苄基三苄基吡喃

仪器信息网苄基三苄基吡喃专题为您提供2024年最新苄基三苄基吡喃价格报价、厂家品牌的相关信息, 包括苄基三苄基吡喃参数、型号等,不管是国产,还是进口品牌的苄基三苄基吡喃您都可以在这里找到。 除此之外,仪器信息网还免费为您整合苄基三苄基吡喃相关的耗材配件、试剂标物,还有苄基三苄基吡喃相关的最新资讯、资料,以及苄基三苄基吡喃相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

苄基三苄基吡喃相关的资料

苄基三苄基吡喃相关的论坛

  • ZetasizerNano软件报告模板的编辑和保存

    ZetasizerNano软件报告模板的编辑和保存

    [align=center][size=20px]Zetasizer[/size][size=20px] [/size][size=20px]N[/size][size=20px]ano[/size][size=20px]软件报告[/size][size=20px]模板[/size][size=20px]的[/size][size=20px]编辑[/size][size=20px]和保存[/size][/align][align=center][/align][align=right][size=16px]作者:[/size][size=16px]MP[/size][size=16px]_Sherry[/size][/align][align=right][/align][align=left]马尔文帕纳科(原马尔文)Zetasizer Nano系列是非常受欢迎的纳米粒度电位仪,面世二十余年有广大的使用群体。该系列是利用动态光散射技术和电泳光散射技术高精度测量纳米级颗粒粒度及其Zeta电位的先进分析仪器。广泛应用于生命科学、生物制药、纳米材料、油漆、油墨和涂料、食品和饮料、给药系统及科学研究等需要分析颗粒或分子大小以及Zeta电位的应用领域。[/align][align=left]软件为客户设计了通用的报告模板,在日常分析过程中,可以根据实际的需要,方便地运用Nano软件来创建个性化的分析报告。下面将详细介绍如何编辑并且保存报告模板:[/align]1. 打开软件报告编辑器,选择主菜单上Tools-Report Designer[img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211291546077634_9209_3895212_3.png[/img]2. 打开一个现有的报告模板,点击Open图标,跳出模板选择对话框,我们的模板文件必须保存在Malvern Instruments-Zetasizer Software下的Pages文件夹(具体的位置请在电脑中搜索此文件夹),按照所需的模板进行选择,以下为最常用的光强分布粒径报告模板Intensity PSD(M)为例。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211291546083257_2654_3895212_3.png[/img][/align][align=center][/align][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211291546081556_6199_3895212_3.png[/img][align=left]3. 在现有模板上进行修改。同一个模板有两种显示模式,Screen layout屏幕布局和Page Layout页面布局,前者是软件上该模板的显示内容,后者是打印报告时的显示内容,需要在哪个布局上显示修改,就在切换到哪个布局上进行编辑。[img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211291546087381_7474_3895212_3.png[/img][/align][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211291546083872_5570_3895212_3.png[/img]对报告模板的修改通常是添加新的参数或者文本。[img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211291546089815_3306_3895212_3.png[/img]4. 注意,修改完成后,将模板另存为新的模板文件,不要直接点击Save保存,标准模板是不允许直接修改保存的。保存时有两个地方需要输入新的模板名字,一是报告编辑器左上角文本框内;另一个是File-Save As另存为。 两个地方输入的名字要是相同的。[img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211291546087198_1436_3895212_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211291546088350_9775_3895212_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211291546089573_9036_3895212_3.png[/img]5. 新模板的选择:将报告编辑器和Nano软件关闭,重新打开Nano软件,在Configure中Report Pages找到新存的模板名称,选中画勾,就能在Nano软件的报告选项卡上显示了。[img]https://ng1.17img.cn/bbsfiles/images/2022/11/202211291546095194_2033_3895212_3.png[/img]需要看该报告的结果或者打印该页报告,就将选中的记录切换到该报告卡后查看或者打印。

苄基三苄基吡喃相关的方案

苄基三苄基吡喃相关的资讯

  • “基因编辑婴儿”案贺建奎已释放,曾获刑三年
    “基因编辑婴儿”案被告人、南方科技大学原副教授贺建奎近期已刑满释放。4月7日,健康时报接通了贺建奎的电话,对方确认为本人接听,但表示不方便通话。贺建奎曾入选《Nature》年度十大科学人物2018年11月26日,贺建奎因“基因编辑婴儿”事件引发轩然大波。业内专家对实验的动机和必要性、实验过程的合规性、实验影响的不可控性都提出质疑。2019年1月21日,南方科技大学研究决定解除与贺建奎的劳动合同关系,终止其在校内一切教学科研活动。2019年12月30日,“基因编辑婴儿”案在深圳市南山区人民法院一审公开宣判。贺建奎等3名被告人因共同非法实施以生殖为目的的人类胚胎基因编辑和生殖医疗活动,构成非法行医罪,分别被依法追究刑事责任。法院依法判处被告人贺建奎有期徒刑三年,并处罚金人民币三百万元。贺建奎简介贺建奎,男,原南方科技大学副教授,主要研究实验室用物理,统计和信息学的交叉技术来研究复杂的生物系统。研究集中于免疫组库测序,个体化医疗,生物信息学和系统生物学。贺建奎拥有多学科交叉的背景,并在基因测序仪研究, CRISPR基因编辑,生物信息学等多个领域取得研究突破。他的实验室将高通量测序应用到免疫细胞受体库的多样性研究。2018年11月26日,贺建奎“基因编辑婴儿”事件引发轩然大波。业内专家对实验的动机和必要性、实验过程的合规性、实验影响的不可控性提出质疑。2018年12月19日,贺建奎入选《Nature》年度十大科学人物。2019年1月21日,从广东省“基因编辑婴儿事件”调查组获悉,现已初步查明,该事件系南方科技大学副教授贺建奎为追逐个人名利,自筹资金,蓄意逃避监管,私自组织有关人员,实施国家明令禁止的以生殖为目的的人类胚胎基因编辑活动。2019年1月21日,南方科技大学研究决定解除与贺建奎的劳动合同关系,终止其在校内一切教学科研活动。 2月12日,斯坦福大学正在按照程序,对校内与贺建奎有关的研究人员进行审查。 [4] 2019年2月,开展基因编辑婴儿实验的原南方科技大学副教授贺建奎的一篇研究论文被撤稿。 2019年4月18日,上榜美国《时代》杂志(Time)2019年度全球百位最具影响力人物榜单。 2019年12月30日,“基因编辑婴儿”案在深圳市南山区人民法院一审公开宣判,贺建奎被依法判处有期徒刑三年,并处罚金人民币三百万元。
  • 专家称我国基因组编辑技术须破壁前行
    中国科协第114期新观点新学说学术沙龙专家称我国基因组编辑技术须破壁前行  本报讯(实习生曾云 本报记者潘希)近日,中国科协第114期新观点新学说学术沙龙以“基因组编辑新技术的兴起将带来的冲击”为主题,邀请相关专家讨论了基因组编辑技术在国内外的现状与发展。  近几年,由于CRISPR(规律成簇间隔短回文重复)等工具的不断问世,基因组编辑技术迎来了新的浪潮。“CRISPR能完成90%的工作,但核心的专利仍掌握在西方人手中。”中科院动物所研究员王皓毅直言,一定要开发新的工具,寻找比CRISPR效率更高的酶。  “国内科学家要协调合作,思考如何在坚持国际合作的同时,又保持国内优势。”中科院院士、华大基因研究院理事长杨焕明表示,同时应该加强科普避免重蹈转基因的覆辙,也不要在基因组编辑研究中一哄而上。  在杨焕明看来,现在可以考虑借CRISPR的东风讨论生命科学的服务问题。  目前,我国也处在CRISPR研究的前沿。例如在植物研究领域,中科院遗传与发育所运用TALEN和CRISPR技术在六倍体小麦中实现了3个同源等位基因的编辑,解决了小麦白粉病广谱持久抗性世界性难题,得到国际上的高度评价。  不过,专家也列出了目前基因组编辑技术面临的一些技术难题,例如如何提高敲除效率、减少脱靶效应、提高同源重组效率、实现基因定点替换或插入等。  华南农业大学教授刘耀光认为,对基因的定点替换以及插入等基因靶向修饰来说,技术上还有瓶颈,现在能够做到替换的例子很少。对植物来说,仍然需要提高效率达到实用性。“希望在不久的将来有实用突破”。  在讨论中,知识产权等问题也成为专家对国内基因组编辑发展的担忧。中科院遗传发育所研究员高彩霞表示,技术的推广需要强大的知识产权支撑,应分析哪些能做哪些不能做,利用自身优势加快推广速度。  “可以通过合作把专利的渠道拓宽。” 大北农生物科技有限公司专家杨进孝认为,企业要通过服务的方式参与进来,加强研究机构与企业的合作,促进产品落地。  杨焕明表示,基因组编辑应用的大门已经打开,国内要创造成熟的条件来推动我国基因组编辑技术的研究与推广。
  • 基因编辑先驱杜德纳给“基因魔剪”安“刹车”:避免伤及无辜
    p   受热捧的基因编辑技术CRISPR-Cas9并非完美,它犹如一辆没有刹车装置的汽车,可能失控伤及无辜,即产生脱靶效应——编辑了不该编辑的基因片段。从去年12月开始,科学家们争先恐后地开启为CRISPR安上“刹车”的研究,他们试图从自然界,找出这个“刹车”。 /p p   美国生物学家、最先提出CRISPR-Cas9可以进行基因编辑的詹妮弗· 杜德纳(Jennifer Doudna)也是其中的一员。当地时间8月24日,她与同事的相关论文发表在顶级期刊《细胞》(Cell)杂志,揭示了两个可以为CRISPR的基因编辑画上停止键的蛋白质是如何发挥作用的。此外,这两个抑制蛋白具有广谱性,也就是说可以适用不同的CRISPR系统。 /p p   CRISPR系统应用于基因编辑,是科学家从细菌身上取得的“经”。为了对付“杀手”噬菌体,细菌的免疫系统经过漫长的时间,进化出CRISPR系统。一旦有噬菌体入侵细菌,细菌的免疫系统会抓取一段噬菌体的DNA作为备份。等到下一次噬菌体再次来袭,细菌就可以根据备份,做出识别。识别成功时,细菌的Cas9蛋白会切断噬菌体的DNA。这套系统为人类所用时,可以高效地对目标基因进行切割、添入等编辑。由于其高效,在业界有“基因魔剪”之称。 /p p   尽管CRISPR系统被广泛验证其有效性,成为全球各大生物实验室的宠儿,也有一些人体临床试验已经开展。但CRISPR的脱靶性问题尚未得到完全解决。一旦CRISPR系统进入工作模式,科学家们此前一直没有办法干预其过程,只能任其操作至自然结束,其中可能会发生错误编辑非目标基因的情况,带来安全性隐患。 /p p   可喜的是,科学家们发现,求生的本能同样让噬菌体想出对策,进化出了针对细菌CRISPR系统的抑制蛋白,用来逃避细菌免疫系统的攻击。这些抑制蛋白被称为ACR蛋白。 /p p   杜德纳与同事此次研究的AcrIIC1 和AcrIIC3便是其中两种。 /p p   AcrIIC1 和AcrIIC3是通过什么方式来对付难缠的CRISPR系统呢?杜德纳和同事发现,当AcrIIC1和Cas9蛋白相遇时,AcrIIC1会紧紧结合Cas9用来抓取DNA的位置,从而使得Cas9无法捣乱。打个比方,这相当于给Cas9这把锋利的剪刀套上了外壳,无法再做出“剪”的行为。 /p p   不仅如此,AcrIIC1可以抑制多种Cas9蛋白,具有广谱性。 /p p   相比之下,AcrIIC3能发挥作用的范围要小,只能抑制一种Cas9蛋白。而且,和AcrIIC1不同,AcrIIC3不结合Cas9蛋白,而是将两个Cas9蛋白拉拢在一起,改变它们的结构,从而使得Cas9对DNA无计可施。 /p p   值得一提的是,杜德纳并不是第一个发现 CRISPR系统“关闭开关”的人。 /p p   在2016年12月,来自加拿大多伦多大学和美国马萨诸塞大学的科学家们首次发现了自然界隐藏的这类“关闭开关”。但当时,科学家们还不清楚,这些抑制蛋白是如何发挥“关闭开关”作用的。 /p p   数个月后,来自不同国家的两个科研小组先后通过解析蛋白结构是什么样的,来揭示抑制蛋白防守CRISPR系统的机制。其中就包括哈尔滨工业大学教授黄志伟的课题组。但他们所解析的和杜德纳此次解析的都为不同种类的抑制蛋白。 /p p   不久的将来,科学家或许就能找到最合适的“关闭开关”,不由CRISPR系统任性,为其安全性“保驾护航”。 /p p /p

苄基三苄基吡喃相关的仪器

  • CRISPR-Cas9技术原理:  CRISPR(clustered,regularlyinterspaced,shortpalindromicrepeats)是一种来自细菌降解 入侵的病毒DNA或其他外源DNA的免疫机制。在细菌及古细菌中,CRISPR系统共分成3类,其中Ⅰ类和Ⅲ类需要多种CRISPR相关蛋白(Cas蛋白)共同发挥作用,而Ⅱ类系统只需要一种Cas蛋白即可,这为其能够广泛应用提供了便利条件。  目前,来自Streptococcuspyogenes的CRISPR-Cas9系统应用最为广泛。Cas9蛋白(含有两个核酸酶结构域),可以分别切割DNA两条单链。Cas9首先与crRNA及tracrRNA结合成复合物,然后通过PAM序列结合并侵入DNA,形成RNA-DNA复合结构,进而对目的DNA双链进行切割,使DNA双链断裂。  由于PAM序列结构简单(5' -NGG-3’),几乎可以在所有的基因中找到大量靶点,因此得到广泛的应用。CRISPR-Cas9系统已经成功应用于植物、细菌、酵母、鱼类及哺乳动物细胞,是目前高效的基因组编辑系统。CRISPR-Cas9技术优势:  1.效率高:可精确编辑基因组,敲除效率高  2.周期短:CRISPR-Cas9系统的构建和使用极为方便,极大降低了实验难度,缩短实验周期  3.高嵌合率,生殖遗传稳定;  4.多重编辑能力:可实现多个靶位点同时进行基因打靶;  5.可实现大片段DNA敲除、敲入、条件性敲除。武汉贝赛模式生物科技有限公司提供基因编辑(转基因、基因全敲、条件性敲除、基因敲入、点突变等)大小鼠模型,提供定制的基因编辑细胞系构建服务(基因敲除,点突变,基因敲入),进行动物相关实验(大小鼠净化、精子及胚胎保种等),提供模式动物繁殖供应和药物药效评价以及新药研发服务等。
    留言咨询
  • PRE双向可编程交流电源具备了“回收式电网模拟源”的能量回收功能和“可编程交流电源”高基波带宽功能及可编程功能,功率范围从15kVA~150kVA,并将部分输出指标提升至全新高度,使应用测试更加精准、便捷。 主要特点 ● 全功率回馈,真正双向,交直流四象限输出功能;● 谐波扩展至100次@50????/60????、25次@400????;● 输出电压可扩展至L-N/450Vac@40???? -70????,无需增加升压变压器;● 输出基波频率提升至5000????;● 恒功率曲线输出,无需设置高、低压档位;● 交流、直流、交直流输出模式;● 单相、三相(三相联动)、分相输出模式;● 可编程输出阻抗;● 兼容SCPI的RS-232, USB 和以太网接口。 关键特性 高功率密度 PRE具有极高的功率密度,体积、重量均是传统电源的1/6,移动、运输方便。同样占地面积可获得更大容量。 高精度 PRE可提供高达±0.025% F.S.精度的输出电压及±0.025% F.S.精度的负载调整率。PRE的双向特征不仅是无缝回馈,它能在并网逆变器、储能变流器规范测试中证明设备符合相关标准,配合其可编程内阻功能,真正模拟发电机内阻、特别是中频(400 ????)、高频供电(1550 ????)时线缆传输阻抗对设备的影响。 一档恒定功率输出 普通的交流电源电压输出范围有两个档位,以提供要么高电压要么大电流。PRE系列设计了沿一个恒定功率曲线工作的独特的单电压范围。在L-N/167Vac时即可输出额定功率,这个工作状态范围可扩展至L-N/450Vac输出不中断。220Vac输出功率超过额定功率,PRE1530M可测试15kW设备。 直流输出功率不降额 普通交流可编程电源,在输出直流时,输出电流只有交流有效值的一半,PRE直流输出电流与交流有效值相同,使用户得到更多功率。 输出范围宽 PRE双向可编程交流电源无需增加外部升压变压器,输出电压高达L-N/0-450V,全面涵盖钢铁、石油、煤矿相关行业产品测试。 内置测试标准 满足IEC 61000-4-11/-13/-14/-27/-28测试标准,性能有更大提升。幅值动态响应时间达100us,相位精度达0.1°,谐波范围扩展至100次@50Hz/60Hz;25次@400Hz,含量高达40%。远远高于IEC 61000-4及MIL-HDBK-704中有关谐波测试要求,在满足法规要求的条件下探知产品设计边界。 内置多达30种典型谐波电压波形,方便用户一键调取。 技术参数 产品型号PRE1530MPRE1531PRE1532PRE1533PRE1534PRE1535PRE1536PRE1537PRE1538PRE1539输出模式交流、直流、交流+直流、直流+交流输出相数三相、单相交流输出 电压 额定范围(??_??????)L-N/0-300,L-L/0-520@全频率范围扩展范围(??_??????)①L-N/0-450,L-L/0-780设置分辨率(??)0.01精度±0.025% F.S.波形种类 正弦,三角波,方波,1%削波,2%削波,5%削波,10%削波,自定义直流分量(????)<20电压失真<0.3%@50Hz/60Hz;<1%@15Hz-400Hz;<2%@400Hz-5000Hz;<0.3%@15Hz-1600Hz(使用滤波附件);<1%@1600Hz-5000Hz(使用滤波附件)负载调整率±0.025% F.S.源调整率±0.01% F.S. @10%变化远端补偿自适应电压摆率AC>3.0V/μs频率 范围(????)15.00–5000.0设置分辨率(????)②0.01精度±0.01%相位 范围A = 0°, B = 240°, C = 120°(默认);可编程范围0°–359.9°精度±0.1°分辨率±0.1°谐波 次数100次@50????;100次@60????;25次@400????;含量③40%幅值误差±5%@设置值或基波值的0.1%@40次以下相位角范围0°-359.9°显示方式表格瞬态 编程 编程步数100步编程参数电压、频率、上升时间、平顶时间、相位上升时间范围100μs-10s平顶时间范围100μs-999s最小编程时间步长100μs编辑模式添加、在此前插入、删除执行 运行模式运行、停止、循环电流限制 范围(??)@三相306090120150180210240270300范围(??)@单相90180270360450540630720810900过流保护100%-105%@最长3秒峰值因数④1-6峰值电流(??)@三相75150225300375450525600675750峰值电流(??)@单相225450675900112513501575180020252250精度±0.25% F.S.输出阻抗⑤ 电阻(Ω)-10.0~+10.0电感(????)0~2.00直流输出 电压 范围(??)636设置分辨率(??)0.01输出精度±0.1%F.S.输出纹波(??_??????)⑥<0.15@(DC-300kHz)负载调整率±0.02%F.S.源调整率±0.01F.S.%@10%变化输出摆率DC>3.0V/μs电流 范围(??)90180270360450 540 630 720 810 900 测量参数 交流电压 范围(??_??????)L-N:0–600分辨率(??_??????)0.01精度±0.025% F.S.输出频率 范围(????)15–5000分辨率(????)0.01精度±0.01%交流电流 范围(??)1002003004005006007008009001000分辨率0.010.050.1精度±0.1% F.S.峰值电流 范围(??)4倍额定分辨率(??)0.01精度±2% F.S.峰值因数 范围1.00–6.00分辨率0.01精度±2.0% F.S.有功功率 范围(????)20406080100120140160180200分辨率(??)1精度±0.1% F.S.视在功率 范围(??????)20406080100120140160180200分辨率(????)1精度±0.1% F.S.功率因数 范围-1.00~+1.00分辨率0.01直流电压 范围(??)±1000分辨率(??)0.01精度±0.1% F.S.直流电流 范围(??)1002003004005006007008009001000分辨率(??)0.010.050.1精度±0.1% F.S.输入 接线方式三相四线 ABC+PE频率(????)47 - 63电压范围(??)⑦304 - 480每相电流(??)306090120150180210240270300输入峰值电流(??)< 1.5倍额定功率因数> 0.95效率> 0.86保护 保护⑧过流 截流@直流模式;断开@交流模式峰值过流 断开过功率 断开过容量 断开过压(设定1%-105%) 断开过温 断开过压或欠压 断开注解: ①:40????-70????范围内; ②:分辨率0.01????或当前设置值的0.01%,二者取数值较大值; ③:额定幅值300??_??????的40%,指总含量; ④:峰值因数指峰值电流与有效值的比值,标准正弦波典型值为1.414,最大允许值为6,但峰值不超过单机最大电流值,并非指额定值条件下的峰值因数; ⑤:稳态输出下的阻抗,且不超过输出最大值; ⑥:示波器交流融合并20MHz带宽限制; ⑦:可工作的范围,输出功率降额见“输入电压降额曲线”; ⑧:“过压或欠压”特指输入网侧过欠压。 规格型号型号输出路数额定功率 (??????)最大电压 (??_??????)三相最大电流 (??_??????)单相最大电流 (??_??????)最大电压 (??_????)最大电流 (??_????)外型PRE1530M三相154503090636904UPRE1530S三相154503090636904UPRE1531三相304506018063618030UPRE1532三相454509027063627030UPRE1533三相6045012036063636030UPRE1534三相7545015045063645030UPRE1535三相904501805406365402×30UPRE1536三相1054502106306366302×30UPRE1537三相1204502407206367202×30UPRE1538三相1354502708106368102×30UPRE1539三相1504503009006369002×30U
    留言咨询

苄基三苄基吡喃相关的耗材

  • 五氟苄基溴
    产品信息:五氟苄基溴 (PFBBr)适用于羧酸、酚类和磺酰胺类的电子捕获 GC 分析* 用于萃取烷化技术时,反应时间很短:~20 分钟*衍生物具有很高的 EC 敏感性,因而适于检测低水平脂肪酸*可分析沥青中的痕量有机物 订货信息:五氟苄基溴描述规格部件号数量PFBBr(五氟苄基溴)5gTS-582201/包
  • S-苄基氯化异硫脲
    SA02401338S-Benzylthiuronium Chloride OAS S-苄基氯化异硫脲1gPerkin Elmer 0240-1338Thermo 33835200
  • CRISPR/Cas9基因编辑试剂盒(质粒)
    技术背景CRISPR/Cas是一套最早在细菌中发现的由RNA引导的DNA内切酶系统。CRISPR/Cas9系统主要由gRNA(guide RNA)和Cas9蛋白两部分组成。针对目的基因,通过人工设计的gRNA来识别目的基因序列,并引导Cas9蛋白酶对特定区域DNA 双链进行有效切割,造成DNA双链的断裂,激起细胞以非同源末端连接或同源重组的方式进行修复,从而实现基因敲除。产品介绍Quick KO® 基因敲除试剂盒是一款专为科研用户定制研发的 all-in-one 即用型CRISPR基因敲除操作试剂盒。其内包含了CRISPR基因敲除所需的,从gRNA设计到获得敲除细胞株,完成实验的重要材料。在完成基因编辑实验的同时,大大提高科研效率。组分Quick-KO® PlasmidQuick-KO® gRNAOptimized SpCas9NC gRNACell Lysis BufffferBuffer ABuffer BValidity TestPCR Master Mix (2×)Control TemplateGenotyping Primer F1Genotyping Primer F2Genotyping Primer R1Genotyping Primer R2ddH2O产品优势1.提供的gRNAs均经过验证,保障敲除成功率 a.每一个出厂的基因敲除试剂盒都经过团队的技术验证,确保敲除效率 b.更高的敲除成功率,避免反复实验,节约实验成本 2.独有载体设计,无需自行构建,到手即用,高效便捷 细胞基因编辑实验流程: a.如已经掌握细胞各项实验参数,可以省去预实验部分,更快完成实验; b.独有载体设计,无需自行构建,提升实验效率; c.只需裂解少量细胞,无需提取和纯化DNA,节约细胞扩增和核酸提取的时间; d.Quick-KO® 采用Multi-gRNA表达策略,在工具细胞中均已验证高效
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制