异甲基硫

仪器信息网异甲基硫专题为您提供2024年最新异甲基硫价格报价、厂家品牌的相关信息, 包括异甲基硫参数、型号等,不管是国产,还是进口品牌的异甲基硫您都可以在这里找到。 除此之外,仪器信息网还免费为您整合异甲基硫相关的耗材配件、试剂标物,还有异甲基硫相关的最新资讯、资料,以及异甲基硫相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

异甲基硫相关的资料

异甲基硫相关的论坛

  • 甲基异硫磷用气质质扫描

    甲基异硫磷用[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质[/color][/url]质SCAN扫描,得出的质谱图,使用nistms程序检索,名字与分子式都与甲基异硫磷不一样,但是离子对与国标是一样的,这是怎么回事?

  • 甲基异柳磷与水胺硫磷重合?

    1701柱,一个是DB,一个是VF1701MS,尺寸是一样的,30*0.25*0.25,可是DB1701上甲基异柳磷与水胺硫磷能分开,相差1.0min,而VF1701上只相差0.1min,两者重合,大家遇见过这种情况吗?

异甲基硫相关的方案

异甲基硫相关的资讯

  • 甲基化成肿瘤检测新靶标?五种新型DNA甲基化酶检测技术进展揭秘
    DNA甲基化是哺乳动物基因组中最常见的表观遗传事件之一,即DNA中核苷酸与甲基基团的共价修饰[2]。DNA甲基化与人的生命进程有着密不可分的关系。细胞的增殖与分化、染色体完整性的维护或者X染色体的活性等等都离不开DNA甲基化的控制,DNA甲基化流程在胚胎发育中是无处不在的[1]。如果DNA甲基化进程出现异常,会导致生物体出现各种各样的疾病以及身体的生长缺陷或生理紊乱。DNA与蛋白质之间的相互作用如果出现异常,会影响基因的表达,从而引起人体内肿瘤的发生或者肿瘤的转移,这一切的源头都是DNA甲基化进程出现异常的结果[3]。DNA甲基化酶是肿瘤治疗靶点DNA甲基化酶是一种修饰酶,经常与限制性内切酶一同出现。在真核生物基因组以及原核生物基因组中,普遍存在DNA甲基化酶维持以及催化DNA甲基化过程的现象。DNA甲基化酶被广泛认为是一种治疗靶点以及预测生物甲基化过程的标志物,在单细胞水平上准确灵敏地检测DNA甲基化酶对于肿瘤医学上的临床诊断以及临床治疗甚至是生物学研究有着至关重要的作用。根据甲基化的核苷酸和位置被分为三组,即腺嘌呤的甲基化、胞嘧啶的4-N甲基化和胞嘧啶的5-C甲基化。所有已知的DNA甲基化酶在其甲基化过程中以s-腺苷甲硫氨酸作为甲基供体。最常见的DNA甲基化不仅发生在胞嘧啶嘧啶环5-C位置的CpG位点上,还发生在对称四核苷酸5’-G-A-T-C-3’ 中腺嘌呤环的6-N位置[4,5]。传统DNA甲基化酶检测方法有局限 DNA甲基化酶活性的高灵敏度检测在基因调控、表观遗传修饰、临床诊断和治疗等方面具有重要意义。传统用于检测DNA甲基化酶活性的方法包括高效液相色谱法(HPLC)[6], 聚合酶链反应(PCR)[7],凝胶电泳[8],高效毛细管电泳(HPCE)[9],以及使用同位素标记的s-腺苷甲硫氨酸甲基化检测[10,11]。尽管这些技术在实验室实践中被证明是有用的,但它们具有局限性。例如,大多数技术不仅使用笨重昂贵的设备,而且需要复杂的样品制备和数据分析所需的大量时间。同位素标记等技术是有效的,但它们往往需要费力的样品制备、同位素标记、复杂的设备和大量的DNA,使得它们不适合在医护点使用。所以,DNA甲基化酶活性检测迫切需要简单、便携、高灵敏度和低成本的检测方法。在最近的技术进步中,许多替代的DNA甲基化酶活性测定方法,如放射法、比色法、荧光法、电化学法等已被提出。此外,其中许多与纳米材料或酶结合,以显著提高它们的敏感性。放射法、蛋白质纳米孔等新型检测技术兴起 放射法:同位素标记作为最早检测DNA甲基化酶活性的方法之一,早期广泛应用于检测DNA甲基化酶和DNA甲基化的活性[12,13]。在由DNA甲基化酶催化的甲基化过程中,同位素标记的甲基部分转移到DNA上,从而赋予甲基化的DNA放射性。这种放射性可以很方便地用闪烁计数器或放射自显像仪来检测。可惜的是,放射性试剂的介入是限制这种试验在中央实验室进行的最大缺点。对无辐射DNA甲基化酶活性检测的研究导致了甲基化特异性PCR[14]、HPCE[9]和HPLC等替代品的发展[7,14],而甲基化特异性PCR被认为是较好的方法。尽管非放射性,上述DNA甲基化酶活性检测需要庞大且通常昂贵的设备,冗长且耗时的样品制备和数据分析,以及繁琐的检测方案,这在临床实践中也比较难以实现全覆盖。比色法:比色法用于DNA甲基化酶活性检测依赖于颜色变化的目视观察或与DNA甲基化酶相关的吸收光谱的光谱测量。它们具有成本低、简单、可移植性和在某些情况下无需仪器的优点。虽然紫外-可见光谱法可以量化DNA,但甲基化和未甲基化DNA在紫外-可见吸收特性上的低灵敏度和不显著差异基本否定了紫外-可见光谱法直接检测DNA甲基化酶活性[15~17]。金纳米粒子:金纳米粒子(AuNPs)由于其表面的等离子体共振吸收的高消光系数且强依赖于粒子间距离,在DNA甲基化酶活性检测的比色法研究中引起了广泛关注。如图1 所示,金纳米粒子表面包覆有双链DNA (ds-DNA),其中一条链包含DNA甲基化酶识别序列和5’-硫醇末端。在DNA甲基化酶存在的情况下,如图1 B 所示,DNA甲基化酶被共价标记在ds-DNA中碱基环的6-C位置,因为在5-N位置缺乏一个质子阻止了β-消除,甲基化的DNA不能被核酸外切酶 ExoⅠ剪切,因此金纳米粒子仍然均匀地分散在溶液中 [18]。从而实现DNA甲基化酶活性的检测。结果表明,在526 nm处,金纳米粒子聚集物的吸光度与DNA甲基化酶的活性呈2 ~ 32 U / mL的线性关系,检出限为0.5 U/ mL。图1. (A)基于ABP的比色生物传感器的示意图(B) DNA甲基化酶的检测机制 荧光法:荧光指吸收激发荧光团的光,以促进电子从基态到激发态,电子迅速地回到激发态的最低能级,然后当电子最终返回基态时,发出波长较长的光。与其他DNA甲基化酶活性测定法相比,荧光法检测DNA甲基化酶活性的优点是检测过程简单,灵敏度高,但其复杂的光学性能限制了其在集中实验室的应用[19~20]。图2. 基于外切酶的靶循环的DNA甲基化酶活性检测原理图电化学法:电化学生物分析技术的发展一直是现代分析化学研究的热点之一。电化学法用于DNA甲基化酶分析包括测量电流、电压、电荷和电阻等电量,以反映DNA甲基化酶的活性。与许多其他类型的DNA甲基化酶活性的检测相比,它们具有低成本、高灵敏度、执行现场监测的能力以及非常适合微型化和集成微制造技术的优点[22~23]。Zhi-Qiang Gao等人在2014年报道了一种简单、高灵敏度的DNA甲基化酶电化学活性测定方法。该方法采用电催化氧化抗坏血酸(AA)的信号放大手段,通过一个螺纹插层N,N -2(3-丙基咪唑)-1,4,5,8-萘二酰亚胺(PIND)电催化氧化还原Os(bpy)2Cl+ (PIND-Os),包含5’-CCGG-3’ 对称序列的ds-DNA首先固定在金电极上。然后用DNA甲基化酶孵育电极,经过酶催化特定CpG二核苷酸的甲基化,然后用识别5’-CCGG-3’ 序列的限制性内切酶 Hpa II 剪切酶处理电极,从而实现DNA甲基化酶活性检测的目的[24]。图3. DNA甲基化酶活性的检测原理示意图蛋白质纳米孔:蛋白质纳米孔检测技术是在单分子水平上以低成本、无标签和高通量的方式研究生物分子的检测技术。近年来,纳米孔技术正从生物传感的角度进行研究[25]。应用于核酸特征鉴定、化学反应过程的测量、蛋白质分析、疾病相关蛋白状态的检测以及酶动力学的研究等[26]。α-溶血7素是一种蛋白质纳米孔,它自发地插入到脂质双层膜中,形成一个纳米孔[27]。当一个带电分子在外加电势下通过蛋白质纳米孔时,它会引起离子电流的瞬态变化,电流变化事件被记录下来。被分析物可以通过当前电流发生的频率进行量化,特征电流信号则可以揭示被分析物的各种特征[28~30]。该检测方法不需要对DNA探针进行任何化学修饰,既方便又节约成本,减少了样品消耗。 图4. 用于分析DNA甲基化酶活性的纳米孔试验的示意图 在过去的十几年中,DNA甲基化酶活性的检测取得了重大进展。有几种方法有希望可在临床检测,使得该方法在用于癌症诊断、预后和治疗方面显示出了希望。比色法依赖于颜色变化的目视观察或与DNA甲基化酶相关的吸收光谱的光谱测量,具有成本低、简单、可移植性和在某些情况下无需仪器的优点,但是检出限相对较高。荧光法检测DNA甲基化酶活性的检测过程简单,检出限相对理想,但其复杂的光学性能以及昂贵的仪器设备限制了其在生活中的应用。电化学法由于需要构建较复杂的反应电极材料而使得其在临床上受到了一定的限制。蛋白质纳米孔的检测方法不需要对DNA探针进行任何化学修饰,既方便又节约成本,减少了样品消耗,检出限相对较为理想,并且已经成功应用于人类血清样本。这类检测可能最终为常规DNA甲基化酶活性的检测和分子诊断打开大门,为疾病的管理和诊断带来新的前景。 作者:王家海、骆 乐 作者简介:王家海,博士,教授,硕士生导师/博士生导师,广州大学化学化工学院;分析化学专业;主要研究领域为“基于核算纳米结构为信号传导载体的纳米孔传感器”;在核酸探针和仿生纳米孔两方面开展了一系列分子识别的工作,也为将来进一步开展分析化学研究打下了坚实的基础,期间积累了多种前沿分析方法和技术:仿生纳米孔制备和检测;微纳米加工技术;核酸探针人工合成技术。参 考 文 献 [1] 陈晓娟,闫少春,邵国,等.人DNA甲基化转移酶的分类及其功能[J].包头医学院学报,2014,30(04):136-138.[2] Das PM, et al. DNA methylation and cancer[J]. Clin. Oncol. 2004 22: 4632-4642.[3] Jurkowska RZ, et al. Structure and function of mammalian DNA methyltransferases[J]. ChemBioChem 2011 12: 206-222.[4] Lee GE, et al. DNA methyltransferase 1-associated protein (dmap1) is a co-repressor that stimulates DNA methylation globally and locally at sites of double strand break repair[J]. Biol. Chem. 2010 285: 37630-37640.[5] Liu SN, et al. Assay Methods of DNA Methylation and Their Applications in Cancer Diagnosis and Therapy[J]. Chinese J.Anal. Chem. 2011 39: 1451-1458.[6] Boye E, et al. Quantification of dam methyltransferase in Escherichia coli[J]. Bacteriol. 1992 174: 1682-1685.[7] Eads CA, et al. CpG island hypermethylation in human colorectal tumors is not associated with DNA methyltransferase overexpression[J]. Cancer Res. 1999 59: 2302-2306.[8] Bergerat A, et al. Allosteric and catalytic binding of s-adenosylmethionine to escherichia coli DNA adenine methyltransferase monitored by 3H NMR[J]. Proc. Natl. Acad. Sci. U. S. A. 1991 88: 6394-6397.[9] Fraga MF, et al. Rapid quantification of DNA methylation by high performance capillary electrophoresis[J]. Electrophoresis 2000 21: 2990-2994.[10] Yokochi T, et al. DMB (dnmt-magnetic beads) assay: measuring DNA methyltransferase activity in vitro[J]. Methods Mol. Biol. 2004 287: 285-296.[11] Adams RLP, et al. Microassay for DNA methyltransferase[J]. Biochem. Bioph. Methods 1991 22: 19-22.[12] Jurkowska RZ, et al. DNA methyltransferase assays[J]. Methods Mol. Biol. 2011 791: 157-177.[13] Pradhan S, et al. Recombinant human DNA (cytosine-5) methyltransferase [J]. Biol. Chem. 1999 274: 33002-33010.[14] Herman JG, et al. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands[J]. Proc. Natl. Acad. Sci. U. S. A. 1996 93: 9821-9826.[15] Kattenhorn, L. M. Korbel, G. A. Kessler, B. M. Spooner, E. Ploegh, H. L. Mol. Cell 2005, 19, 547−557.[16] Mosammaparast, N. Shi, Y. Annu. Rev. Biochem. 2010, 79, 155−179.[17] Barglow, K. T. Cravatt, B. F. Angew. Chem., Int. Ed. 2006, 45, 7408−7411.[18] Wu Z, et al. Activity-based DNA-gold nanoparticle probe as colorimetric biosensor for DNA methyltransferase/glycosylase assay[J]. Anal. Chem. 2013 85: 4376-4383.[19] Zhu, C. Wen, Y. Peng, H. Long, Y. He, Y. Huang, Q. Li, D. Fan, C. Anal. Bioanal. Chem. 2011, 399, 3459−3464.[20] Chen, F. Zhao, Y. Analyst 2013, 138, 284−289.[21] Xing XW, et al. Sensitive detection of DNA methyltransferase activity based on exonuclease-mediated target recycling[J]. Anal. Chem. 2014 86: 11269-11274.[22] Wu, H. Liu, S. Jiang, J. Shen, G. Yu, R. Chem. Commun. 2012, 48, 6280−6282[23] Wang, M. Xu, Z. Chen, L. Yin, H. Ai, S. Anal. Chem. 2012, 84, 9072−9078[24] Deng H, et al. Highly sensitive electrochemical methyltransferase activity assay[J]. Anal. Chem. 2014 86: 2117-2123.[25] Howorka, S. Siwy, Z. Nanopore Analytics: Sensing of Single Molecules. Chem. Soc. Rev. 2009, 38, 2360−2384.[26] Song, L. Hobaugh, M. R. Shustak, C. Cheley, S. Bayley, H. Gouaux, J. E. Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore. Science 1996, 274, 1859−1865.[27] Lin, L. Yan, J. Li, J. Small-Molecule Triggered Cascade Enzymatic Catalysis in Hour-Glass Shaped Nanochannel Reactor for Glucose Monitoring. Anal. Chem. 2014, 86, 10546−10551.[28] Li, J. Yan, H. Wang, K. Tan, W. Zhou, X. Anal. Chem. 2007, 79, 1050−1056.[29] Wood, R. J. Maynard-Smith, M. D. Robinson, V. L. Oyston, P. C. F. Titball, R. W. Roach, P. L. PLoS One 2007, 2, e801−e801.[30] Wood, R. J. McKelvie, J. C. Maynard-Smith, M. D. Roach, P. L. Nucleic Acids Res. 2010, 38, e107−e107.[31] Jinghong Li, et al. Nanopore-based, label-free, and real-time monitoring assay for DNA methyltransferase activity and inhibition[J]. Anal. Chem. 2017 89: 13252−13260.
  • NAR | 许伟团队揭示BAF155蛋白的精氨酸甲基化修饰水平影响恶性肿瘤转移的新机制
    蛋白质精氨酸甲基化修饰是一类由精氨酸甲基转移酶(Arginine methyltransferases, PRMTs)介导的翻译后修饰作用。PRMTs不仅能够通过甲基化修饰组蛋白上特定位点的精氨酸来调控下游靶基因的转录活性,还参与修饰了多种非组蛋白类作用底物,以此来影响RNA剪接、蛋白质翻译、细胞周期等一系列细胞生物学行为。近年来,越来越多的证据表明蛋白质精氨酸甲基化水平的失调与恶性肿瘤的发生、发展密切相关。因此,PRMTs作为潜在的肿瘤治疗靶点,逐渐引起了全球科学家的关注。2021年11月19日,威斯康星大学麦迪逊分校医学院许伟教授团队在Nucleic Acid Research上发表题为BAF155 methylation drives metastasis by hijacking super-enhancers and subverting anti-tumor immunity的研究成果。该研究发现,精氨酸甲基化修饰的BAF155蛋白可以通过操纵增强子、破坏机体的抗肿瘤免疫能力,从而促进恶性肿瘤的转移 。BAF155是染色质重组复合物SWI/SNF的重要亚单位之一。2014年,许伟课题组在Cancer Cell发文,首次证实了PRMT4(又称CARM1)能够通过甲基化修饰BAF155蛋白第1064位精氨酸,起到促进三阴性乳腺癌转移的作用【1】。近日,该课题组以基因编辑的乳腺癌细胞系与小鼠模型为基础,结合多组学技术揭示了me-BAF155促进乳腺癌转移的内在分子机制。超级增强子(Super-enhancers, SEs)是基因组中大量增强子富集的转录调控区域。在转录过程中,通过富集多种转录因子和辅因子(BRD4等)来大幅度激活下游靶基因的转录活性。本研究中,作者采用ChIP-seq技术对me-BAF155的基因组结合位点进行全局定位分析,发现me-BAF155和BRD4在SEs处共定位,以此调节关键癌基因的表达水平。CARM1抑制剂(CARM1i)的处理,能够使得me-BAF155和BRD4从SE上解离,减少SE数量,激活干扰素α/γ通路,增强宿主免疫反应,起到抑制肿瘤生长和转移的治疗效果。最后,作者采用VERSA技术分离循环肿瘤细胞,证实me-BAF155在高转移特性的三阴性乳腺癌患者的循环肿瘤细胞中呈稳定、持续的强阳性表达(图1)。该研究首次揭示了me-BAF155在促进恶性肿瘤转移中具有双重作用:通过招募BRD4激活增强子依赖的癌基因转录活性;通过抑制干扰素α/γ通路以削弱宿主免疫反应。尽管CARM1抑制剂具有较低的细胞毒性,但是在体外依然能够显著抑制三阴性乳腺癌细胞的迁移,在体内显著抑制肿瘤生长和转移。因此,作者提出CARM1抑制剂有望被开发成为单独使用的抗癌药物,或与其他治疗药物(如免疫治疗)联合使用,用于治疗转移性恶性肿瘤。另外,相较于现有的CARM1抑制剂,开发me-BAF155(R1064)靶点特异性的小分子抑制剂,有望产生抑癌效果更好、副作用更少的新型抗肿瘤药物。
  • 担心农残标准不合格?甲胺磷、甲基对硫磷等高毒农残标准现状
    目前我国农产品农药残留现状,可以用三句话来概括,即近年不断好转,总体现状较好,但仍存在隐患。具体来说,一是全国每年3-5次的农产品质量安全例行监测显示逐年好转和大为改善的结果,不仅表现于农药残留超标率逐年持续下降,已从十年前的超过50%到目前的10%以下;而且表现在残留检出值也是明显降低,十年前检出超过1 mg/kg农药残留量的蔬菜数量较多,但现已很少见,仅偶有检出超过1 mg/kg的。二是目前农产品农药残留监测合格率总体较高,如稻米和水果高达98%以上,蔬菜和茶叶也达95%以上。 三是目前农药残留状况尚不稳定,仍然存在着一些风险隐患,如南方地区或其他地区的夏季由于病虫害发生重、农药使用量大、易造成农产品农药残留超标,又如在设施反季节栽培情况下由于农药用量大并且不易降解、也易引起农药残留超标,还有随着国内外残留限量标准的提高或监测农药种类的增加、原来不超标的农产品变成了超标;特别是由于我国农业生产的产业规模太小,有众多千家万户的农民分散生产和经营,加上生产技术较为落后,基地准出和市场准入难以真正做到,造成监管更加困难。 同时,人们往往喜欢比较我国与欧美发达国家的标准。在农药残留标准数量方面,由于欧美农药管理历史长,我国农药残留的标准数量相对还比较少,因此,加快制定和完善农药残留标准是十分重要的工作。但有一点要明白,在标准的水平方面,很难比较各国残留标准的高低。从技术层面讲,各国的农业生产、农药使用情况和食物结构等不同,因此,残留标准会存在一定差异。从管理层面讲,尽管制定残留标准的主要目的是为了确保食品安全,但现在各国越来越将农药残留作为农产品国际贸易的技术壁垒,必要时进而用作政治筹码。各国农药残留标准差异还受以下几个因素的影响。一是对于本国不生产不使用的农药,往往制定最严格的标准,而本国使用的农药特别是在出口农产品上使用的农药,残留标准在安全范围内尽可能松。如美国、欧盟和日本对本国没有登记使用的农药按照一律限量标准(即0.01~0.05mg/kg)执行,而这个浓度许多发展中国家的仪器都难以检测;但是在本国登记使用的农药,即使农药毒性高,其标准却松。如美国规定高毒农药甲胺磷在芹菜上的标准为1mg/kg,花椰菜上为0.5mg/kg,日本规定芹菜上为5mg/kg,花椰菜上为1mg/kg。 二是本国没有或主要依靠进口的作物上的标准严。如氯虫苯甲酰胺是个新杀虫剂,欧盟在葡萄上的标准为1mg/kg,而在大米等粮谷上却为0.01mg/kg,茶叶上为0.02mg/kg,按理葡萄可鲜食,标准应该更高,但葡萄是欧洲的优势作物,因此制定的标准松;再如常用的杀菌剂百菌清,欧盟在直接食用的苹果、梨上标准为1mg/kg,而在大米等粮谷上却为0.01mg/kg,在茶叶上为0.1mg/kg。 三是同一作物,各国标准也不同,如安全性不很高的杀菌剂克菌丹在稻谷中的残留标准,日本是5mg/kg,欧盟为0.02mg/kg,相差100倍;又如高毒农药甲基对硫磷,日本为1mg/kg,欧盟为0.02mg/kg,相差50倍。 为了协调和统一残留标准,国际食品法典委员会负责制定农药残留国际标准,但即使有国际残留标准,大部分发达国家都执行自己的本国标准,而绝大部分发展中国家因为制定残留标准能力弱,往往只能执行国际标准。 我国是国际食品法典农药残留标准委员会的主席国,因此,我国的农药残留标准尽可能与国际食品法典标准(而不是欧美日标准)接轨,有的标准比发达国家低,但有的标准比发达国家高。 如新农药甲氧虫酰肼我国在甘蓝中的标准为2mg/kg,而美国和日本的为7mg/kg;马拉 硫磷是老农药,我国在柑橘、苹果、菜豆中的标准为2mg/kg,在糙米中为1mg/kg,在萝卜中为0.5mg/kg,均严于美国8mg/kg的标准;嗪草酮在大豆中标准为0.05mg/kg,而美国的为0.3mg/kg、欧盟和日本为0.1mg/kg的标准;常用杀菌剂噻菌灵我国在蘑菇中的标准为5mg/kg,美国为40mg/kg、欧盟10mg/kg、日本60mg/kg,分别比他们严格8、2、和12倍。 我国制定农药残留标准主要考虑安全,很少涉及贸易保护问题。由此可知,不管各国残留标准水平是否存在差异,残留标准都是根据安全风险评价而制定的,只要符合残留标准,农产品是安全的,不能用别国的标准来判断是否存在安全,不能用一国标准否定别国的标准,这缺乏科学性。因为农药残留标准是不仅仅根据安全风险评估结果来制定,也综合考虑产业发展、国际贸易等各方面因素。 如果不能确定或者过分担心农药残留标准不合格,还可以自行进行检测。 BePure专注于标准物质的研发和生产已有20多年,对于农药残留检测有着丰富的经验,满足国内检测实验室在农残领域的要求。配套的营运中心和售前售后团队保证产品品质和服务可靠快速。现在是很多政府实验室、制药企业、第三方机构和科研单位“指定供应商”。

异甲基硫相关的仪器

  • GASTEC快速气体检测管无论何时由于不用分析仪器和化学药剂,省略了测量前的准备工作,无论何时都可以进行测定。无论何地极为小巧便于携带,只要有微量的空气就可以进行测定,最适合于现场测定。无论何人测定的操作非常简单,无论专业人士或非专业人士。多种气体GASTEC快速气体检测管可以检测多达300余种气体。检测快速测定的结果几分钟就可得到,可以立即转入下一步操作。过程安全日本GASTEC快速气体检测管不用电源,热源,不产生火花,即使有易燃易爆的气体存在,也可以确保操作安全。选型指南型号被测物质分子式可检测范围 ppm191丙烯腈CH2:CHCN2-360191L0.1-18192甲基丙烯腈CH2:C(CH3)CN0.2-321932-戊烯腈CH3CH2CH:CHCN0.5-15.0230H甲基碘CH3I100-348002300.5-108231硫酰氟SO2F21-20
    留言咨询
  • 上海那艾实验仪器设备[那艾仪器厂家]网站 全国送货厂家一手货! 品质保证!实验仪器非电子产品,使用效率和售后服务很重要。我们同品质比价格,同价格比效率,同效率比售后。设备仪器属于精密设备 客户订单录档案 免费1年质量保质,任何问题提供配件保养维护上海那艾仪器注以实验仪器设计、研发,生产,销售为核心的仪器企业,目热卖销售生产有一体化蒸馏仪,中药二氧化硫蒸馏仪,COD消解仪,高氯COD消解仪,硫化物酸化吹气仪,全自动液液萃取仪,挥发油测定仪等等。智能蒸馏仪采用目前全新的远红外加热方法,具有热效率高、寿命长、起温和降温速度快、加热时间和加热功率可调等优点。仪器可外接循环水冷却装置。整个系统简洁、安装维护方便、使用方便,节能环保。广泛适用于环境监测、环保、疾控、水产、供排水、高校、科研院所、厂矿企业等各类化学实验室需要蒸馏处理的场所,如样品中的挥发酚、氰化、氨氮、凯氏氮等项目的蒸馏实验。 主要特征1、仪器机身采用框架一体式设计,稳固牢靠,主体采用1毫米厚度的品牌冷轧板配合静电粉末涂装,更加耐磨、耐腐蚀;2、从空开到触点,继电保护器到按钮开关等,选用正泰/德力西或同级别品牌电气,保证仪器品质和的使用寿命;3、控制模块采用PLC控制,性能强劲稳定;5寸液晶触摸屏反应灵敏,设置方便;4、加热单元采用远红外陶瓷加热碗加热,贴合度高,效率更高,更节能,同时具备防水防干烧功能;5、一次可同时对1-6个样品进行蒸馏,大大提高了工作效率,每个加热单元都可独立控制加热功率0-500w可调,可以预设加热时间;6、系统内部自带微沸模式,设定时间到点自动切换微沸模式;7、自带两路样品测温,能高精度实时监控烧瓶内样品的实时温度(可升级六路)8、特殊定制异形蒸馏冷凝管,冷凝效果好,标配专属冷水机;可以一键自动回流,冷凝水自动排空,防止长期不使用滋生细菌;9、自带冷凝管路清洗功能,实验结束后,可以针对馏出液管路进行一键反向冲洗;10、系统内自带说明书和服务中心二维码,手机扫码自动查看电子说明书和一键连接服务中心; ☆11、可升级6路氮气吹扫,能用于发泡样品蒸馏,也可实现针对食品中二氧化硫残留的蒸馏实验;☆12、可升级6路夹管阀实现每一路的防止过量蒸馏保护。适用标准GB/T 5750.5-2006 生活饮用水标准检验方法 无机非金属指标 氰化物/挥发酚 GB 8538-2016食品安全国家标准 饮用天然矿泉水检验方法 HJ 1191-2021 水质 叠氮化物的测定分光光度法 HJ 537-2009 水质 氨氮的测定 蒸馏-中和滴定法 HJ 535-2009 水质氨氮的测定 纳氏试剂分光光度法HJ 536-2009 水质氨氮的测定 水杨酸分光光度法HJ 484-2009 水质 氰化物的测定 容量法和分光光度法 HJ 503-2009 水质 挥发酚的测定 4-氨基安替比林分光光度法 HJ 745-2015 土壤 氰化物和总氰化物的测定 分光光度法 HJ 833-2017 土壤和沉积物 硫化物的测定 亚甲基蓝分光光度法 HJ 717-2014 土壤质量 全氮的测定 凯氏法产品参数型号NAI-ZLY-6D 控制系统 PLC;5寸触摸屏测温功能两路测温测温精度±1℃升温时间5-8分钟温度控制功率调节,单孔单控加热功率0-500W可调蒸馏瓶500ml*6个收集瓶250ml*6个漏电保护有 清洗功能有冷凝水排空有总功率3200W电 源AC 220V,50Hz样品架6位蒸馏瓶样品架一副
    留言咨询
  • 上海那艾实验仪器设备[那艾仪器厂家]网站 全国送货厂家一手货! 品质保证!实验仪器非电子产品,使用效率和售后服务很重要。我们同品质比价格,同价格比效率,同效率比售后。设备仪器属于精密设备 客户订单录档案 免费1年质量保质,任何问题提供配件保养维护上海那艾仪器专注以实验仪器设计、研发,生产,销售为核心的仪器企业,目前销售生产有一体化蒸馏仪,中药二氧化硫蒸馏仪,COD消解仪,高氯COD消解仪,硫化物酸化吹气仪,全自动液液萃取仪,挥发油测定仪等等。全自动硫化物酸化吹气仪是我公司根据《HJ 1226-2021 水质硫化物的测定 亚甲基蓝分光光度法》“酸化-吹气-吸收”法量身定做的一款专门用于检测水中硫化物的前处理仪器。该仪器采用自动加酸、自动氮吹时间控制、酸化吸收等一体化设计,一次可处理1-6组样品。每个单元采用独立的转子流量计控制氮气流速;PID加热控温程序,自动升温至设定温度,缺水自动报警,自动补水;大屏幕液晶触摸屏操作等程序实现了对水质硫化物测定的智能预处理。适用标准HJ 1226—2021水质 硫化物的测定-亚甲基蓝分光光度法HJ/T 60-2000 水质硫化物的测定 碘量法HJ 833-2017 土壤和沉积物 硫化物的测定 亚甲蓝分光光度法(水浴)GB/T 11941-1989 水源水中硫化物卫生检验标准方法主要特征1、仪器机身采用框架一体式设计,稳固牢靠,主体采用1毫米厚度的品牌冷轧板配合静电粉末涂装,更加耐磨、耐腐蚀;2、从空开到触点,继电保护器到按钮开关等,选用正泰/德力西或同级别品牌电气,保证仪器品质和的使用寿命;3、PLC控制性能强劲稳定,7寸触控屏一键即达;创新采用平行横排布局方式,操作便捷直观;☆4、采用恒温内循环水浴加热方式,PID控温程序温差在±1℃,自动水位控制,自动补水,缺水自动报警;☆5、设计了加酸瓶塞摆放架,方便用户加酸时的瓶塞摆放,不易遗失,安全便捷;☆5、通过自动加酸模块,实现全自动闭环加酸进样,实验环节更加安全简单;☆6、主机设有可方便外接氮气源的专用接口,系统内设有过压保护系统;每一路都配置稳压阀,保证氮气流量稳定且节约氮气;7、每个样品的氮气流量独立控制,流速控制范围应在0.1-1L/min,符合国标范围;8、每路均内置氮气限流通断阀,可设定吹气时间,酸化完成氮气可自动切断,节约氮气保护样品;9、盐酸入口、气体进口、出口三口一体且相互独立,操作互不干扰;10、垂直加酸,加酸单元与反应瓶采用磨口垂直连接;加酸单元的调节旋钮采用聚四氟乙烯材质防止酸碱液体腐蚀;☆11、系统预设两种工作模式,可以满足水浴和非水浴运行状态;12、系统内自带说明书和服务中心二维码,手机扫码自动查看电子说明书和一键链接服务中心。产品参数型号NAI-LHW-6T控制系统PLC;7寸触控屏工作模式两种(水浴和非水浴)样品数量6通道设计,可一次性处理1-6个样品样品反应瓶规格500ml三口反应瓶加热方式循环水浴加热加热功率2000W控温范围室温~99.9℃控温精度实际水温与设计水温温差≤±1℃水浴控制水位自动控制,缺水自动补水,一键自动排空 加酸控制 可通过液晶触摸屏实现自动加酸进样氮气控制浮子流量计,流速范围0.1-1L/Min,可定时通断氮气保护有过压保护;每路独立限流通断阀节省氮气漏电保护功能有电源220V;50hz
    留言咨询

异甲基硫相关的耗材

异甲基硫相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制