肉桂醇

仪器信息网肉桂醇专题为您提供2024年最新肉桂醇价格报价、厂家品牌的相关信息, 包括肉桂醇参数、型号等,不管是国产,还是进口品牌的肉桂醇您都可以在这里找到。 除此之外,仪器信息网还免费为您整合肉桂醇相关的耗材配件、试剂标物,还有肉桂醇相关的最新资讯、资料,以及肉桂醇相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

肉桂醇相关的资料

肉桂醇相关的论坛

  • 肉桂现代研究

    肉桂含挥发油(其主要成分为桂皮醛、桂皮酸),并含少量乙酸桂皮酯、乙酸苯丙酯。此外,尚含微量元素,其中锌含量较高。1.采收时间研究 南北朝《名医别录》指出肉桂宜于“立秋采”,明代《本草述》认为“收之不可近火日”。提出了肉桂宜于阴天采收,以防烈日暴晒,降低肉桂的质量。现代研究表明,一年中肉桂挥发油的含量随着月份的增加而增加。肉桂的采收以9月为佳,此时挥发油含量较高。采割过早,挥发油含量较低;推迟过晚,桂皮不易剥离而形成碎块,影响产品质量。肉桂含有挥发油,温度升高,易造成挥发油过多挥发,因此以阴天采收为好。树龄不同,肉桂油的含量不同。树龄长的肉桂,机械组织生长缓慢,油分累积较多,以生长15年左右为最佳。2.环状剥皮与新皮的再生机理研究(l)再生新皮的形态发生:五年生肉桂树采用茎干大面积环剥,809《以上植株剥皮后能在原位再生新皮,并产生与原皮相似的结构。肉桂是木质化程度较高的植物,剥皮时在薄壁组织化的形成层带中分离。据研究,剥后包裹透明塑料薄膜时,裸露的茎干表面一些未成熟木质部细胞特别是木射线细胞恢复分裂能力,形成愈伤组织,并逐渐向两侧扩展而覆盖整个表面。以后在表面3-5层细胞下面开始发生木栓形成层,在较深层的未成熟木质部中开始发生锥管形成层。肉桂环剥后的茎干表面先出现分散的愈伤组织,然后愈伤组织向周边发展并逐渐覆盖整个表面,再在表层形成封闭层,接着发生新皮增厚。研究表明,对茎干表面的机械损伤将严重影响受创部位的新皮再生,剥皮过程中对裸露表面的深切、挤压或手摸等部位均可导致其不能再生新皮。(2)肉桂再生新皮的发育与桂油的积累:一年生新皮松脆幼嫩,韧皮部占全皮厚度约1/5,桂油含量极低。两年生新皮质硬而脆,韧皮部占全皮厚度约1/3,挥发油含量已明显提高。三年生新皮与六年生原皮在外观和结构上大同小异,但其桂油和桂皮醛含量均超过六年生原皮,,这与其韧皮部中油细胞分布较多是一致的。可见,随着再生新皮的生长发育,韧皮部占全皮厚度的比例逐步增加,挥发油积累也随之提高。三年生新皮在形态和生理上已成熟,可再次剥皮并达到商品要求。虽然三年生新皮发育时间较短,但由于树龄长,次生代谢物的合成、运转和积累较快,故桂油含量较高,这与其韧皮射线分布较密,横向运输功能较强及其韧皮部油细胞分布较多是一致的。(3)肉桂再生技术的应用前景:过去桂皮生产一直沿用砍树剥皮的方法,砍树当年树桩萌生新枝,新枝在起初两年内生长量较小,新枝一般需经4-5年后才能砍下剥皮,且前3年不能落枝叶蒸油,造成土地资源浪费。采用剥皮再生技术,3年后再次剥皮,提前1-2年产出。此外,在剥皮再生条件下,第二年和第三年仍可落枝叶蒸油。由于剥皮不砍树,随着树体长粗和增高,可实现桂皮增产,有利于肉桂植物资源的持续利用和经济效益的提高。3.品质研究 张锡纯认为肉桂“以皮细肉厚,断面紫红色,油性大,味甜微善,嚼几无渣者为佳”。《新修本草》认为“老皮坚板无肉不堪用”,“大枝皮肌理粗虚如木兰,肉少味薄,不及小枝皮也”。研究表明,肉桂以嫩枝皮为好,其总灰分含量低,机械组织特别是石细胞数量少,草酸钙结晶少,肉桂油含量相对较高。越是大的枝皮质量较差。在相同的收割条件下,皮薄者质量优于厚者,上段薄杆皮优于下段厚杆皮。厚杆皮如除去较厚的木栓层部分,仍可提高质量。4.产地加工研究 《神农本草经集注》最早指出使用肉桂时“皆削去上虚甲错,取里有味者称之”。古人所说的“去皮”,均指刮去较大分量的木栓层部分,此部分所含挥发油极少,是影响肉桂质量的因素,故肉桂加工均应刮去栓皮。

  • 请您欣赏肉桂卷

    肉桂卷选用上等面粉,搭配优质C130317/1肉桂粉,每一层酥皮都包裹着满满的幸福感。每一口咬下,都能感受到肉桂的浓郁香气与面团的细腻口感相互交织,犹如置身温暖的怀抱。[img]https://ng1.17img.cn/bbsfiles/images/2024/08/202408161036482403_1142_1642069_3.png[/img]

  • 【原创大赛】肉桂、花椒提取物的抑菌活性研究

    【原创大赛】肉桂、花椒提取物的抑菌活性研究

    1 前言http://ng1.17img.cn/bbsfiles/images/2014/12/201412221338_528268_2770543_3.png肉桂(Cinnamomumcassia presl)为樟科植物的干燥枝皮或干皮,肉桂中含有挥发油(称肉桂油或桂皮油),其中主要成分为桂皮醛(Cinnamaldehyde),另含少量桂皮酸、乙酸桂皮酯、肉桂醇及香豆素等,有抑菌防腐作用,可提取用于食品防腐保藏。花椒(Zanthoxylum bungeanum Maxim)为芸香科植物,花椒的干燥成熟果皮、果实含挥发油,其中主要成分为牻牛儿醇(Geraniol)、萜品醇、香茅醇、柠檬烯、水芹烯和蒎烯等,具有抑菌防霉作用,可用作粮食防霉。花椒不仅可作为调味品,也可作药用,具有镇痛、镇静、活血散瘀及治疗呕吐、腹泻等功效,另外在抑菌杀虫、抗肿瘤等方面也具有较强的药理活性。由于挥发油的化学组成多为含醇、醛、酮、酚、酸、酯、萜烯类等的混合物,易溶于多种有机溶剂及脂肪油中,在一定浓度的乙醇中溶解度较高,考虑到作为食品防腐剂的安全性,本文选用食品级乙醇作为提取剂,对提取条件及提取物的抑菌作用进行了实验研究。2材料和方法2.1实验材料及仪器2.1.1材料肉桂,将其粉碎备用花椒,将其粉碎备用2.1.2化学试剂NaCl ,北京北化精细化学品有限责任公司NaNO3 ,北京益利精细化学品有限公司K2HPO4 ,北京益利精细化学品有限公司KCl ,北京益利精细化学品有限公司MgSO4 ,北京益利精细化学品有限公司FeSO4 ,北京益利精细化学品有限公司醋酸钠,北京北化精细化学品有限责任公司HCl ,北京北化精细化学品有限责任公司NaOH ,北京北化精细化学品有限责任公司食用乙醇95%,北京北化精细化学品有限责任公司2.1.3生化试剂牛肉膏,北京双旋微生物培养基制品厂蛋白胨,北京双旋微生物培养基制品厂琼脂,北京双旋微生物培养基制品厂蔗糖,北京双旋微生物培养基制品厂葡萄糖,北京双旋微生物培养基制品厂2.1.4实验仪器电热鼓风干燥箱DL-101-3 ,天津市中环实验电炉有限公司电热恒温培养箱DHP-9272型,上海一恒科技有限公司SHK-99-11 摇床 ,Beijing North TZ-BiotechDevelop. Co.DSY-2-8 电热恒温水浴锅,北京国华医疗器械厂LDZX-40AI型立式自动电热压力蒸汽灭菌锅,上海申安医疗器械厂HD-1360 洁净工作台,北京东联哈尔仪器制造有限公司SHB-111 循环水式多用真空泵,郑州长城科工贸有限公司单相电容运转电动机 JX50.24 ,上海申顺生物科技有限公司W201 恒温水浴锅,上海申顺生

肉桂醇相关的方案

  • 岛津:气相色谱三重四极杆质谱法测定化妆品中肉桂醇致敏原
    本文建立了三重四极杆气质联用仪检测化妆品中肉桂醇等12 种致敏原的测定方法。结果表明,采用岛津公司GCMS-TQ8030 分析肉桂醇等12 种致敏原化合物,在0.01~1.0 mg/L 浓度范围内线性良好,0.1 mg/L的标准品溶液的峰面积RSD 均小于3.5 %(n=5),各组分回收率均在80%以上,完全满足检测的要求。
  • 北京华阳利民:非水毛细管电泳/ 紫外检测法测定肉桂中的肉桂酸和肉桂醛
    建立了用非水相体系高效毛细管电泳/紫外检测法同时测定肉桂酸和肉桂醛的新方法, 考察了运行电压、非水相介质和电解质等因素的影响。在25 ℃下, 以乙腈和碳酸丙烯酯(体积比3 ∶2)的混合液为缓冲体系的溶剂, 缓冲体系中含25 mmol/L十六烷基三甲基溴化铵, 01375% (φ)乙酸, 以碳酸丙烯酯为样品溶剂,重力进样30 s, 运行电压20 kV, 毛细管总长45 cm, 有效长度30 cm, φ75μm, 检测波长310 nm。肉桂酸线性范围为4~100 mg/L, r = 01999 4, 检出限为0180 mg/L, RSD为1107%。肉桂醛的线性范围10~240 mg/L, r =01999 6, 检出限为2130 mg/L, RSD为2119%。应用于肉桂中的肉桂醛和肉桂酸的测定, 结果满意。
  • 电子鼻用于肉桂添加量对卤鸡腿肉挥发性风味成分的影响
    摘 要 比较不同肉桂添加量对卤鸡腿肉挥发性风味成分的影响。设置 5 个梯度的肉桂添加量(0%, 0. 05%,0. 1%, 0. 2%, 0. 3%), 采用电子鼻(EN)、 顶空固相微萃取(HS- SPME)和气质联用(GC- MS)的方法对不同肉桂添加量的卤鸡肉样品进行检测分析。结果显示:不同肉桂添加量鸡肉样品的电子鼻信号表现出较强的聚类特性 按肉桂添加量由低到高的顺序经 GC- MS 依次检出 54、 60、 63、 65、 80 种挥发性风味物质 与空白组相比, 添加肉桂的鸡肉样品中新增了肉桂醛、 桉叶油醇、 香叶基丙酮、 香豆素、 对异丙基甲苯、 石竹烯等 40 种挥发性风味物质, 以0. 3%肉桂组增加的萜烯类物质 多。表明添加肉桂后鸡肉样品中新增的挥发性风味物质多属于肉桂添加的直接引入。肉桂添加浓度达到 0. 3%时, 样品中萜烯类物质急剧增加, 风味成分变化较大。

肉桂醇相关的资讯

  • 岛津成像质谱显微镜应用专题丨斑马鱼体内富勒醇可视化
    质谱成像用于可视化斑马鱼体内富勒醇的组织分布 碳纳米材料和纳米技术设备的应用日益广泛,而纳米颗粒具有潜在生物活性,可能会干扰正常的生物系统,从而引起公众对纳米颗粒潜在风险的关注。碳纳米材料在水生生物体内的累积、食物链的营养传递和生物放大潜力是其生态风险评价的重要环节。富勒醇是一种碳纳米材料,可通过水相暴露和食物链在大蚤体内累积,表明其对生态系统有潜在的不利影响,引起人们对富勒醇环境毒理学研究的关注。 本研究选择斑马鱼作为实验对象,利用基质辅助激光解吸电离成像质谱(MALDI-TOF-IMS)研究富勒醇纳米颗粒通过水相暴露途径在斑马鱼不同组织内的空间分布。 1. 成像质谱显微镜测试条件将冷冻斑马鱼组织包埋在0.1g/L明胶中进行冷冻切片,厚度为20 μm,将组织切片放置在ITO导电载玻片上,干燥40 min后进行成像质谱分析。采集参数如下:采集模式,正离子模式 采集范围m/z 500-1000;检测器电压,1.80 kV。激光直径10 μm,频率1000 Hz,强度30。 2. 基于成像质谱显微镜的组织成像研究2.1富勒醇纳米颗粒的MALDI-TOF质谱分析对富勒醇纳米颗粒的离子化条件进行摸索,a-氰基-4-羟基肉桂酸(CHCA)和2,5-二羟基苯甲酸(DHB)是用于多肽、脂质、碳水化合物、蛋白质分析的常用基质。富勒醇纳米颗粒在使用CHCA与DHB作为基质检测时,未获得对应分子离子峰。富勒醇纳米颗粒对电离源中激光有较强的吸收,并促进电离,实验证明富勒醇纳米颗粒在正离子模式下产生C60+ 离子。因此,本研究中可采用激光解吸离子化方式(LDI)直接检测富勒醇纳米颗粒。图1显示了正、负离子模式下富勒醇纳米颗粒的质谱图,m/z 720.0和721.0离子分别对应C60+和[C60+H]+。其它离子可能与碳笼的光致电离片段对应,如C58+ (m/z 696.0)、C56+ (m/z 672.0)、C54+(m/z 648.0)、C52+ (m/z 24.0)、C50+ (m/z 600.0)、C48+ (m/z 576.0)、 C46+ (m/z 552.0)、C44+ (m/z 528.0)、C42+ (m/z 504.0)。C2基团丢失是C60分子离子的特征裂解方式。根据上述结果,选择m/z 720.00和721.00作为特征离子进行质谱成像分析。图1 富勒醇纳米颗粒的MALDI-TOF质谱图:a)负离子模式,b)正离子模式,c)b图的局部放大 2.2 斑马鱼组织中富勒醇纳米颗粒的质谱成像分析对富勒醇纳米颗粒暴露的斑马鱼组织切片进行MALDI-TOF-MSI分析,获得不同组织中的分布信息。研究显示富勒醇纳米颗粒在鱼鳃的分布最多,其次是肠、肌肉和脑。 富勒醇纳米颗粒在鱼鳃中主要分布在鳃丝部分。同时观察到富勒醇纳米颗粒存在于肠壁组织。肠腔内吸收细胞的游离端-细胞质内的胞饮囊泡为富勒醇纳米颗粒进入肠壁细胞提供可能,从而为富勒醇纳米颗粒进入循环系统和通过肠血途径进一步进入体内其他组织提供先决条件。 肌肉组织中富勒醇纳米颗粒的存在表明其可通过循环系统运输到肌肉组织。此外,在脑部也观察到富勒醇纳米颗粒信号,表明富勒醇纳米颗粒可最终通过循环系统并穿透血脑屏障到达脑部。 富勒醇纳米颗粒在斑马鱼组织中的分布差异可能与暴露途径有关。鳃是呼吸、渗透调节和排泄的场所,是直接接触和吸收周围水中污染物的器官。水相暴露导致鳃直接接触和吸收暴露溶液中的富勒醇纳米颗粒;此外生物组织的独特结构如血脑屏障等也可能影响富勒醇纳米颗粒的分布。因此,从毒性风险的角度分析,鳃是最危险的暴露组织。 图2 斑马鱼组织切片中富勒醇纳米颗粒的MALDI-TOF质谱成像图:分别显示在鳃、肠、脑和肌肉组织中的分布 本研究详细内容已正式发表于Analytical and Bioanalytical Chemistry, 2020, 412: 7649-7658. 文献题目《Visualization of the tissue distribution of fullerenols in zebrafish (Danio rerio) using imaging mass spectrometry》 使用仪器岛津iMScope TRIO 作者Qiuyue Shi1,2 , Cheng Fang3,4 , Zixing Zhang1 , Changzhou Yan1 , Xian Zhang1 1 Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences,Xiamen 361021, China2 University of Chinese Academy of Sciences, Beijing 100049, China3 Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308, Australia4 Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, University of Newcastle, Callaghan, NSW 2308, Australia
  • 300多位专家学者会师桂林 中西部色谱研究焕发新气象
    仪器信息网讯 2021年7月30日,中国中西部地区第七届色谱学术交流会暨仪器展览会在广西桂林隆重开幕。此次会议由广西化学化工学会、甘肃省化学会色谱专业委员会主办,广西师范大学化学与药学学院承办。  本次会议集中交流色谱及其相关技术的基础研究、仪器开发、应用方法等的最新进展。会议邀请了国内著名学者与会作大会特邀报告、分会邀请报告或专题报告与讨论。会议期间还组织了相关仪器及其配件展示。会议现场  会议开幕式环节,广西师范大学副校长苏桂发、中国化学会色谱专业委员会副主任刘虎威、甘肃省化学会色谱专业委员会主任师彦平分别致辞,预祝本次会议取得圆满成功。广西师范大学副校长 苏桂发中国化学会色谱专业委员会副主任 刘虎威甘肃省化学会色谱专业委员会主任 师彦平广西师范大学 赵书林 主持开幕式  本次会议与会代表超过了300人,是我国中西部色谱工作者的一次盛会,为广大色谱工作者以及从事色谱仪器设计与制造的厂商提供相互交流和展示的平台,将推动中西部色谱分析技术发展,推动中国色谱分析技术发展。中国化学会色谱专业委员会主任/中国科学院大连化学物理研究所 许国旺 大会报告《没有色谱的质谱如何做人群样本到20个细胞的代谢组学研究》  代谢组学研究所用分析技术中,质谱所占比例达到了40%。2021年5月31日检索WOS,代谢组学相关发布的论文数量为43635篇,美国和中国高居前两位,而且自从2019年开始中国学者发布的相关论文开始超过了美国。  直接进样质谱配以nanoMate后,进一步与多种质谱采样方法(如DIA、PRM等)结合,不仅分析速度快(2-3min/个),而且可获得丰富的代谢谱信息。不过,这些丰富信息的利用,需要新的数据处理方法。采用二级质谱进行定性定量可获得更好的精度,在某些情况下对异构体也可区分。许国旺课题组发展的代谢组全景分析新方法,可满足大规模人群样本到20个细胞的代谢组学研究 建立了基于直接进样质谱的稳定同位素示踪代谢组学分析方法,适用于少量细胞的定性定量分析,不仅可以研究动态的代谢变化,而且节省费用。北京大学 刘虎威 大会报告《关于色谱-质谱关系的思考》  色谱与质谱连用成为当今应用最为广泛的分析技术,刘虎威形容色谱和质谱是一对“美满婚姻”,指出二者应该从相互奉献到紧密合作、既可以各自独立又相互依存、能相互体谅促共同发展。  基于色谱原理的各种样品前处理技术的发展,在一定程度可以简化色谱分离,以配合质谱的高通量分析。高效样品处理技术与质谱联用是非常高效、高通量、高灵敏的方法。高分辨的MS以及MSn的发展在一定程度上降低了MS对色谱的依赖程度,减轻了色谱的分离压力。复杂体系的分析需要高效色谱和质谱的联用,简单体系的目标分析则可能不需要色谱分离。敞开式离子化质谱的发展又为色谱分离带来了新的检测技术。南开大学 邵学广 大会报告《色谱复杂信号解析化学计量学方法研究》  由于高效的分离功能和高灵敏的检测功能,色谱及其联用技术在复杂体系分析中得到了广泛应用。在实际复杂体系的分析中,采用化学计量学方法实现色谱复杂信号的解析是解决复杂体系分析的常用手段。 复杂色谱重叠信号的解析方法包括化学因子分析(CFA)、多元分辨-交替最小二乘(MCR-ALS)、平行因子分析(PARAFAC)、交替三线性分解 (ATLD)等。  邵学广课题组发展了基于小波变换的高分辨信息提取方法,并建立了用于重叠信号解析的免疫算法。在小波变换方法研究中,首先改进了计算方法,实现了复杂信号中不同频率信号的提取,并应用于色谱的基线分离、高分辨信息的提取等。在免疫算法研究中,建立了自适应免疫算法(AIA),发展了非负免疫算法(NNIA),并实现了免疫算法与独立成分分析(ICA)、目标因子分析等方法的结合,实现了复杂多组分重叠 GC-MS 信号中组分信息的提取,并在实际复杂体系的分析中得到应用。中山大学 李攻科 大会报告《复杂样品快速检测前处理方法研究进展》  样品前处理作为分析过程中最耗时、易引起误差的关键环节, 严重制约了复杂样品快速检测的速度、准确度和精密度。样品制备是将被分析物从样品基体转移到定性、定量评价的过程,因其在物理、化学、生物性质上的差异,应具有较好的适用性。从混沌到有序,这种传质过程不会自动发生,加速样品制备的策略是如何使热力学第二定律的自发过程逆转并快速定量进行。为提高样品制备效率,包括分离和富集过程,必须在传质系统中应用额外的能量以减少熵增。通过引入新相、膜和场,改变系统中化学势的分布,是降低系统熵,是提高制样效率有效途径。  李攻科报告中介绍了场辅助、相分离、衍生化、微量化、阵列化和集成化等样品制备加速策略。为提高样品制样速度,首先,在样品制备过程中引入额外的能量有助于加速传质和换热,利用声波、微波和电场等辅助场,可提高样品制样效率。其次,通过引入新相(介质)加速制样过程中传质,包括相吸附、相分配、化学转化、空间识别以加速传质。第三,缩小样品量是直接缩短样品制备时间有效方式,包括微萃取、微流体分离等。第四,阵列/集成策略,可同时完成一批样品的制备,结合高通量分析技术可减少单样的平均制备时间。通过联用技术实现分离、富集、净化与检测步骤一体化加快检测速度。东北大学 王建华 大会报告《多金属氧酸盐与蛋白质相互作用及其吸附研究》  多金属氧酸盐中的金属氧化物表面具有特定的反应活性,且表现多种异构体、从而具有独特的拓扑结构以及丰富的结合位点,在样品预处理领域得到了广泛的应用,尤其是其与蛋白质的相互作用及选择性分离富集,表现出优异的应用前景。  生命样品中总量超过85%的高丰度蛋白对低丰度蛋白的干扰严重制约其分离分析与鉴定,因此高丰度蛋白的有效去除或低丰度蛋白的分离富集极为重要。多金属氧酸盐在蛋白质吸附与分离中具有显著的优越性。中国科学院兰州化学物理研究所 师彦平 大会报告《固相微萃取与分离分析研究》  师彦平介绍了中西部地区色谱学术交流会的发展历程。第一届会议于2006年在甘肃敦煌举行,此后每两年举办一届,先后在湖北宜昌、陕西临潼、宁夏银川、重庆、河南郑州举办。因新冠疫情影响,第七届会议经过3年的筹备,今天顺利召开。  固相微萃取是基于萃取涂层与样品之间的吸附/溶解-解吸平衡而建立起来的集进样、萃取、浓缩功能于一体的技术,在报告中,师彦平介绍了相微萃取与分离分析的最新研究进展。西北大学 郑晓晖 大会报告《药物-机体复杂巨系统中抗癫痫类药物研发》  药物-机体相互作用形成的复杂巨系统之复杂性造成效应物质难以辨识问题严重阻碍了中医药现代化及新药研发的进程。针对此问题,郑晓晖研究团队提出了“良关系”、“组合中药分子化学”之合策略等系列中药现代化研究新策略,发展了集分子、因果数理、受体、药理、临床为一体的中药效应成分群辨识技术,进而开展了中药“远志-石菖蒲”药对、化药α-细辛脑胶囊代谢物以及石菖蒲植物体内代谢研究,发现效应物质α-细辛醇,进而依据组合中药分子化学之“合策略”新药研发新思路合成了3,4,5-三甲氧基肉桂酸α-细辛醇酯。  研究表α-细辛醇及其酯具有显著的抗癫痫活性且安全性高于临床常用药物卡马西平等,开展了其相关临床前研究工作,创制了新型抗癫痫尤其难治性儿童癫痫1类化学新药候选药物,为中医药现代化及开展以中药为源泉的安全、优效、可控的新药创制提供一种全新研究思路。  大连依利特分析仪器有限公司、岛津企业管理(中国)有限公司、赛默飞世尔科技(中国)有限公司、安捷伦科技(中国)有限公司、南宁市会凌仪器设备有限责任公司等仪器设备企业参与了本次会议,并展示、介绍了最新的产品与应用解决方案。仪器信息网作为合作媒体参加并报道了此次会议。与会者合影
  • 卫生部发布71项食品安全国标
    根据《中华人民共和国食品安全法》和《食品安全国家标准管理办法》的规定,经食品安全国家标准审评委员会审查通过,现发布《食品添加剂核黄素5'-磷酸钠》(GB28301-2012)等71项食品安全国家标准。其编号和名称如下:   GB 28301-2012食品添加剂 核黄素5'—磷酸钠   GB 28302-2012食品添加剂 辛,癸酸甘油酯   GB 28303-2012食品添加剂 辛烯基琥珀酸淀粉钠   GB 28304-2012食品添加剂 可得然胶   GB 28305-2012食品添加剂 乳酸钾   GB 28306-2012食品添加剂 L-精氨酸   GB 28307-2012食品添加剂 麦芽糖醇和麦芽糖醇液   GB 28308-2012食品添加剂 植物炭黑   GB 28309-2012食品添加剂 酸性红(偶氮玉红)   GB 28310-2012食品添加剂 β-胡萝卜素(发酵法)   GB 28311-2012食品添加剂 栀子蓝   GB 28312-2012食品添加剂 玫瑰茄红   GB 28313-2012食品添加剂 葡萄皮红   GB 28314-2012食品添加剂 辣椒油树脂   GB 28315-2012食品添加剂 紫草红   GB 28316-2012食品添加剂 番茄红   GB 28317-2012食品添加剂 靛蓝   GB 28318-2012食品添加剂 靛蓝铝色淀   GB 28319-2012食品添加剂 庚酸烯丙酯   GB 28320-2012 食品添加剂 苯甲醛   GB 28321-2012 食品添加剂 十二酸乙酯(月桂酸乙酯)   GB 28322-2012 食品添加剂 十四酸乙酯(肉豆蔻酸乙酯)   GB 28323-2012 食品添加剂 乙酸香茅酯   GB 28324-2012 食品添加剂 丁酸香叶酯   GB 28325-2012 食品添加剂 乙酸丁酯   GB 28326-2012 食品添加剂 乙酸己酯   GB 28327-2012 食品添加剂 乙酸辛酯   GB 28328-2012 食品添加剂 乙酸癸酯   GB 28329-2012 食品添加剂 顺式-3-己烯醇乙酸酯(乙酸叶醇酯)   GB 28330-2012 食品添加剂 乙酸异丁酯   GB 28331-2012 食品添加剂 丁酸戊酯   GB 28332-2012 食品添加剂 丁酸己酯   GB 28333-2012 食品添加剂 顺式-3-己烯醇丁酸酯(丁酸叶醇酯)   GB 28334-2012 食品添加剂 顺式-3-己烯醇己酸酯(己酸叶醇酯)   GB 28335-2012 食品添加剂 2-甲基丁酸乙酯   GB 28336-2012 食品添加剂 2-甲基丁酸   GB 28337-2012 食品添加剂 乙酸薄荷酯   GB 28338-2012 食品添加剂 乳酸 l-薄荷酯   GB 28339-2012 食品添加剂 二甲基硫醚   GB 28340-2012 食品添加剂 3-甲硫基丙醇   GB 28341-2012 食品添加剂 3-甲硫基丙醛   GB 28342-2012 食品添加剂 3-甲硫基丙酸甲酯   GB 28343-2012 食品添加剂 3-甲硫基丙酸乙酯   GB 28344-2012 食品添加剂 乙酰乙酸乙酯   GB 28345-2012 食品添加剂 乙酸肉桂酯   GB 28346-2012 食品添加剂 肉桂醛   GB 28347-2012 食品添加剂 肉桂酸   GB 28348-2012 食品添加剂 肉桂酸甲酯   GB 28349-2012 食品添加剂 肉桂酸乙酯   GB 28350-2012 食品添加剂 肉桂酸苯乙酯   GB 28351-2012 食品添加剂 5-甲基糠醛   GB 28352-2012 食品添加剂 苯甲酸甲酯   GB 28353-2012 食品添加剂 茴香醇   GB 28354-2012 食品添加剂 大茴香醛   GB 28355-2012 食品添加剂 水杨酸甲酯(柳酸甲酯)   GB 28356-2012 食品添加剂 水杨酸乙酯(柳酸乙酯)   GB 28357-2012 食品添加剂 水杨酸异戊酯(柳酸异戊酯)   GB 28358-2012 食品添加剂 丁酰乳酸丁酯   GB 28359-2012 食品添加剂 乙酸苯乙酯   GB 28360-2012 食品添加剂 苯乙酸苯乙酯   GB 28361-2012 食品添加剂 苯乙酸乙酯   GB 28362-2012 食品添加剂 苯氧乙酸烯丙酯   GB 28363-2012 食品添加剂 二氢香豆素   GB 28364-2012 食品添加剂 2-甲基-2-戊烯酸(草莓酸)   GB 28365-2012 食品添加剂 4-羟基-2,5-二甲基-3(2H)呋喃酮   GB 28366-2012 食品添加剂 2-乙基-4-羟基-5-甲基-3(2H)-呋喃酮   GB 28367-2012 食品添加剂 4-羟基-5-甲基-3(2H)呋喃酮   GB 28368-2012 食品添加剂 2,3-戊二酮   GB 14930.2-2012 消毒剂(代替GB14930.2-1994)   GB 11676-2012 有机硅防粘涂料(代替GB11676-1989)   GB 11677-2012 易拉罐内壁水基改性环氧树脂涂料(代替GB11677-1989)   附件:71项食品标准文本.rar

肉桂醇相关的仪器

  • 肉桂醇一、肉桂醇基本信息英文名:Cinnamic alcohol Cinnamyl alcoholCAS No.:104-54-1FEMA No.:2294分子式:C9H10O二、肉桂醇产品性能含量:≥99%外观:白色晶体密度:1.044熔点:31-35°C折射率:1.5819三、肉桂醇产品应用香精香料、制药等。1.广泛用于配制花香型香精、化妆品香精和皂用香精,也用作定香剂 2.用于食品香精和日化香精配方中。在食用香料中,主要用于配制草莓、柠檬、杏子、桃子等水果型食用香精和白兰地酒用香精。口香糖中使用量为720mg/kg 烘烤食品中33mg/kg 糖果中17mg/kg 软饮料中8.8mg/kg 冷饮中8.7mg/kg 酒类5.0mg/kg。可用来制备肉桂基氯,是用来制备长效多功能的血管收缩拮抗剂脑益嗪的优良原料,同时,肉桂基氯也可以用来合成抗病源性微生物药萘替芬和抗肿瘤药物托瑞米芬。二盐酸氟桂利嗪是一种钙拮抗剂,也可用肉桂基氯来合成。肉桂醇也是用来制备香料桂酸桂酯的原料。包装:200KG/铁桶
    留言咨询
  • 肉桂酸一、肉桂酸基本信息英文名:Cinnamic acid, Cinnamyl acidCAS No.:140-10-3FEMA No.:2288分子式:C9H8O2二、肉桂酸产品性能含量:≥99%外观:白色或无色结晶粉末气味:稍有辣味然后转变成甜的和杏子味道熔点:133°C沸点:300°C三、肉桂酸产品应用香精香料、制药、化妆品等。主要用于配制香辛料,樱桃,杏,蜜蜂等型香料。亦可用于新鲜水果蔬菜的防腐.作为有机合成中间体,主要用于医药行业,可用于生产阿斯巴甜的主原料L-苯丙氨酸.也是用来制备用于因膀胱过度兴奋引起的尿频的药物毒蕈碱受体拮抗剂托特罗定.抗肿瘤药多紫杉醇的制备也有用到肉桂酸.还可用于制造局部麻醉剂,杀菌剂,止血药等。在农药方面,可作为生长促进剂和长效杀菌剂而用于果品和蔬菜的防腐。食品添加剂肉桂酸用微生物酶法合成L-苯丙氨酸。L-苯丙氨酸是重要的食品添加剂-甜味阿斯巴甜(Aspartame)的主要原料。英国联合利华取得了世界知识产权组织专利PCTInt。Appl。Wo01 87,080(2001,11.22)该文介绍肉桂酸和巴氏杀菌助剂组成,具有很强的杀菌、防腐作用。利用肉桂酸的防霉防腐杀菌可应用于粮食、蔬菜、水果中的保鲜、防腐。肉桂酸用于蜜饯中,能改善口感风味,尤其是在食品防腐保鲜上,具有无公害的环保防腐剂。替代(苯甲酸钠,山梨酸钾,等产品)还可用在葡萄酒中,使其色泽光鲜。肉桂酸具有很强的兴奋作用,可广泛直接添加于一切食品中。美容方面肉桂酸可应用于美容方面,酪氨基酸酶是黑色素合成关键酶,它启动了由酪氨酸转化为黑色素生物聚合体的级链反应,肉桂酸有抑制形成酪氨基酸酶的作用,对紫外线有一定的隔绝作用,能使褐斑变浅,甚至消失,是高级防晒霜中必不可少的成分之一。肉桂酸显著的抗氧化功效对于减慢皱纹的出现有很好的疗效。肉桂酸同时还具有很好的保香作用,通常作为配香原料,被用作日化香精中的定香剂。农药方面在农业工业中,肉桂酸作为生长促进剂和长效杀菌剂而用于果蔬防腐。有机合成在有机化工合成方面,肉桂酸可作为镀锌板的缓释剂,聚氯乙烯的热稳定剂,多氨基甲酸脂的交联剂,乙内酰和聚己内酰胺的阻燃剂,化学分析试剂。也是测定铀、钒分离的试剂;它还是负片型感光树脂的最主要合成原料。主要合成桂酸酯、聚乙烯醇肉桂酸酯、聚乙烯氧肉桂酸乙酯和侧基为肉桂酸酯的环氧树脂。应用于塑料方面,可用作PVC的热稳定剂,杀菌防霉除臭剂,还可添加在橡胶、泡沫塑料中制成防臭鞋和鞋垫,也可用于棉布和各种合成纤维、皮革、涂料、鞋油、草席等制品中防止霉变。包装:25KG/牛皮纸袋
    留言咨询
  • 肉桂醛一、肉桂醛基本信息英文名:Cinnamaldehyde Cinnamic aldehyde Cinnamyl aldehydeCAS No.:104-55-2/14371-10-9FEMA No.:2286分子式:C9H8O二、肉桂醛产品性能含量:≥99%外观:浅黄色液体密度:1.05折射率:1.61香气:有强烈的桂皮油和肉桂油的香气,温和的辛香气息,不应有辣味,香气强烈持久。桂醛较桂醇香气清强。溶解性:难溶于水、甘油和石油醚,易溶于醇和醚。能随水蒸气挥发。稳定性:在强酸性或者强碱性介质中不稳定,易导致变色,在空气中易氧化。三、肉桂醛产品应用食品及日化香精、制药及缓蚀剂等。肉桂醛也是重要的医药原料之一,常用于外用药、合成药中,因其具有促进血液循环,使皮肤回温,紧实皮肤组织、 对水分滞留的现象可以得到充分的改善,具有很强的脂肪分解作用。对皮肤的疤痕、纤维瘤的软化与清除皆具效果。散淤血。有抗凝血酶效果,具有镇静、镇痛、解热、抗惊厥等作用,还具有抑制霉菌的效果。此外,也是重要香料之一,常用于皂用香精,调制栀子,素馨、铃兰、玫瑰等香精。食品中用于水果保鲜,最近研究表明肉桂醛用于口香糖对口腔可起到杀菌和除臭双重功效。包装:210KG/塑料桶可按客户要求分装
    留言咨询

肉桂醇相关的耗材

  • 纯硅窗口
    硅窗口纯Pure Silicon Windows纯硅膜的厚度有5nm, 9nm, 15nm, 35nm,利用溅射沉积纯硅,允许对含氮和/或碳的样品进行元素分析。单晶纯硅具有1-0-0取向,制作35 nm的薄膜,用于衍射研究和其它需要从单晶薄膜中获得均匀的背景应用。无孔硅薄膜轻微起皱,大约100微米间距有5微米或更少的偏转,这对于高分辨率成像来说通常是没有问题的。纳米多孔硅Nanoporous采用P30膜使多孔窗口更加多孔,孔径一般在10-60纳米范围。 l 纳米级别的厚度-成像窗口的厚度为5到35 nm,降低背景的干扰,以更高的对比度成像。5nm厚的无孔纯硅窗口比市面上最薄的非晶碳膜更薄。l 可等离子清洗-可以强力等离子清洗,去除有机污染,不像传统的碳膜l 场到场的均匀性-非多孔纯硅窗口比碳膜更薄,减少了场到场的可变性.(注:多孔窗口确实具有固有的结晶特征,但具有无背景纳米尺度的孔隙)。l 降低色彩模糊-与市面上最薄的无定形碳膜相比,5nm无孔纯硅窗口的色彩模糊减少一半。这种巨大的差异是由于电子通过硅窗口的薄膜的非弹性散射减少了两倍。反过来,减少的色彩模糊提供了一个潜在的成像分辨率的两倍提高。l 纳米尺寸孔-纯硅窗口可作为孔径为5~50 nm的多孔薄膜。孔隙允许简单和稳定的悬浮纳米材料进行成像,而不干涉背景。l 硅成分优点- 纯硅窗口的元素硅组分在高束流和高退火温度下显著提高了稳定性。纯硅成分还引入了最小的背景信号,使含有氮和/或碳的样品的元素分析可以通过EDX和EELS进行。l 孤立的多晶体硅-多孔纯硅窗口的多晶特性为x射线衍射研究提供了内部校准标准。孤立的晶体特征也为高分辨率尺寸测量提供了一个方便可靠的尺度,硅的晶格特征也很好。 l 亲水性-无孔和多孔纯硅窗口的亲水性可通过等离子体和/或臭氧处理来调节,从而使样品的制备变得更加容易,特别是在水溶液中的样品。l 高稳定性能-在高束流和高退火温度下(无孔600°C,纳米孔1000°C) 货号产品描述窗口尺寸膜厚度规格76042-70Single Crystal Pure Si TEM Window(8) 100μm, (1) 100x350μm35nm10/pk76042-71Non-Porous Pure Si TEM Window25μm sq.5nm10/pk76042-72Non-Porous Pure Si TEM Window(8) 50μm sq., (1) 50x100μm5nm10/pk76042-73Non-Porous Pure Si TEM Window(2) 50x1500μm5nm10/pk76042-74Non-Porous Pure Si TEM Window(8) 100 sq., (1) 100x350μm9nm10/pk76042-75Non-Porous Pure Si TEM Window(2) 100x1500μm9nm10/pk76042-76Non-Porous Pure Si TEM Window(8) 100 sq., (1) 100x350μm15nm10/pk76042-77Non-Porous Pure Si TEM Window(2) 100x1500μm15nm10/pk76042-78Nanoporous Pure Si TEM Window500μm sq.-10/pk76042-79Nanoporous Pure Si TEM Window(8) 100 sq., (1) 100x350μm-10/pk
  • 北京绿百草现货提供培养基原材料 各种规格
    北京绿百草现货提供培养基原材料 北京绿百草现货提供培养基各原材料:蛋白胨,牛肉粉,牛肉膏,干酪素,酵母膏,胆酸(牛/猪),卵磷脂,琼脂粉,乳糖,胰酶粉,糊精,肝素钠,烟酸,小牛血清,肉桂酸,酸水解酪蛋白,脑浸粉(牛),肝浸粉(猪/牛),心浸粉(牛),明胶,禽胆盐,熊去氧胆酸,去氢胆酸,蛋白酶抑制剂,亚甲基蓝,虎红,孔雀石绿,酸性品红,胰蛋白眎,灿烂绿等。 需要详细信息请联系北京绿百草:010-51659766. 登录网站获得更多产品信息: www.greenherbs.com.cn
  • 月桂基硫酸盐胰蛋白胨肉汤(LST)
    月桂基硫酸盐胰蛋白胨肉汤(LST) 250g 月桂基硫酸盐胰蛋白胨肉汤(LST) 250g

肉桂醇相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制