯甲基头孢地尼侧链酸相关的耗材配件、试剂标物,还有三苯甲基头孢地尼侧链酸相关的最新资讯、资料,以及三苯甲基头孢地尼侧链酸相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

三苯甲基头孢地尼侧链酸相关的资料

三苯甲基头孢地尼侧链酸相关的论坛

  • 求助质谱-三苯甲基碳正离子

    [size=18px]目前在用AB的[url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质[/color][/url]测三苯基氯甲烷,Q1 MI模式扫243.1的离子[font=-apple-system, BlinkMacSystemFont, &](应该是三苯甲基碳正离子)[/font],发现基线非常高(30万-50万之间),且不稳定,时高时低,导致峰面积也 不稳定,打电话问客服,几个人几种说法,“液相部分污染了”“这个是正常现象,多走走就稳定了”,尝试用MRM模式去做,打出一个165.2的碎片,基线不到1000,做了线性和回收也都挺好,但是,这个碎片离子是怎么打出来的比较困惑,就怕以后再做的时候重现不出来……[/size][size=18px]流动相是90%甲醇,溶剂是正丁醇:乙腈(80:20)[/size][size=18px]请教一下各位大神,AB的仪器用SIM模式选择Q1 MI还是Q3 MI好呢?基线高且时高时低,除了污染还有什么原因呢?[font=-apple-system, BlinkMacSystemFont, &]三苯甲基碳正离子在质谱里能被打碎吗?会裂解成什么碎片离子?[/font][/size][size=18px][font=-apple-system, BlinkMacSystemFont, &][/font][/size]

  • 【极限体验】头孢地尼分散片有关物质摸索

    有关物质检查方法参照USP-34:有关物质 取装量差异项下的细粉适量(相当于头孢地尼75mg),置50ml量瓶中,加0.1mol/L磷酸缓冲液30ml溶解,并用0.1%四甲基氢氧化铵溶液稀释至刻度,制成每1ml约含头孢地尼1.5mg的溶液,滤过,取续滤液作为供试品溶液。精密称取头孢地尼对照品适量,加0.1mol/L磷酸缓冲液溶解并定量稀释制成每1ml中约含头孢地尼0.75mg的溶液,精密量取适量,加0.1%四甲基氢氧化铵溶液并定量稀释至每1ml约含头孢地尼15μg的对照品溶液。照高效液相色谱法(中国药典2010版二部附录V D)测定,用十八烷基硅烷键合硅胶为填充剂(粒径:5um,规格:4.6mm×250mm);流动相A为0.1%四甲基氢氧化铵溶液(用磷酸调节pH值至5.5)1000ml,加入0.1mol/L乙二胺四醋酸二钠溶液0.4ml,流动相B为0.1%四甲基氢氧化铵溶液(用磷酸调节pH值至5.5)-乙腈-甲醇(500:300:200),加入0.1mol/L乙二胺四醋酸二钠溶液0.4ml;按表Ⅰ进行线性梯度洗脱。柱温为40℃,检测波长为254nm。精密称取头孢地尼对照品约37.5mg,置25ml量瓶中,加0.1mol/L磷酸缓冲液10ml溶解,并加入头孢地尼杂质A对照品溶液(取头孢地尼杂质A对照品适量,加0.1%四甲基氢氧化铵溶液溶解并稀释制成每1ml含0.04mg的溶液)5.0ml、头孢地尼杂质B对照品溶液(取头孢地尼杂质B对照品适量,加0.1%四甲基氢氧化铵溶液溶解并稀释制成每1ml含0.04mg的溶液)5.0ml,用0.1%四甲基氢氧化铵溶液稀释至刻度,摇匀,作为系统适应性溶液,取10μl注入液相色谱仪,记录色谱图;头孢地尼峰保留时间约为20分钟,头孢地尼杂质A有四个峰,相对头孢地尼主峰保留时间分别约为0.85、0.94、1.11和1.14;头孢地尼杂质B峰相对头孢地尼主峰保留时间约为1.28;头孢地尼峰与头孢地尼杂质A第三个峰之间的分离度应不小于1.5;头孢地尼杂质B峰的拖尾因子不大于1.5。取对照品溶液10μl注入液相色谱仪,调节检测灵敏度,使主成分色谱峰的峰高约为满量程的20%,精密量取对照品溶液和供试品溶液各10μl,注入液相色谱仪中,记录色谱图。供试品溶液色谱图中如有杂质峰,均采用以下公式按外标法以峰面积计算,杂质的限度见表Ⅱ。(供试品溶液中任何小于头孢地尼对照品溶液主峰面积0.05倍的峰可忽略不计)。表Ⅰ时间(分钟)流动相A(%)流动相B(%)095529552275253250503750503895548955杂质的含量采用以下公式计算:(rU/rS)×(Cs/CU)×(100/F)Cs为头孢地尼对照品溶液中头孢地尼的浓度(mg/ml);CU为供试溶液中头孢地尼的浓度(mg/ml);rU为供试溶液中杂质峰面积;rS为头孢地尼对照品溶液中头孢地尼峰面积;F为表Ⅱ中各杂质的相对响应因子;表Ⅱ 有关物质相对保留时间相对响应因子限值(%)杂质Ⅷ[/siz

  • 关于HP-5(5%苯甲基硅酮)色谱柱?

    请问HP-5(5%苯甲基硅酮)色谱柱与HP-5(5%二苯基聚硅氧烷共聚物)的柱子有什么不同吗?一般HP-5柱子不是都指后者吗?一药典要求用前者做一物质的内标含量,我用了后面的,打出峰来难看的很

三苯甲基头孢地尼侧链酸相关的方案

  • 离子色谱法测定盐酸头孢吡肟中的N-甲基吡咯烷
    盐酸头孢吡肟是注射用光谱头孢菌素,其合成过程中使用了对人体和环境有潜在危害的有机溶剂N-甲基吡咯烷,并且盐酸头孢吡肟在储藏过程中也会降解产生N-甲基吡咯烷。2010版国家药典中也明确规定了N-甲基吡咯烷的检测方法及其在盐酸头孢吡肟中的含量。 本文采用了TOSOH公司的TSKgel IC-Cation-SW阳离子分离柱完成了对盐酸头孢吡肟中N-甲基吡咯烷的测定,且此方法为非抑制分析模式,降低了实验成本。
  • 上海力晶:盐酸头孢吡肟中N-甲基吡咯烷检测产品配置单(离子色谱)
    2010版药典中对盐酸头孢吡肟中的N-甲基吡咯烷的检测方法为电导检测法样品处理: N-甲基吡咯烷标准溶液,称取一定量标准品,用10mM硝酸稀释到所需浓度。样品称取0.088 g溶解在10mL淋洗液中。直接进样。进样速度:0.9mL/min色谱柱类型:阳离子柱 IonPac CS15, 25μL定量环检测方式:CSRS抑制型电导检测,外加水模式淋洗液组成:9mM HNO3+15% 乙腈
  • 离子色谱法测定盐酸头孢吡肟中的盐酸头孢吡肟
    盐酸头孢吡肟是注射用光谱头孢菌素,其合成过程中使用了对人体和环境有潜在危害的有机溶剂N-甲基吡咯烷,并且盐酸头孢吡肟在储藏过程中也会降解产生N-甲基吡咯烷。2010版国家药典中也明确规定了N-甲基吡咯烷的检测方法及其在盐酸头孢吡肟中的含量。 本文采用了TOSOH公司的TSKgel IC-Cation-SW阳离子分离柱完成了对盐酸头孢吡肟中N-甲基吡咯烷的测定,且此方法为非抑制分析模式,降低了实验成本。

三苯甲基头孢地尼侧链酸相关的资讯

  • CEM公司发布TRT-DCA SpheriTide新型固相多肽合成树脂
    CEM公司,一个全球领先的微波多肽合成仪和试剂生产商,很高兴给大家介绍一种新的专为碳端为羧酸的多肽进行固相多肽合成设计的所需通用树脂。通过使用三苯甲二氯乙酸类连接基(TRT-DCA),这种新型的树脂免除了第一个氨基酸在多肽合成中的预装载。相比与传统连接基做这类合成,TRT-DCA允许任何氨基酸的简单连接,避免了需要存储全部20种预装的树脂,同时对水解仍保持较高的稳定性。曾经,往羧基端连接基上连接第一个氨基酸是非常困难的,因为需要羟基作为亲核试剂(比如Wang树脂,HMPA树脂)。需要特定的条件,同时会产生副反应,包括差向异构化,二肽的形成,和不完全的偶联。因此,使用酸性连接基的树脂通常已经连接了第一个氨基酸。作为超高酸敏感的连接基(2-Cl-trityl, trityl)的一个优势,提供了一个更容易偶联的氯化物结构,然而这种结构对于水解非常敏感,对于长期使用来说,稳定性有限。 TRT-DCA连接基类似于酸敏感树脂,但提供一个对水解更稳定的结构。在连接第一个氨基酸之后,多肽合成过程中一直保留一个三苯甲基连接基。相比较Wang/HMPA连接基,三苯甲基庞大的空间结构有利于最小化二酮哌嗪和3-(1-哌啶基)丙氨酸构型的形成。 此外,三苯甲基的高酸敏感特性使得可以用适当的切割液,切割得到一个全保护的多肽序列。 高酸敏感树脂的使用通常仅限于温和的温度,以防过早的从树脂上解离。最近,CEM出台了一个新的基于碳二亚胺缩合剂的方法,可以在90° C下,基于高效固相多肽合成技术(HE-SPPS)使用三苯甲基树脂得到更高的多肽产率。这个方法被发现可以增加多肽的纯度,超越现有的任何活化方法,在高温下也能提供诸如磷酸化多肽的敏感序列。总之,新的TRT-DCA SpheriTide?树脂和新的碳二亚胺耦合方法使得多肽化学家充分利用该酸敏树脂对羧基肽进行高效固相多肽合成。 CEM商务开发主任Jonathan M. Collins说:“TRT-DCA SpheriTide树脂和新开发的碳二亚胺耦合方法的结合对于高温下简化和改善多肽合成是非常有用的,这不仅免除了购买预装树脂的需要,而且通过树脂自保护防止副反应的发生,提高了多肽的纯度。”CEM的Liberty Blue? Peptide Synthesizer 现在包括一个连接TRT-DCA SpheriTide树脂的自动化标准方法。Trityl-DCA SpheriTide树脂现在可以在线购买。 CEM公司,一家坐落在美国北卡罗莱纳马修斯的公司,是一个为世界顶级实验室提供科学解决方案的世界级领先供应商。公司在英国,德国,意大利,法国,和日本均拥有子公司并有全球分销商网络。CEM为生命科学、分析实验室和过程控制领等域设计和制造先进仪器。公司的产品广泛应用与许多行业,包括制药、生物技术、化学和食品加工、以及科研。 更多详情,请联系培安公司:电话:北京:010-65528800 上海:021-51086600 成都:028-85127107 广州:020-89609288Email: sales@pynnco.com 网站:www.pynnco.com
  • 中国兽医药品监察所就《动物性食品中二苯乙烯类药物残留量的测定 液相色谱-串联质谱法》等7项食品安全国家标准公开征求意见
    各相关单位:  根据《中华人民共和国食品安全法》和《中华人民共和国农产品质量安全法》有关要求,我办组织起草了《动物性食品中二苯乙烯类药物残留量的测定 液相色谱-串联质谱法》等7项食品安全国家标准。现公开征求意见,如有修改意见,请于2022年7月10日前反馈至全国兽药残留专家委员会办公室。  联系人:张玉洁  联系电话:010-62103930  E-mail:syclyny@163.com  地址:北京中关村南大街8号科技楼206  邮编:1000811. 动物性食品中二苯乙烯类药物残留量的测定 液相色谱-串联质谱法   本标准规定了猪、牛、羊、鸡组织(肌肉、肝脏、肾脏和脂肪)、鸡蛋、牛奶中己烯雌酚、己烷雌酚和己二烯雌酚残留量检测的制样和液相色谱-串联质谱测定方法。方法原理为:试样中残留的药物经酶解后用乙腈提取(脂肪样品先经乙腈提取,吹干复溶后再酶解),加入正己烷和乙酸乙酯后进行液-液-液三相体系净化,取中间层氮吹复溶后通过碳酸钠溶液液液萃取和硅胶柱固相萃取进行净化,液相色谱-串联质谱仪测定,基质匹配内标法定量。   2.牛可食性组织中盐霉素残留量的测定 液相色谱-串联质谱法   本标准规定了牛可食性组织中盐霉素残留量检测的制样和液相色谱-串联质谱测定方法,适用于牛肌肉、肝脏、肾脏和脂肪组织中盐霉素残留量的测定。方法原理为:试样中的药物残留用乙腈提取,提取液过滤膜后用液相色谱-串联质谱仪测定,基质匹配外标法定量。   3. 动物性食品中碘醚柳胺残留量的测定 高效液相色谱法   本标准规定了动物性食品中碘醚柳胺的制样和高效液相色谱测定方法。适用于牛、羊的肌肉、肝脏、肾脏和脂肪组织中碘醚柳胺残留量的测定。方法原理为:试样中残留的碘醚柳胺,经乙腈-丙酮溶液提取,混合型阴离子交换固相萃取柱净化,高效液相色谱-荧光法测定,外标法定量。   4. 禽蛋中β内酰胺类药物残留量的测定 液相色谱-串联质谱法   本标准规定了禽蛋中青霉素V、青霉素G、氨苄西林、氯唑西林、阿莫西林、头孢氨苄、头孢喹肟残留量检测的制样和液相色谱-串联质谱测定方法。方法原理为:试样中残留的青霉素 V、青霉素 G、氨苄西林、氯唑西林、阿莫西林、头孢氨苄、头孢喹肟,经 80%乙腈水溶液提取,固相萃取柱净化浓缩,液相色谱-串联质谱测定,基质匹配标准溶液内标法定量。   5. 禽蛋中头孢噻呋残留量的测定 液相色谱-串联质谱法   本标准规定了禽蛋中头孢噻呋代谢物去呋喃甲酰基头孢噻呋残留量检测的制样和液相色谱-串联质谱测定方法。方法原理为:试样中残留的头孢噻呋及代谢物,加入 0.4%二硫赤藓醇溶液混匀,用 14%碘乙酰胺溶液衍生化,生成稳定的乙酰胺衍生物,水饱和正己烷除脂,固相萃取柱净化浓缩,液相色谱-串联质谱测定,内标法定量。   6. 禽蛋中卡巴氧和喹乙醇的代谢物残留量的测定 液相色谱-串联质谱法   本标准规定了禽蛋中卡巴氧代谢物喹噁啉-2-羧酸(QCA)和喹乙醇代谢物 3-甲基喹噁啉-2-羧酸(MQCA)残留量检测的制样和液相色谱-串联质谱测定方法。方法原理为:试料中QCA和MQCA残留经偏磷酸溶液水解提取,叔丁基甲醚萃取后,用磷酸盐缓冲液反萃取,混合型强阴离子交换柱净化,酸性甲醇洗脱,液相色谱-串联质谱法测定,内标法定量。   7. 水产品中邻苯二甲酸酯类物质的测定 液相色谱-串联质谱法   本标准规定了水产品中邻苯二甲酸二甲酯、邻苯二甲酸二乙酯、邻苯二甲酸二烯丙酯等21种邻苯二甲酸酯(PAEs)含量检测的制样和液相色谱-串联质谱测定方法。方法原理为:水产品中的邻苯二甲酸酯经乙腈提取,分散固相萃取净化,反相液相色谱柱分离,以甲醇和0.1%甲酸水溶液为流动相进行洗脱,应用高效液相色谱-串联质谱法测定和确证,基质匹配外标法定量。
  • 【CEM】Fmoc-His(Boc)-OH在基于Fmoc的固相肽合成中的应用
    一、组氨酸的差向异构化对映体纯度极大地影响肽的生物活性;因此,避免D-异构体含量的增加至关重要。1在固相肽合成(SPPS)的偶联过程激活阶段,组氨酸特别容易发生差向异构化。组氨酸倾向于差向异构化(图1)是一种分子内的副反应,这是由于咪唑Nπ上的孤对电子与酸性α碳氢的接近性所导致。当氨基酸被激活时,1号位的孤对电子具有足够的碱性以进行去质子化,从而形成一个无立体选择性的酯烯醇盐22。此时,转化为L-或D-异构体3并没有热力学上的优先途径。当反应位点聚集,且组氨酸在激活状态保持较长时间的期间,差向异构化的可能性增加。图1:Fmoc-His(PG)-OH在激活过程中高差向异构化水平的机制解释二、组氨酸侧链保护对咪唑环的保护(图2)通常采用在Nτ位置使用三苯甲基(Trt)基团的方式实现4。Trt基团因其体积大和具有吸电子性,能够有效抑制诸如环上N-酰化等副反应,然而在控制差向异构化方面效果有限。其他侧链保护基团,尤其是那些提供Nπ保护的,例如Fmoc-His(π-Mbom)-OH(5),通过阻断α-氢的接触途径来减少差向异构化。但这些衍生物的缺点在于它们本身的高成本和因多步骤合成策略导致的低批量供应,这种策略需要在连接Mbom基团时对Nα位置进行互斥保护。3,4,5,6此外,在肽切割过程中还需添加额外的清除剂,以防止新暴露的氨基功能团上发生羟甲基化。 本文中,Fmoc-His(Boc)-OH(6)被证实是Fmoc SPPS中组氨酸并入的宝贵替代物,因为它在高温下对差向异构化具有较高的稳定性,成本低,且比其他任何市场上可购买的衍生物具有更好的批量供应能力。 图2:Fmoc-SPPS用的组氨酸衍生物:Fmoc-His(Trt)-OH(4),Fmoc-His(π-Mbom)-OH(5)和Fmoc-His(Boc)-OH(6)三、Fmoc-His(Boc)-OH的优势Fmoc-His(Boc)-OH 能够以游离酸和环己胺(CHA)盐的形式大量购买。对于盐形式,需要通过提取过程来移除CHA基团。鉴于这一过程相对繁琐,我们的研究便专注于游离酸的应用。根据先前的报告,与His(Trt) 相比,His(Boc)在差向异构化方面的倾向性更低。7这一现象可以归因于氨基甲酸酯基团较强的吸电子效应,它有效地从π子中抽取电子云密度,从而降低了其碱性。四、讨论一项采用利拉鲁肽和1-42Beta淀粉样蛋白的可行性研究评估了-Boc基团在微波(MW)辅助固相肽合成(SPPS)过程中对差向异构化的抑制效果及侧链的稳定性。肽段是在HE-SPPS条件下制备的,具体操作包括1分钟90°C的去保护和2分钟90°C使用DIC和Oxyma Pure进行的偶联。8与基于尿嘧啶的激活策略相比,DIC/Oxyma Pure激活在偶联效率和抑制差向异构化方面提供了更优的结果。后者的表现归因于碳二亚胺活化所固有的酸性环境。9,10在室温或稍高的条件(例如50°C)下并入组氨酸能进一步降低D-异构体的形成,但这样的条件对于His(Trt)仍然不够理想。我们比较了His(Trt)和His(Boc)在使用两种常见协议时的偶联条件:(1)10分钟50°C和(2)2分钟90°C。最后,我们研究了溶液中的稳定性,以确定其在Liberty BlueTM HT12上的高通量自动化应用的可行性。利拉鲁肽的合成利拉鲁肽具有一个N端的组氨酸,这在与肽链的偶联中存在一定难度,因此,通过微波加热来增强酰化作用是有益的。使用三苯甲基保护在50°C下偶联组氨酸10分钟,结果显示D-异构体的形成增加到了6.8%(如表1所示)。在相同条件下,Fmoc-His(Boc)-OH显著减少了差向异构化,仅为0.18%。 Fmoc-His(Boc)-OH在90°C时的表现也相当出色,观察到的差向异构化水平为0.81%,相比之下His(Trt)则大于16%。Fmoc-His(Trt)-OH和Fmoc-His(Boc)-OH都以相当的粗纯度获得了目标肽(图3)。Fmoc-His(π-Mbom)-OH在纯度和D-His方面提供了与Fmoc-His(Boc)-OH相似的结果。 图3:使用(a) Fmoc-His(Trt)-OH或(b) Fmoc-His(Boc)-OH的利拉鲁肽UPLC色谱图。组氨酸偶联条件 = 50°C,10分钟。总合成时间 = 2小时55分钟 表1:利拉鲁肽中组氨酸在不同偶联条件下的D-异构体形成情况1-42Beta淀粉样的合成之前的研究表明,在长时间的哌啶处理过程中,Nτ-Boc侧链基团显示出不稳定性。11为了测试高温去保护过程中–Boc的稳定性,我们合成了包含三个组氨酸残基的1-42Beta淀粉样蛋白。1-42Beta淀粉样蛋白的合成序列是出了名的困难,需要使用特殊的偶联试剂,即使在严苛条件下,产物纯度通常也过低,无法进行分析和纯化。12与常规合成方法不同,HE-SPPS即便在未优化的条件下也能获得木及高的粗纯度。我们比较了His(Trt)和His(Boc)在50°C下偶联10分钟以及90°C下偶联2分钟的情况。His(Boc)将总合成时间从4小时24分钟缩短到3小时58分钟,并且将差向异构化的比例从2.88%降低至1.29% D-异构体(表2)。UPLC分析表明,这两种合成方法得到的目标产物在粗纯度上具有可比性(图4)。 表2:BA中His(Trt)和His(Boc)的差向异构化情况图4:使用(a) His(Trt)和(b) His(Boc)的1-42 Beta淀粉样蛋白的UPLC色谱图溶液中的稳定性在自动化高通量SPPS应用中,要求底物能在溶液中保持溶解状态长达10天。通常,像组氨酸这样的反应物由于保护基团的降解/丢失而导致变色和沉淀,其溶液寿命仅限于5天。在这项研究中,我们测试了组氨酸溶液(DMF,0.2 M)在大气条件下存放10天的稳定性(图5)。所有样品都迅速溶解,得到无色溶液。Fmoc-His(Trt)-OH的变色在短短24小时内就开始出现,并在10天的时间里加剧。10天后,Fmoc-His(π-Mbom)-OH溶液略呈黄色,而Fmoc-His(Boc)-OH溶液在研究期间保持无色。UPLC分析表明,Fmoc-His(Boc)-OH和Fmoc-His(π-Mbom)-OH保持了99%的纯度。基于强烈的变色,预计在10天的研究期间Fmoc-His(Trt)-OH样品中形成了几种杂质(图6)。然而,使用质谱对这些杂质进行定性未能成功。 图5:不同组氨酸衍生物溶液中的稳定性颜色测试 图6. 10天后DMF中组氨酸衍生物(0.2 M)的UPLC分析;(a) = Fmoc-His(Trt)-OH (b) = Fmoc-His(π-Mbom)-OH (c) = Fmoc-His(Boc)-OH五、结论上述数据表明,His(Boc)是一种强大的组氨酸衍生物,可以在90°C下高效偶联,提供优良的粗纯度,同时缩短偶联时间并显著降低差向异构化。与其他抑制差向异构化的N保护衍生物相比,Fmoc-His(Boc)-OH更易获得,同时保持相当的合成性能。总之,Fmoc-His(Boc)-OH的核心优势包括: &bull 商业批量可用性强,价格相对于Fmoc-His(Trt)-OH更具竞争力&bull 在高温下具有低水平的差向异构化;50°C及以下的偶联温度使得Fmoc-His(Boc)-OH适用于活性药物成分的合成,无需复杂的偶联试剂和条件13 &bull 优异的溶液稳定性;与Fmoc-His(π-Mbom)-OH相当,且优于Fmoc-His(Trt)-OH六、材料与方法试剂以下Fmoc氨基酸和树脂购自位于Matthews,NC的CEM公司,包含所示的侧链保护基团:Ala, Arg(Pbf), Asn(Trt), Asp(OMpe), Gln(Trt), Gly, His(Boc), His(Trt), Ile, Leu, Lys(Boc), Lys(palmitoyl-Glu-OtBu), Phe, Pro, Ser(tBu), Tyr(tBu), Val。Rink Amide ProTideTM LL, Cl-MPA ProTideTM LL, 以及Fmoc-Gly Wang PS LL树脂也购自CEM公司。二异丙基碳二亚胺(DIC),哌啶,三氟乙酉夋(TFA),3,6-二氧杂-1,8-辛二硫醇(DODT)和三异丙基硅烷(TIS)购自Sigma-Aldrich(St. Louis, MO)。二氯甲烷(DCM),N,N-二甲基甲酰胺(DMF),无水二乙酉迷(Et2O),乙酸,高效液相色谱级水,以及乙腈购自VWR(West Chester, PA)。液相色谱-质谱级水(H2O)和液相色谱-质谱级乙腈(MeCN)购自Fisher Scientific(Waltham, MA)。D-异构体通过手性GC-MS(C.A.T. GmbH)进行测定。肽合成:利拉鲁肽在CEM Liberty Blue自动化微波肽合成器上,以0.10 mmol的规模合成了该肽。使用了0.313克Fmoc Gly Wang PS LL树脂(0.32 meq/g置换)。去保护作用采用20%哌啶和0.1 M Oxyma Pure在DMF中执行。偶联反应使用5倍过量的0.2 M Fmoc-AA、1.0 M DIC和1.0 M Oxyma Pure在DMF(CarboMAX)中进行。切割则应用CEM Razor&trade 高通量肽切割系统,配比为92.5:2.5:2.5 TFA/H2O/TIS/DODT。切割后,肽通过Et2O沉淀并过夜冻干。肽合成:1-42Beta淀粉样蛋白采用CEM Liberty Blue自动化微波肽合成器,以0.10 mmol的规模在0.512g Cl-MPA ProTide树脂(0.19 meq/g置换)上合成了该肽。去保护作用使用20%哌啶和0.1 M Oxyma Pure在DMF中进行。偶联反应用5倍过量的0.2 M Fmoc-AA、1.0 M DIC和1.0 M Oxyma Pure在DMF(CarboMAX)中进行。切割采用CEM Razor&trade 高通量肽切割系统,配比为92.5:2.5:2.5 TFA/H2O/TIS/DODT。切割后,肽通过Et2O沉淀并过夜冻干。稳定性研究在50毫升离心管中,制备了0.2摩尔浓度的组氨酸溶液(总共5毫升DMF),并对管进行了密封。这些溶液在实验室环境下保持在室温,持续10天。为了准备用于超高效液相色谱-质谱分析的样品,将10微升的组氨酸溶液稀释到5毫升的50/50(体积比)乙腈和水的混合溶剂中。调整进样量,直至吸光度达到35 – 55单位。七、参考文献(1) Kusumoto, S. Matsukura, M. Shiba, T. Biopolymers, 1981, 20,1869 --1875.(2) Kates, S. A. Albericio, F. Solid-Phase Synthesis – A Practical Approach Kates, S. A Albericio, F. Eds. Marcel Dekker Inc: New York, New York, 2000 Chapter 4. Van Den Nest, W. Yuval, S. Albericio, F. J. Pept. Sci. 2001, 7, 115.(3) Colombo, R. Colombo, F. J. Chem. Soc., Chem. Commun. 1984, 0, 292 – 293. Mergler, M. Dick, F. Sax, B. Schwindling, J. Vorherr, Th. J. Pept. Sci. 2001, 7, 502 – 510.(4) Okada, Y. Wang, J. Yamatot, T. Mu, Y. Yokoi, T. J. Chem. Soc., Perkin Trans. 1 1996, 17, 2139 – 2143.(5) Hibino, H. Nishiuchi, Y. Tetrahedron Lett. 2011, 52, 4947 – 4949.Hibino, H. Miki, Y. Nishiuchi, Y. J. Pept Sci. 2012, 18, 763 – 769.(6) Suppliers: EMD/Sigma-Aldrich = $1338 per 5g bottle Peptide Institute = $400.5 per 5gbottle.(7) Clouet. A Darbre, T. Reymond, J. L. Biopolymers, 2006, 84, 114.(8) Collins, J. M. Porter, K. A. Singh, S. K. Vanier, G. S. Org. Lett. 2014, 16, 940 – 943.(9) Patent: US20160176918(10) CEM Application Note (AP0124). “CarboMAX – Enhanced Peptide Coupling at Elevated Temperature.”(11) Sieber, P. Riniker, B. Tetrehedron Lett. 1987, 28, 6031 –6034.(12) Tickler, A. K Clippingdale, A. B Wade, J. D. Protein Peptide Lett. 2004, 11, 377 – 384.(13) Bacem Application Note. Mergler, M. Dick, F. Vorherr, Th. Methods for Fmoc-His(Trt)-OH Resulting in Minimal Racemization.(14) CEM Technical Note (P/N: 600837) - “Cl-MPA ProTide and Cl-TCP(Cl) ProTide Resin Loading and Protected Cleavage Procedures.

三苯甲基头孢地尼侧链酸相关的仪器

  • 设备应用 Device Application 设备用于研发寡核苷酸新药,寡核苷酸药物可以用于一些罕见病以及病毒引起的疾病的基因疗法。The Device is used to develop new oligonucleotide drugs that can be used as gene therapies for some rare diseases and diseases caused by viruses. 运行原理 Principle of operation 我们的混合是将树脂悬浮在反应溶液中,并使树脂漂浮在反应瓶中。在溶液中移动的完全悬浮树脂的情况下,它将产生较高的反应和洗涤效率。Ourmixing is to suspend the resin in the reaction solution with the resin floatingin the RV. With fully suspended resin that is moving within solution, it willyield high reaction and washing efficiency. 关键操作系统 Key System Operation • 通过180o翻转进行混合,并从反应容器的顶部或底部鼓入氩气。• 反应容器是由硼硅酸盐玻璃制成的开放式反应器。• 利用冲洗流过方式进行三苯甲基脱除,在冲洗流过过程中可以进行翻转混合。• 紫外检测器用于三苯甲基脱除。• 氩气管路/用于维持惰性环境的反应瓶吹扫。• 8个单独碱基储罐位(根据要求提供更多)。• 系统可以循环。 • Mixing is performed by 180oinversion with argon bubbling either from the top or bottom of the reactionvessel.• The reaction vessel is anopen reactor made of borosilicate glass• Flow through utilized fordetritylation, inversion mixing is possible during flow through.• UV detection fordetritylation• Argon line/reservoir purgingutilized to maintain inert atmosphere• 8x individual amiditepositions (more at request)• Circulation is possible withthe system 评价 Evaluation LCMS 分析结果 LCMS Comparison
    留言咨询
  • MerMade 12 合成仪MerMade 12 寡核苷酸合成仪专为在柱子中合成 DNA、RNA 和 LNA等寡核苷酸而设计,采用标准或修饰化学方法实现多种类型寡核苷酸的合成。标准功能&bull 10 至 24 个亚酰胺碱基瓶位&bull 9个试剂瓶位, 自定义试剂类型,如合成中使用三种以上氧化剂&bull 12通道合成,每通道柱子的合成规模从 20 nmol 到 200 μmol 以上&bull 每个通道独立运行,可设置不同工艺和合成规模&bull 合成过程可随时增加或取出合成柱&bull 结合灵活易用的软件,可在 Windows 7 和 10 上运行&bull 运行日志记录&bull 支持混合骨架结构合成(硫代磷酸酯和磷酸二酯)&bull 包含 Dell PC 和显示器,并提供延长保修&bull 预装标准合成工艺脚本程序&bull 包含裂解装置可选功能&bull 低死体积瓶架,适用于昂贵的修饰单体&bull 12 个底座,可选择不同规模或自由搭配&bull 多达 24 个亚磷酰胺碱基瓶位(如需更多,请咨询我们)&bull 三苯甲基监测&bull 断电保护及UPS 备用电源,可在断电时恢复合成&bull 多种试剂瓶盖类型可选,如GL28-400, Septa, GL38, GL45等&bull 条形码读取器&bull 软件与内部 LIMS 的定制集成产品信息MerMade 12 寡核苷酸合成仪专为在柱子中合成 DNA、RNA 和 LNA 等寡核苷酸而设计,适用于标准或修饰化学方法。MerMade 12 非常适合需要中等通量并追求极大灵活性的实验室。许多大学、制药公司和诊断公司已在符合 cGMP 的环境下使用了这款仪器。这款仪器采用 12 柱配置,最多可容纳 24 个亚磷酰胺碱基瓶位,能够在同一运行中合成标准、简并和修饰寡核苷酸的组合,合成规模从 50 nmol 到 200 μmol(在某些支持下可超过 400 μmol)。合成时间取决于化学方法和所需的产品质量,但 12 柱 DNA 20 聚体的典型运行时间通常少于 2 小时。没有任何其他仪器能在任何成本下提供与 MM 12 媲美的灵活性、升级能力、可靠性、效率和易用性。请联系我们的销售部门了解价格详情。
    留言咨询
  • MerMade 6 合成仪MerMade 6 寡核苷酸合成仪专为在柱子中合成 DNA、RNA 和 LNA 等寡核苷酸而设计,采用标准或修饰化学方法实现多种类型寡核苷酸的合成。标准功能&bull 10-24 个亚酰胺碱基瓶位&bull 9个试剂瓶位, 自定义试剂类型,如合成中使用三种以上氧化剂&bull 6通道合成,每个通道合成规模从 20 nmol 到 200 μmol&bull 每个通道独立运行,可设置不同工艺和合成规模&bull 合成过程可随时增加或取出合成柱&bull 功能全面的远程监控和控制 API&bull 结合灵活易用的软件,可在 Windows 7 和 10 上运行&bull 运行日志记录&bull 支持混合骨架结构合成(硫代磷酸酯和磷酸二酯)&bull 包含 Dell PC 和显示器,并提供延长保修&bull 预装标准合成工艺脚本程序&bull 包含裂解装置可选功能&bull 20 个亚酰胺碱基瓶位&bull 6 个底座,可选择不同规模或自由搭配&bull 断电保护及UPS 电源备份,可在断电时恢复合成&bull 多种试剂瓶盖类型可选,如GL28-400, Septa, GL38, GL45等&bull 条形码读取器&bull 三苯甲基监测&bull 软件与内部 LIMS 的定制集成产品信息MerMade 6 寡核苷酸合成仪专为在柱子中合成 DNA、RNA 和 LNA等 寡核苷酸而设计,适用于标准或修饰化学方法。MerMade 6 非常适合需要中等通量并追求极大灵活性的实验室。许多大学、制药公司和诊断公司已在符合 cGMP 的环境下使用了这款仪器。这款仪器采用 6 柱配置,最多可容纳 24 个亚磷酰胺碱基瓶位,能够在同一运行中合成标准、简并和修饰寡核苷酸的组合,合成规模从 50 nmol 到 200 μmol(在某些支持下可超过 400 μmol)。合成时间取决于化学方法和所需的产品质量,但 6柱 DNA 20 聚体的典型运行时间通常少于 2 小时。没有任何其他仪器能在任何成本下提供与 MM 6 媲美的灵活性、升级能力、可靠性、效率和易用性。请联系我们的销售部门了解价格详情。
    留言咨询

三苯甲基头孢地尼侧链酸相关的耗材

  • 安捷伦 AdvanceBio寡核苷酸 寡核苷酸分析
    想要成功分离脱三苯甲基、去保护的寡核苷酸,您需要具有高分离能力并且可以耐受严苛条件的色谱柱。如果色谱柱不具备足够高的分离能力,则不能保证结果的准确性。如果色谱柱不够稳定,则需要频繁地进行更换,这样便会扰乱工作流程,从而增加成本。Agilent AdvanceBio 寡核苷酸色谱柱拥有高效的 2.7 µm 表面多孔 Poroshell 颗粒填料。采用安捷伦独有的技术对颗粒填料进行化学修饰,使其可耐受高 pH 的流动相。我们还将这些填料与封端 C18 固定相键合,从而为寡核苷酸的分析提供出色的选择性。此外,我们还采用分离度标准品对每一批 AdvanceBio 寡核苷酸填料进行了测试,确保其具有一致的性能。AdvanceBio 系列产品旨在为蛋白质、抗体、偶联物、新生物实体和生物药物的完整表征提供一致、卓越的性能。
  • 寡核苷酸分离技术
    寡核苷酸分离技术合成寡核苷酸和DNA片段被应用于迅速发展的应用领域,包括作为主体或杂交探针用于治疗性制剂。沃特世寡核苷酸分离技术(OST:Oligonucleotide Separation Technology)基于BEH杂化颗粒的反相色谱柱,以及Gen-Pak离子交换柱,应对各种高分辨分析与实验室规模分离挑战所需,包括涉及各种DNA和RNA品种。沃特世OST色谱柱装有键合了C 18 的第二代杂化技术BEH颗粒。对去三苯甲基(detritylated,或称脱保护)的合成寡核苷酸样品的分离,基于成熟的离子对反相色谱法。沃特世提供1.7 μm UPLC颗粒或2.5 μm HPLC颗粒,装填以各种不同色谱柱规格,从而灵活满足各种实验室规模分离或分析的不同需求,并能实现异乎寻常的样品分辨率和卓越的色谱柱使用寿命。此外,沃特世的制造和质控测试程序,有助于确保批次之间与柱之间的性能的一致性,而无论应用的难度有多高。1、分离效率相当于或优于PAGE、CGE、或离子交换HPLC方法2、可从去三苯甲基(脱保护)的全长产物中分辨出失败序列3、可放大的柱规格,满足实验室规模的分离需求4、超长的色谱柱使用寿命,降低单次分析或分离成本5、经MassPREP OST标准品质控测试,帮助确保性能稳定对寡核苷酸混合物具有异乎寻常的高分辨率ACQUITY UPLC OST C 18 ,1.7 μm色谱柱(设计专用于ACQUITY UPLC系统)和XBridge OST C 18 ,2.5 μm色谱柱,能完全适用于离子对反相色谱法分析和纯化去三苯甲基寡核苷酸的需求。如图所示(右图),使用沃特世UPLC技术所进行的分离,具有与毛细管凝胶电泳(CGE)相媲美的组分分辨率,而且分析时间显著缩短。由于使用亚2 μm BEH技术颗粒提高了分辨力,因而有可能对大寡核苷酸序列进行分离(如将N与N-1分开)。此外,使用沃特世OST色谱柱配合质谱联用技术以及对质谱兼容的洗脱剂,有可能对与失败序列的色谱分离开的目标寡核苷酸产物的分子量特征进行定量分析。分离15-60mer去三苯甲基寡脱氧胸苷序列组(Detritylated Oligodeoxythymidine Ladder)分离去三苯甲基寡脱氧胸苷序列组,比较毛细管凝胶电泳(CGE)与离子对反相色谱方法的分离效果纯化单链RNA干扰RNA寡核苷酸的UPLC/MS分析RNA干扰(RNAi)机制的发现现在被广泛用于静默目标基因表达,这推动了对小分子干扰RNA(siRNA)分析的需求。为满足对20-25个核苷酸的小分子干扰RNA(siRNA)进行耐用的、快速的、灵敏的分析的需求,沃特世开发了一个UPLC/MS方法,运用了UPLC OST色谱柱和Synapt HDMS质谱仪。采集准确质量可对5’-截断寡聚体(寡核苷酸合成过程所产生的失败序列)以及其它一些杂质峰进行分配。质谱图中的质量的每个峰均使用MaxEnt 1软件进行去卷积化。图2给出了推测性的5’-端失败产物。对寡核苷酸母体的几乎完整序列均进行了解释。质谱分析还显示除了目标21-mer RNAi序列以外,还存在一个额外的尿苷单核苷酸。对一个21mer的RNA进行LC/MS分析不同离子对试剂对不同寡核苷酸序列分离的影响杰出的柱寿命在这些苛刻的分离条件下,填充以BEH技术颗粒的沃特世OST色谱柱显示出引人注目的柱寿命,同时还具有并保持卓越的分离性能。而在相同的苛刻分离条件下,传统硅胶基质色谱柱的使用寿命显著缩短。分离5-25mer去三甲苯基(脱保护)寡脱氧胸苷序列——进样1000针柱分辨率没有任何变化寡核苷酸分离技术(OST)柱产品一览表产品描述 粒径 孔径 柱规格 部件号ACQUITY UPLC OST C 18 * 1.7 μm 135 2.1 x 50 mm 186003949ACQUITY UPLC OST C 18 * 1.7 μm 135 2.1 x 100 mm 186003950ACQUITY UPLC OST C 18 * 1.7 μm 135 2.1 x 150 mm 186005516ACQUITY UPLC OST C 18 方法验证包** 1.7 μm 135 2.1x 100 mm 186004898ACQUITY UPLC OST C 18 定制柱* 1.7 μm 135 定制 186003951XBridge OST C 18 2.5 μm 135 2.1 x 50 mm 186003952XBridge OST C 18 2.5 μm 135 4.6 x 50 mm 186003953XBridge OST C 18 2.5 μm 135 10 x 50 mm 186003954XBridge OST C 18 方法验证包** 2.5 μm 135 4.6 x 50 mm 186004906XBridge OST C 18 定制柱 2.5 μm 135 定制 186003955* 用于配合沃特世UPLC系统使用**来自于不同批次填料所装填的三根色谱柱可放大的DNA与RNAi分离,良好的产品回收率研究基因静默、或用于基因敲除时,需要高纯度寡核苷酸。XBridge OST C 18 色谱柱,具有极高分辨率,其柱规格设计用于满足实验室规模的分离需求,是纯化去三苯甲基(脱保护)寡核苷酸的首选色谱柱。如下表所示,XBridge OST C 18 色谱柱规格和操作流速的选择,主要取决于合成反应混合物的规模大小。我们建议根据寡核苷酸样品的载量选择适当的色谱柱规格,这样可使组分分辨率最大化,使目标产物与不要的失败序列分离开得到最大回收率。柱规格 大概样品载量** mg*** 流速2.1 x 50 mm 0.04 μmoles 0.2 mg 0.2 mL/min4.6 x 50 mm 0.20 μmoles 1.0 mg 1.0 mL/min10 x 50 mm 1.00 μmoles 4.5 mg 4.5 mL/min19 x 50 mm* 4.00 μmoles 16.0 mg 16.0 mL/min30 x 50 mm* 9.00 μmoles 40.0 mg 40.0 mL/min50 x 50 mm* 25.00 μmoles 110.0 mg 110.0 mL/min* OST订制柱** 所列数值仅为约值,且取决于寡核苷酸的长度、碱基组成、以及所采用的“切取中心”的馏分收集方法。*** 按平均寡核苷酸分子量及合成产率估算将siRNA Duplex与其相关杂质分离开
  • AdvanceBio 寡核苷酸色谱柱
    AdvanceBio 寡核苷酸色谱柱提供了高质量、高分离度的离子对反相 (IP-RP) 色谱柱化学填料平台,通过纯化为分析表征提供支持并支持无缝方法放大。想要成功分离脱三苯甲基、去保护的寡核苷酸,HPLC 色谱柱需要具有高分离能力并且可以耐受高 pH 和温度,这样可以提供更好的分离和变性条件,从而实现理想的分离度和寡核苷酸分离。AdvanceBio 寡核苷酸色谱柱拥有高效的 2.7 µ m 和 4 µ m 表面多孔 Poroshell 颗粒填料。采用安捷伦独特的技术对颗粒填料进行化学修饰,使其可耐受高 pH 的流动相。我们还将这些填料与封端 C18 固定相键合,从而为寡核苷酸的分析提供出色的选择性。此外,我们还采用分离度标准品对每一批 AdvanceBio 寡核苷酸填料进行了测试,确保其具有一致的性能。AdvanceBio 产品专门为蛋白质、抗体、偶合物、新生物体和生物药物的完整表征和生物分析提供一致、出色的性能。特性:在高 pH 和高温下化学填料颗粒保持稳定 — 可在理想变性条件下提高分离度,提供出色的峰形和分离效果可全面扩展的化学填料平台拥有 2.7 µ m 和 4 µ m Poroshell 颗粒填料 — 简化了方法放大,避免放大至纯化时的化学填料重新验证过程21.2 mm 内径制备柱中装填 4 µ m Poroshell 化学填料 — 具有更高的效率和分离度,可提高目标产物的收率和纯度更高的灵活性 — 2.7 µ m Poroshell 填料可兼容 HPLC 和 UHPLC 仪器更可靠的结果 — 高效 Poroshell 颗粒形态实现高分离度分离更低的成本 — 稳定、耐高 pH 的化学改性硅胶可确保色谱柱的长使用寿命工作原理:了解离子对反相 (IP-RP) 色谱离子对反相 (IP-RP) 色谱是一种分析技术,可保留和分离通常不被反相色谱柱保留的带电分子。对于具有阴离子骨架的极性寡核苷酸来说,引入烷基胺离子对试剂有助于其与 C18 固定相的相互作用。带正电的氮基团与寡核苷酸的阴离子骨架形成了“离子对”。胺的烷基链被疏水性 C18 固定相保留,促成寡核苷酸的保留与分离。寡核苷酸分析虚拟实验室近年来,合成寡核苷酸(包括小干扰 RNA、反义寡核苷酸和适配体)已成为快速发展的药物形式。随着这些合成寡核苷酸的发展,越来越需要可靠的分析方法和易于使用的数据分析工作流程来表征它们。通常表征的寡核苷酸属性包括:质量纯度(以及杂质的相对含量)序列

三苯甲基头孢地尼侧链酸相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制