硅油色谱固定液

仪器信息网硅油色谱固定液专题为您提供2024年最新硅油色谱固定液价格报价、厂家品牌的相关信息, 包括硅油色谱固定液参数、型号等,不管是国产,还是进口品牌的硅油色谱固定液您都可以在这里找到。 除此之外,仪器信息网还免费为您整合硅油色谱固定液相关的耗材配件、试剂标物,还有硅油色谱固定液相关的最新资讯、资料,以及硅油色谱固定液相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

硅油色谱固定液相关的资料

硅油色谱固定液相关的论坛

  • 【原创大赛】以工业硅油DC710为原料制备高纯度色谱固定相

    【原创大赛】以工业硅油DC710为原料制备高纯度色谱固定相

    [b]以工业硅油DC710为原料制备高纯度色谱固定相摘要:固定相是色谱分离的核心技术。作为[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相的聚硅氧烷需要有较高的分子量和较窄的分子量分布。如果固定相中低分子量的杂质较多,将导致固定相的热稳定性差、高温流失严重。本文以工业硅油为原料,提出以四氢呋喃为良溶剂、水为不良溶剂的沉淀分级方法,成功的将工业硅油中的低分子量杂质分离除去,获得了分子量高、分布窄的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相。将该固定相制备成填充柱进行评价,结果表明其热稳定性优于进口的色谱固定相OV-17,而分离选择性相似。1 引言[/b] 固定相是色谱分离的核心技术。聚硅氧烷是[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法使用最广泛的固定相材料。常见的聚硅氧烷有甲基聚硅氧烷(俗称甲基硅油)、苯基甲基聚硅氧烷(俗称苯甲基硅油)、氰丙基苯基-甲基聚硅氧烷、三氟丙基-甲基聚硅氧烷等。 国内外生产聚硅氧烷产品的厂家很多,产品型号和规格也各有特色。但是能够用作色谱固定相的产品却不多,性能优异的种类则更少。作为[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相,除了要有分离能力外,还要求有好的稳定性,一方面是化学稳定性,即不会与待测物发生任何不可逆的化学反应;另一方面是热稳定性,即高温下不挥发、不分解。普通的工业级硅油往往因为稳定性不够而无法用作[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相,这主要是因为工业硅油中一般含有小分子杂质和大量的低聚物。高温下这些杂质和低聚物逐渐挥发和分解,从而形成了基线漂移和噪音,使检测结果变差。虽然通过长时间的高温老化可以使低沸点组分流失的问题减轻,但是老化的代价是固定相总量的大量损失。经过这样的长时间高温老化处理后,实际使用时的固定相负载量(对于毛细管柱是液膜厚度)会显著低于制备色谱柱时的标称值。而专为色谱分析制备的聚硅氧烷一般都采用了独有的生产工艺,低聚物和小分子杂质很少,从而具有很好的高温稳定性,其代表产品主要有美国OV公司(Ohio ValleySpecialty Chemical Co.)的OV系列、美国色谱科公司(SupelcoInc.)的SP系列、美国通用电气公司(General Electric Co.)的SE系列等。上述进口聚硅氧烷固定相的热稳定都很好,例如甲基聚硅氧烷SE-30的最高使用温度达到300℃以上,苯基甲基聚硅氧烷OV-17的最高使用温度可达280~300℃。 国内的上海试剂厂也曾生产过聚硅氧烷类的色谱固定相,商品名为硅油I、硅油II等,目前仍在由国药集团销售。但由于生产技术不足,这些国产固定相的热稳定性普遍不太理想,最高使用温度只有200℃左右。正是由于国内技术的落后和国外大公司的技术垄断,导致色谱固定相价格昂贵。例如西格玛奥德里奇公司(Sigma-Aldrich)销售的OV-17固定相每25g售价高达8000余元。 苯甲基硅油是常见的工业产品,广泛用作导热油和扩散泵油,最具代表性的产品有美国道康宁公司(Dow Corning Co.)的DC710等,国内也有厂家生产同类产品。该类型的工业硅油具有与OV-17色谱固定相类似的分子结构和分离选择性,因此也有被用作色谱固定相的尝试。但是由于DC710的分子量较小且杂质较多,其耐热性不理想。即使是专供色谱使用DC710试剂,最高使用温度一般也只有220~250℃左右。 硅油的生产工艺较为复杂,想精确控制分子量不太容易。但是由于聚合物的分子量存在一个较宽的分布,既有高分子量的组分、又有低分子量的组分,因此我们可以通过高分子化学中特有的沉淀分级方法将工业硅油中低分子量组分和其他小分子杂质除去,从而实现纯化、获得分子量较高且分布较窄的高性能产品。.[b]2 实验2.1 原料[/b] 美国道康宁产DC710苯甲基硅油,上海国药产分析纯四氢呋喃,去离子水。[b]2.2 实验方法[/b] 称取DC710苯甲基硅油5.00g放入400mL高型烧杯中,加200mL四氢呋喃,磁力搅拌溶解。保持室温在25℃左右,向上述溶液中缓慢滴加纯水80mL,同时不断搅拌,得到乳浊液。加盖,继续搅拌30min,然后将乳浊液转入带塞的离心管中,以4000r/min的速度离心5min使两相分离。弃去上层液体,收集下层高分子相合并,加入10倍体积的四氢呋喃-水溶液(体积比2/1),加塞后充分振荡。再次离心分离,弃去上层液体,收集下层高分子相,再加入10倍体积的纯水洗涤一次。弃去水相,收集下层硅油,真空干燥得到产物3.55g,得率71%。 将上述产物按上述相同方法进行二次沉淀提纯,得产物2.46g,总得率49%。[b]2.3 产物表征[/b] 产物分子量和分子量分布用凝胶渗透色谱(GPC)测定,仪器为安捷伦1100色谱系统,色谱柱为安捷伦PLgel mixed-C(4.6mm*250mm),流动相为色谱纯四氢呋喃,流速0.350mL/min。分子量标样为单分散聚苯乙烯。 产物热稳定性用热重分析法表征,仪器为美国TA公司SDT Q-600综合热分析仪,高纯氮气保护下进行测定,升温速率为5℃/min。[b]2.4 产物的色谱分析性能评价[/b] 将产物制备成填充柱进行性能评价。将纯化产物用甲苯溶解涂覆到80~100目上试102(硅烷化)担体,负载量5%。均匀干燥后用真空抽吸法装填成1.5m*2mm(i.d.)的不锈钢柱。色谱柱通载气缓慢升温至260℃老化12小时后使用。 作为对比样的未纯化DC710和OV-17(英国CS公司产,上试厂分装)按同样方式制成色谱柱进行对照实验,其中DC710柱的老化温度为230℃。 所用色谱仪为山东瑞虹产SP7820,载气为高纯氢气,流速20mL/min。检测器为FID,灵敏度10[sup]9[/sup],氢气流速20mL/min,补充气为氮气,30mL/min,检测器温度为280℃。.[b]3 结果与讨论3.1 纯化前后的分子量和分子量分布对比[/b] 聚合物的溶解性依赖于其分子量,在一定条件下通常是高分子量的溶解度小、而低分子量的溶解度大。选择一个良溶剂将试样溶解,然后逐渐加入不良溶剂,则分子量大的物质优先沉淀、而分子量小的物质保留在溶液中。本方法用四氢呋喃作为良溶剂溶解苯甲基硅油,让后加入纯水作为不良溶剂进行沉淀,高分子量的聚合物优先沉淀,低聚物和小分子杂质留在溶液中,从而达到分离纯化的目的。分别将一次纯化和二次纯化的产物进行GPC测定,结果见图1,对比样DC710和OV-17的GPC结果也见图1,根据聚苯乙烯标样计算出各样品的评价分子量和分子量分布见表1。从测定可以看出,DC710的分子量较小且分布较宽,在低分子量一侧有明显的肩峰,说明含有较多的小分子杂质。经过一次沉淀提纯后,产物的分子量分布明显变窄、杂质的肩峰显著减小,说明沉淀纯化有很好的效果。与OV-17的GPC结构对比表明,一次沉淀提纯产物已经具有与色谱级OV-17接近的平均分子量和分子量分布。经过二次沉淀纯化之后,产物的分子量已经显著高于OV-17,分子量分布也显著更窄,杂质的肩峰也已经完全除去。上述结果都表明,本沉淀分离方法可以有效的获得分子量高且分布窄的硅氧烷聚合物。[align=center] [img=,303,223]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181702462024_1150_2204387_3.png[/img][/align][align=center][b]图1 纯化产物与对比样品的GPC分析[/b][/align][align=center] [/align][align=center][table][tr][td=4,1,106] [align=center][b]表1 纯化产物和对比样的平均分子量和分子量分布系数[/b][/align] [/td][/tr][tr][td=1,1,95] [align=center] [/align] [/td][td=1,1,95] [align=center]数均分子量[/align] [align=center]M[sub]n[/sub]/10[sup]3[/sup][/align] [/td][td=1,1,95] [align=center]重均分子量[/align] [align=center]M[sub]w[/sub]/10[sup]3[/sup][/align] [/td][td=1,1,106] [align=center]分子量分布系数[/align] [align=center]M[sub]w[/sub]/M[sub]n[/sub][/align] [/td][/tr][tr][td=1,1,95] [align=center]一次纯化产物[/align] [/td][td=1,1,95] [align=center]2.94[/align] [/td][td=1,1,95] [align=center]1.98[/align] [/td][td=1,1,106] [align=center]1.49[/align] [/td][/tr][tr][td=1,1,95] [align=center]二次纯化产物[/align] [/td][td=1,1,95] [align=center]3.35[/align] [/td][td=1,1,95] [align=center]2.47[/align] [/td][td=1,1,106] [align=center]1.35[/align] [/td][/tr][tr][td=1,1,95] [align=center]DC710[/align] [/td][td=1,1,95] [align=center]2.45[/align] [/td][td=1,1,95] [align=center]1.54[/align] [/td][td=1,1,106] [align=center]1.59[/align] [/td][/tr][tr][td=1,1,95] [align=center]OV-17[/align] [/td][td=1,1,95] [align=center]2.85[/align] [/td][td=1,1,95] [align=center]1.92[/align] [/td][td=1,1,106] [align=center]1.48[/align] [/td][/tr][/table][/align][b]3.2 纯化产物的热重分析[/b] 将二次纯化的产物与两个对比样在同样条件下进行了热重分析,结果见图2。三者的热失重温度和失重率有显著差异,这显著表明了分子量分布改变后耐热性能的差异。DC710的分子量分布最宽、低分子量杂质最多,因此在较低温度下就表现出明显的失重。色谱级的OV-17由于有更高的分子量和更窄的分子量分布,因此失重温度更高、失重量更少。若以失重2%作为固定相流失的指标,则OV-17达到280℃左右,比DC710高30℃以上。而二次纯化的产物由于分子量比OV-17更高、分布也更窄,相应的也具有更高失重温度。同样以失重2%作为指标,二次纯化产物的温度达到约295℃,比OV-17的热稳定性更好。[align=center][img=,303,230]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181702466568_157_2204387_3.png[/img][/align][align=center][b]图2纯化产物与对比样品的热重分析[/b][/align][b]3.3 固定相的热稳定性[/b] 通过FID基流大小和噪音大小来评价固定相的热稳定性。高温下固定相的流失是导致FID基流增加的直接原因,基流增加的同时也将引起基线噪音的响应增大。将制备的色谱柱在不同柱温下达到平衡,记录基流的大小和基线噪音的大小,结果分别见图3和图4。从图中可以看出,DC710作为固定相的热稳定性是较差的,在220℃已有比较明显的流失,基流和基线噪音都出现明显增大的现象,柱温达到240℃时基流和基线噪音已经增加到无法使用的地步。因此DC710作为固定相的最高使用温度约为220~240℃。经过二次沉淀提纯后的固定相热稳定性显著提高,在柱温达到260℃时才观测到比较明显的流失现象,此柱温下的基流不到20mV、基线噪音不到0.04mV,对测定基本上没有不利影响。柱温进一步提高到280℃后流失现象才表现得比较明显,但基流和基线噪音仍然在可以使用的范围内。因此可以认为二次沉淀提纯后的固定相最高使用温度可达280℃以上。与色谱级OV-17固定相相比,本方法制备的固定相在相同柱温下具有更低的基流和基线噪音,这说明提纯后的固定相的热稳定性已经优于市售的OV-17试剂,高温流失更低、可使用的温度更高。[align=center] [img=,303,231]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181702465407_4798_2204387_3.png[/img][/align][align=center][b]图3 纯化产物与对比样品的FID基流[/b][/align][align=center] [img=,303,228]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181702466915_2972_2204387_3.png[/img][/align][align=center][b]图4 纯化产物与对比样品的FID基线噪音[/b][/align][align=center] [/align] 为了进一步考察固定相的热稳定性,对色谱柱进行了高温长时间使用的实验。将色谱柱在260℃的柱温下长时间连续使用,并间隔一段时间以邻苯二甲酸二正辛酯(DnOP)标样测定容量因子。随着高温使用时间的延长,容量因子的变化如图5所示。在初始时间,OV-17柱的容量因子就略低于二次沉淀提纯的固定相,这主要是因为OV-17固定相本身仍然含有较多的低分子杂质,在色谱柱制备初始的老化阶段就有比较明显的流失,实际所得的负载量小于初始配比。而提纯的固定相杂质较少,在色谱柱制备初始的老化阶段流失不多,实际所得的负载量更接近初始配比。随着使用时间的延长,OV-17固定相仍有不断的流失,因此DnOP的容量因子持续减小,使用48h后减小了约4%。而二次沉淀提纯的固定相几乎没有进一步的流失现象,使用48小时后DnOP的容量因子变化不足1%。[align=center] [img=,303,233]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181702471368_4040_2204387_3.png[/img][/align][align=center][b]图5 容量因子随使用时间的变化[/b][/align][align=center]柱温260℃,以邻苯二甲酸二正辛酯(DnOP)测定。[/align][b]3.4 固定相的分离选择性[/b] 沉淀分离提纯只改变了聚合物的分子量分布,对于基团组成没有影响,因此固定相的极性强弱和分离选择性不会发生变化。测定了几种不同结构物质在这几种固定相上的保留指数,结果见表2。二次沉淀提纯的固定相对各种物质的保留指数都与DC710和OV-17两种固定相接近,这表明纯化后的固定相具有与OV-17基本一致的分离选择性,一定程度上可以替代OV-17固定相。[align=center] [/align][align=center][table][tr][td=4,1,95] [align=center][b]表2 几种物质在纯化产物和对比样上的保留指数[/b][/align] [/td][/tr][tr][td=1,1,113] [align=center] [/align] [/td][td=1,1,76] [align=center]DC710[/align] [/td][td=1,1,76] [align=center]OV-17[/align] [/td][td=1,1,95] [align=center]二次纯化产物[/align] [/td][/tr][tr][td=1,1,113] [align=center]甲基丙烯酸丁酯[/align] [/td][td=1,1,76] [align=center]1035[/align] [/td][td=1,1,76] [align=center]1042[/align] [/td][td=1,1,95] [align=center]1045[/align] [/td][/tr][tr][td=1,1,113] [align=center]己酸乙酯[/align] [/td][td=1,1,76] [align=center]1045[/align] [/td][td=1,1,76] [align=center]1061[/align] [/td][td=1,1,95] [align=center]1058[/align] [/td][/tr][tr][td=1,1,113] [align=center]正辛醇[/align] [/td][td=1,1,76] [align=center]1182[/align] [/td][td=1,1,76] [align=center]1176[/align] [/td][td=1,1,95] [align=center]1188[/align] [/td][/tr][tr][td=1,1,113] [align=center]硝基苯[/align] [/td][td=1,1,76] [align=center]1266[/align] [/td][td=1,1,76] [align=center]1247[/align] [/td][td=1,1,95] [align=center]1259[/align] [/td][/tr][tr][td=4,1,95] 注:柱温140℃[/td][/tr][/table][/align] 尝试用二次沉淀提纯的固定相分离测定三硝基甲苯、邻苯二甲酸酯等高沸点物质,获得了较好的效果,见图6、图7。[align=center] [img=,303,229]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181702470208_3906_2204387_3.png[/img][/align][align=center][b]图6 三硝基甲苯的色谱图[/b][/align][align=center]三硝基甲苯(TNT)浓度0.10g/L,溶剂异丙醇,柱温180℃,进样口220℃,其余条件同2.4。[/align][align=center] [/align][align=center] [img=,303,225]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181702474582_4789_2204387_3.png[/img][/align][align=center][b]图7 邻苯二甲酸酯的色谱图[/b][/align][align=center]邻苯二甲酸二异丁酯(DiBP)、邻苯二甲酸二丁酯(DBP)、邻苯二甲酸丁苄酯(BBP)、邻苯二甲酸二(2-乙基-己基)酯(DEHP)、邻苯二甲酸二正辛酯(DnOP)浓度均为1.00g/L,正己烷溶剂,进样口240℃,其余条件同2.4。[/align][b]4 结论与展望[/b] 本文采用较为简单的沉淀分级方法分离纯化工业硅油,获得了性能优良的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]固定相,其高温稳定性优于进口的OV-17固定相,分离选择性与OV-17类似。 近年来国内的色谱技术有了不小的发展,色谱仪器的国产化率显著提高,但一些核心技术,例如高精度的流量控制阀、高惰性的毛细管柱、耐高温的色谱固定相、耐高温的高分子密封材料等方面,与国外还有很大差距,甚至有些技术完全由国外大公司垄断。本文的尝试为解决上述问题提供了一定的思路和参考。只要敢于尝试和创新,并且有求精务实的精神,打破国外的技术垄断、掌握自己的核心技术并非不可能的。.

  • 气液色谱固定液选择对比

    [table=100%][tr][td]首先,对于[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url],其固定液选择规律为:“结构相似”和“相似相溶”,即选择固定液与被分离组分相似,这是从分配比影响容量因子角度考虑。而液相色谱,分正相色谱和反相色谱。正相色谱,用极性键合固定相,分离弱极性物质。而反相色谱,用非极性键合固定相,分离极性化合物,这又从哪个角度解释呢?[/td][/tr][/table]

硅油色谱固定液相关的方案

硅油色谱固定液相关的资讯

  • 傅若农:气相色谱固定液的前世今生
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业&mdash &mdash 色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。此次仪器信息网特邀傅若农教授亲述气相色谱技术发展历史及趋势,以飨读者。   第一讲:傅若农讲述气相色谱技术发展历史及趋势   第二讲:傅若农:从三家公司GC产品更迭看气相技术发展   第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状   气相色谱(GC)技术至今已有52年的历史了,其现在已经是相当成熟的技术。今天气相色谱仪已经相当普及,就像分析天平一样,在许多实验室都可以见到。而对于分析人员而言,气相色谱仪的操作也很简单,样品处理完以后装到进样瓶中,之后往自动进样器上一放就自动进行分析了。而这一切的实现其实是50年来无数分析人员及厂家设计制造人员的研究,借助现代科学技术集成起来的成就。但是气相色谱仪和气相色谱方法具有相当的科学内涵,值得从事气相色谱分析人员深入地去学习和领会,才能使你在长期气相色谱分析当中应付自如、游刃有余。这里我们先从气相色谱的核心气相色谱固定液谈起,本章所谈只限于液体固定相,即在工作温度下固定相以液态存在。   首先,我讲一个我自己经历的故事。1974年我们买了一台北京分析仪器厂的SP-2305 E型气相色谱仪,为了测试仪器的性能,我们就用仪器附带的、厂家事先配制好的固定液 DNP(邻苯二甲酸二壬酯)做测试,但是厂家没有在固定液的包装上注明它的最高使用温度(低于130 ℃),我们在设定温度时设定为130 ℃,结果由于固定液流失把热导池污染了,不能正常使用,没有办法只好到北京分析仪器厂又更换了热丝。后来查了文献才知道这种固定液在130 ℃就会流失。因此我意识到做气相色谱必须要了解、熟悉气相色谱固定液的性能,当然了解气相色谱固定液的性能的重要性还远不止于此,因为气相色谱固定液的性能是影响色谱分离的主要因素。   一.早期使用的气相色谱固定液   气相色谱发明人马丁(Martin)1950 年使用硅藻土(Celite)做载体,用硅油(DC 550)做固定液,用气体做流动相, 分离氨、脂肪胺和吡啶同系物。 DC 550(含25%苯基的甲基聚硅氧烷)原为工业用的耐高温硅油。   马丁使用硅油(聚硅氧烷)作气相色谱固定液以后,开辟了聚硅氧烷作气相色谱固定液的先河。但是聚硅氧烷类固定液在当时还没有占主导地位,人们更多地使用各种低分子化合物。如1956年有人提出了&ldquo 标准&rdquo 固定液:正十六烷、角鲨烷、苄基联苯、邻苯二甲酸二壬酯、二甲基甲酰胺、二缩甘油。(J.Chromatogr.Sci. 1973,11(4):216)。   后来也使用了一些高聚物用作气相色谱固定液,如聚乙二醇类,各种聚酯类,以及各类从石油提炼出来的润滑脂阿皮松-L 、阿皮松-M等。当时使用的一些聚硅氧类固定液也都是工业品,如 DC-550 、DC-710 、QF -1、 DC-11 、SE-30(聚二甲基硅氧烷),聚二甲基硅氧烷之后成为非常广泛使用的GC固定液 。   1964年又有人提出 58 个常用固定液,使用频率最高的十个固定液是阿皮松-L、SE-30、邻苯二甲酸二壬酯、角鲨烷、PEG 20M、己二酸乙二醇聚酯、PEG 400、DC 550、磷酸三甲酚酯、PEG 1500。   为了适应各种各样混合物的分离,固定液如雨后春笋地增长,在1972年出版的 &ldquo Gas Chromatographic Data Compilation DS 25 A S-1&rdquo 中收集了700多种气相色谱固定液。   在气相色谱以填充柱为主的时代,由于填充柱的柱效有限,为了能分离各类混合物,人们研究发展了上千种固定液,但是固定液量太多了又带来新的麻烦。为此,许多人致力于固定液的分类和精选最常用的固定液,最有影响的是Rohrschneider和McReynolds的固定液表,下表1是McReynolds固定液表的一部分,它发表于1970年的色谱科学杂志上(J chromatogr Sci 1970,8:685-691)。 表1 McReynolds 固定液表   说明:X' , Y' ,Z' ,U' ,S' 分别代表苯、正丁醇、2-戊酮、1-硝基丙烷、吡啶   McReynolds用10种典型化合物,苯、正丁醇、2-戊酮、1-硝基丙烷、吡啶、2-甲基2-戊醇、碘丁烷、2-辛炔、二氧六环和顺八氢化茚,在120℃柱温下测定了226种固定液上的保留指数差(△I),以前五种化合物△I之和的大小来表示固定液的极性。   McReynolds 工作的目的是为了解各种固定液的性能,选择时可以寻找性能类似的品种,减少测试比较固定液的数量。   后来Hawkes推荐的较常用的气液色谱固定液有下列一些:   (1) 聚二甲基硅氧烷 (OV-101, OV-1, SE-30 )   (2) SE-54 ( 含5%苯基和1%乙烯基的聚甲基硅氧烷)   (3) OV-7 ( 含20%苯基的聚甲基硅氧烷)   (4) OV-1701 ( 含7%苯基和7% 氰丙基的聚甲基硅氧烷)   (5) OV-17 [ 含50% 苯基的聚甲基硅氧烷(油) ]   (6) OV-17(gum)[ 含50%苯基, 2%乙烯基的聚甲基硅硅氧烷(橡胶) ]   (7) OV-25 [ 含75%苯基的聚甲基硅氧烷(油)]   (8) OV-210 [( 含50% 三氟丙基的甲基硅氧烷(油))   (9) OV-215 [含50%苯基, 2%乙烯基的聚甲基硅氧烷(橡胶)]   (10) UCON HB 5100 ( 约50/50的聚乙/丙基醚 )   (11) OV-225 ( 含25% 氰丙基﹑25% 苯基的聚甲基硅油或硅橡胶 )   (12) Superox-4 ( 高分子量的聚乙二醇, 使用温度可到300℃ )   (13) Superox-0.1 ( 聚乙二醇,使用温度可到 280℃ )   (14) Superox 20M ( 聚乙二醇, 使用温度可到 300℃)   (15) PEG-20M ( 聚乙二醇, 使用温度可到 300℃)   (16) Silar 5CP ( 含 50% 氰丙基﹑50% 苯基的聚甲基硅油 )   (17) SP-2340 (含75% 氰丙基的聚甲基硅油 )   (18) Silar 10 CP ( 含100% 氰丙基的硅油 )   (19) OV-275 ( 含 100% 氰乙基的硅油 )。   他还推荐了最常用的 6 种气相色谱固定液如下表2。 表2 最常用的6种气相色谱固定液   自从1979年弹性石英毛细管柱问世之后,毛细管气相色谱得到了迅速的发展。以毛细管柱代替填充柱的趋势日益明显,特别是1983年大内径厚液膜毛细管柱的发展和应用。而优秀的气-固色谱毛细管柱&mdash &mdash PLOT柱的出现把填充柱仅剩余的一点优势也给抵消了。   有人认为毛细管柱具有非凡的高柱效,对固定液的选择性就降低了要求,只要有三支毛细管柱(聚二甲基硅氧烷、聚乙二醇20M、氰基聚二甲基硅氧烷)就可以应付80%的分析任务。但是要解决高沸点复杂混合物、各种沸点相近的异构体,性质极为相近的光学异构体,必须要有新的、热稳定性极好的、重复性好的、有不同选择性的固定液,为此多年来研究人员合成了许名适用于毛细管柱的固定液。   二、硅氧烷是现时气相色谱固定液的主体   尽管使用和研究过的气相色谱固定液有千余种,以适应填充柱低柱效和高选择性的要求。但是对现代毛细管色谱柱而言,这些固定液合用者很少。其中尚可在毛细管色谱柱中使用的除去聚乙二醇外几乎都是聚硅氧烷类,因而在新的固定液合成中也还限于以聚硅氧烷作为骨架,同时引入不同的选择性基团。这是因为聚硅氧烷类固定液具有以下的优点:(1)热稳定性好 (2)成膜性能好 (3)玻璃化温度低,使用温度范围宽 ( 4)如在分子中有一定量的乙烯基则易于交联 (5)扩散性能好,传质阻力小,易获高柱效 (6)可在聚硅氧烷侧链上引入各种有机分子片段,调节选择性。从上世纪70年代至今,以聚硅氧烷类固定液为基础发展了一系列优秀的气相色谱固定液。   (一)热稳定性好的固定液   目前有许多高沸点复杂混合物的分离要使用耐高温的毛细管色谱柱,如石油中碳数高达100的烃类,食品中的甘油三酸酯,环境污染物中六、七环多环芳烃等,均需要热稳定性极好的固定液。过去用的固定液几乎没有能经受370℃高温的。为此近年来出现了一些可在400℃左右使用的毛细管柱固定液。   (1)耐高温聚二甲基硅氧烷   有人利用涂有聚二甲基硅氧烷的毛细管柱,在390℃下分离碳数高达90的烃类。用程序升温到430℃ ,可使100-110个碳原子的烃类流出色谱柱。   前几年VIBI公司使用窄分布的聚二甲基硅氧烷(Unimolecular Low Bleed VB-1),它的特点是纯化预聚体除去低聚物,聚硅氧烷链上有支链,减少交联剂量,使用全部交联原理把端基也纳入,使其交联行成一个网络整体,没有低分子化合物。   (2)使用交联的聚硅氧烷固定液提高其热稳定性   在毛细管柱进行原位交联(固相化)是提高液膜稳定性的重要途径,也是制备抗溶剂冲洗的必要手段。但是一些苯基含量高的聚甲基硅氧烷,如OV-17、OV-25、以及OV-225难以用引发剂使之交联,但如引入一定量的乙烯基后它们可以交联,所以在研究毛细管色谱用固定液时,往固定液分子中引入乙烯基或使用端羟基聚硅氧烷固定液。   (a)引入乙烯基   早在80年代初,M.L.Lee研究组和Blomberg研究组就研究把乙烯基引入含苯基和氰丙基的聚硅氧烷的分子中使之易于交联。因为很早人们就知道含有乙烯基的聚硅氧烷很容易被过氧化物或其它引发剂使之交联的。例如在含50%苯基的聚硅氧烷中引入1%的乙烯基,在含70%苯基的聚硅氧烷中引入4%的乙烯基,就可以在加入过氧化物引发剂的情况下较为容易地进行交联。对含有苯基和氰丙基的聚硅氧烷,Markeides等人采用先制备含有乙烯基的预聚体,然后再在柱中进行原位交联。对这类固定液可采用过氧化物、偶氮化合物,甚至臭氧都可以使之引发交联。   (b)用端羟基聚硅氧烷固定液交联并和毛细管壁进行键合   1983年Verzele提出用端羟基的聚硅氧烷固定液。1985年Blum又进一步研究了非极性和中等极性的聚硅氧烷(以羟基为端基)的固定液,以及毛细管柱的制备工艺问题。1986年Lipsky等人首次把端羟基聚二甲基硅氧烷涂渍在弹性石英毛细管柱上,石英柱的外涂层不用聚酰亚胺,而使用金属铝,端羟基聚二甲基硅氧烷在高温下加热(375-400℃),形成交联并键合的液膜。这一色谱柱在8-12h内逐渐从350℃升温到425℃。利用这种色谱柱分离原油组分,程序升温可达425&mdash 440℃。   (3)利用硅氧烷/硅亚芳基共聚物提高热稳定性   在聚硅氧烷中如把主链中的氧原子用亚苯基取代,它的热稳定性就会提高,这类化合物用作气相色谱固定液可以耐高温,其结构如下图1: 图1 硅氧烷/硅亚芳基共聚物结构   其热稳定性当R及R为苯基时提高,见下表中的数据。据Buijten等的研究结果,用这类化合物可涂渍出高效毛细管柱,涂渍效率达102%。这种色谱柱可在370 ℃下分离多环芳烃. 下表是硅氧烷/硅亚芳基共聚物在氮中热重分析数据。目前在GC/MS中使用最多的含5%苯基的硅氧烷/硅亚芳基共聚物,硅氧烷/硅亚芳基共聚物的热性能见表3。如DB-5MS色谱柱就是使用这类固定液。 表3 硅氧烷/硅亚芳基共聚物在氮中的热重分析数据   (4) 在聚硅氧烷链中引入硼烷提高热稳定性   在硅氧烷链中引入十硼烷,可以提高固定液的耐热性,现在网上有信息显示,北京绿百草科技提供信和固定相Dexsil 300 GC,该固定相主要用于药物、三酸甘油酯和醚、高沸点脂肪烃、高沸点烃、甾族化合物、杀虫剂和糖类。   Dexsil有三个品种及其结构和极性如下表4: 表4 三个品种Dexsil的结构及极性   HT-5 高温固定液就是Dexsil 400 GC 固定液制备的色谱柱,用以进行模拟蒸馏的色谱图2: 图2 DB-HT Sim Dis 色谱柱的模拟蒸馏色谱图   色谱柱:DB-HT Sim Dis 5 m x 0.53 mm I.D., 0.15 &mu m   载气:氦,18 mL/min, 在 35下测定   拄温:30-430 ℃,程序升温,10℃/min   检测器温度:FID 450 ℃   三、极性固定液   小分子的极性固定液极性最强的是b,b-氧二丙氰,但是它的耐温性很差,于是人们就研究各种极性高的高聚物,聚乙二醇20M (即分子量为20000的聚乙二醇)是使用最多中等极性的固定液。多年来人们知道往聚硅氧烷分子中引入苯基可以提高极性,所以上世纪七八十年代OV公司就合成了含不同数量苯基的甲基苯基聚硅氧烷固定液,OV-7是较早使用的含20% 苯基的甲基聚硅氧烷固定液,又如 SE-54 (含5% 苯基),OV-17 (含 50% 苯基),OV-25 (含 75% 苯基,含5% 苯基的聚二甲基硅氧烷)是各个公司制备毛细管柱的主要气相色谱固定液,如安捷伦公司的 HP-5、DB-5. Restke公司的Rtx-5 SGE公司的BP-5 Supelco公司的SPB-5 PerkinElmer公司的PE-2等。OV-17在农残分析中多有使用,相当于安捷伦公司的DB-17, Restke 公司的 Rtx-50,SGE公司的 BPX-50, Supelco公司的 SP-2250,使用DB-17ms(用于GC/MS的色谱柱)分析22种杀虫剂的色谱如图 3(安捷伦公司的图谱)。 图3 使用DB-17ms分析22种杀虫剂的色谱图   另外往聚硅氧烷分子中引入氰乙基、氰丙基、三氟丙基等可提高其极性。如 OV-275,Silar10C ,OV-1701 ,OV-210 。OV-275,Silar10C是含100% 氰乙基或氰丙基的聚甲基硅氧烷,OV-1701是含7% 氰丙基和7% 苯基的聚甲基硅氧烷 ,OV-210含三氟丙基的聚甲基硅氧烷。但是这类种固定液不易涂渍,也不易交联,所以多年来人们研究易于涂渍、易于交联的含高氰丙基的聚硅氧烷固定液,本世纪多个公司有所突破,制备成功各种各样的极性固定液和毛细管色谱柱。用OV-1701涂渍的毛细管色谱柱DB-1701分离22种杀虫剂的色谱见图4(安捷伦公司的图谱) 图4 DB-1701 分离22种杀虫剂的色谱图   各种固定液使用频率有很大的差别,国外有人统计各类固定液在色谱柱中使用的百分比见表5。 表5 五类典型气相色谱固定液的使用情况   四、选择性固定液   选择性固定液是近年来研究最多的气相色谱固定液,而且主要是针对手性异构体的分离。因为化合物的手性特征十分普遍,它在医药,农药应用中具有重要意义,所以对分析手性化合物提出迫切要求。而分离对映异构体的核心是寻找合适的手性固定相。气相色谱中手性固定相一般讲有三大类:第1类是手性氨基酸的衍生物 第2类是手性金属配合物 第3类是环糊精衍生物和其他主客体相互作用固定液,如冠醚类、杯芳烃类固定液。   第1类和第2类手性固定相有不少好的固定相,例如1978年有人把手性氨基酸的衍生物接枝到聚硅氧烷上,并有商品色谱柱上市,即把L-缬氨酸-特丁酰胺接枝到聚硅氧烷上,商品名&ldquo Chirasil-Val&rdquo 。这一固定液可以使用到220℃。特别适用于氨基酸手性异构体的分离,以及对手性胺类、氨基醇类、&alpha -羟基基酸酰胺类的分离。但是近年来大量研究的手性固定液的、能成为商品毛细管的只有环糊精(CD衍生物固定液。基于美国密苏里-罗拉大学的环糊精研究者Armstrong的研究结果,1990年美国的ASTEK公司推出一套CD毛细管色谱柱,典型的有下列9种,见表6。 表6 ASTEK公司的9种环糊精衍生物毛细管商品柱   五、近年商品柱所使用的新固定液   近几年在气相色谱的进展中只有气相色谱固定相的发展有所突破,即室温离子液体的研究和用它们制备的商品化气相色谱柱 金属有机框架化合物用于气相色谱固定相的研究有很大进展 碳纳米管作气相色谱固定相的研究也所发展,但是后二者应属于气-固色谱固定相,而且还没有商品化色谱柱的出现,所以本章暂不讨论。   室温离子液体是在常温下呈液态的离子型化合物,常由较大的有机阳离子( 如烷基咪唑盐、烷基吡啶盐、烷基季铵盐、烷基季膦盐) 和相对较小的无机或有机阴离子( 如六氟磷酸根、四氟硼酸根、硝酸根)构成。室温离子液体所以能在许多领域获得广泛的应用,是因为它的热稳定性好、粘度高而且随温度变化的波动小、表面张力小、蒸汽压力低、物理性能可变换幅度大、有成千上万的品种可供选择。而这些性能正好符合气相色谱固定相的要求,所以选择它作气相色谱固定相是很自然的事。下表7是Supelco公司的商品离子液体固定相的牌号和极性(J Chromatogr A, 2012,1255:130-144)。 表7 几种商品离子液体固定相的极性(Supelco公司)   *相对极性数=(Px x 100)/ PSLB-IL 100= McRynolds 极性乘以100再除以SLB-IL 100的McRynolds 极性   小结:   气相色谱固定液是气相色谱仪的核心和灵魂,也是迄今为止气相色谱不断研究的课题之一。现在聚硅硅氧烷类固定液是气相色谱固定液的主体,其中含5%苯基的聚甲基硅氧烷占有半壁江山,而极性固定相使用较多的是聚乙二醇固定液和含氰丙基、三氟丙基聚甲基硅氧烷的固定液。选择性固定液目前有商品柱的主要是环糊精衍生物固定液,近年发展和研究最多并成为商品柱的新型固定液主要是室温离子液体固定液。下一章,我将为大家讲述气相色谱固体固定相的今夕。(未完待续)   (作者:北京理工大学傅若农教授)
  • 关于气相色谱柱的固定相,你真正了解吗?
    嗨,大家好,小编又和大家见面了。在前期的内容中,小编为大家分享了气相色谱柱的一些基本小知识,主要包括毛细管柱的分类,固定相的种类,色谱柱的柱长、内径、液膜厚度参数,以及色谱柱的使用温度限。今天呢,我们就针对其固定相,来一探究竟!不管是气相色谱,还是液相色谱,待测样品组分的吸附保留主要取决于固定相。其基本分离原理主要是通过样品分子与固定相之间作用力类型以及作用强度的不同,进而实现组分的分离。不同的结构的固定相,其极性和与分子间的作用力也不相同。关于气相色谱,目前使用最多的是气-液分配模式,气-液色谱固定相在常规分析温度下也呈现液态,所以常被称为固定液,常见的固定液主要有以下几种:01甲基聚硅氧烷类固定液甲基聚硅氧烷固定液的结构图如下:从其结构图可以看出,是由多个硅氧烷聚合而成,骨架上的每个硅原子可以与两个官能团相连接。当其官能团均为甲基时,即是我们所说的百分之一百二甲基聚硅氧烷;“二”代表着硅原子上连接两个特定取代基团,当取代基团完全相同时,也可以省略这种叫法,即百分之一百二甲基聚硅氧烷也称为百分之一百甲基聚硅氧烷。在结构图中,聚合度n值的不同,所形成的固定液在形态上也会有所区别。当聚合度n值较小,固定液分子量较小时,称之为二甲基硅油,呈黏稠状的液态,如美国OhioValley(OV公司)研制的OV-101固定相;分子量比较大时,可以称为二甲基硅脂及橡胶,如美国GeneralElectric(通用电气)生产的SE-30。甲基聚硅氧烷类固定液属于非极性固定相,具有很宽的沸点范围,适用于分析烃类以及含有其他官能团的化合物,非常适合对于未知样品的分析。02其他不同基团取代的聚硅氧烷类固定液硅氧烷骨架硅原子上取代基团的数量和种类不同,影响着固定相的极性和热稳定性。一般而言,极性取代基团的含量越高,固定液极性越强,所耐受的温度限也越低。常见的取代基团如下图:关于取代基团含量的描述通常是以百分含量表示,下图为5%二苯基95%二甲基聚硅氧烷和50%三氟丙基50%甲基聚硅氧烷(或称之为百分之一百三氟丙基甲基聚硅氧烷)的结构图。对于不同基团取代的百分含量表述,在这以14%氰丙基苯基86%二甲基聚硅氧烷为例,代表着其含有7%的氰丙基、7%的苯基、86%的甲基,因为硅原子上同时连接氰丙基和苯基,14%是一种加和的表示方法(如下图)。不同取代基团的作用:● 在甲基聚硅氧烷中引入苯基,由于结构相似性,可以增强对芳香烃类化合物的吸附保留。● 氰基的引入可使固定液具有中等极性或强极性,此类固定相对含芳基、烯基的化合物具有较强的保留作用,适用于分离不饱和烃、芳烃,以及不饱和脂肪酸。● 三氟丙基具有较强的给质子能力,适合吸附保留羰基化合物。● 在聚硅氧烷骨架中引入亚芳基,可以增强固定相的热稳定性,降低柱流失。03聚乙二醇类固定液这是一种强极性的固定相,主要是以形成氢键为主,对醇、酸、酚、伯/仲胺等有较强的保留。在使用这类固定液的色谱柱时,需要注意分析温度、载气纯度等相关问题,因为聚乙二醇极性较强,所能承受的温度限较低,高温条件下载气中的氧、水等都会引起固定相的分解。常规聚乙二醇类固定液结构如下图:聚乙二醇简称PEG,聚合度n值不同,其分子量也不相同;目前使用最多的是分子量20000左右的聚乙二醇,常见的名称为PEG-20M、INOWAX等。为了分析不同类型的化合物,可以通过对色谱柱表层和固定液进行改性来实现不同性质化合物的分离。主要包括以下几种:● 碱改性聚乙二醇固定液:在制药行业中,药物分析通常以偏碱性为主,在分析这些物质时,经常出现馒头峰或者峰拖尾等现象。为了改善对这类化合物的峰形问题,可以采用KOH将色谱柱表层处理成碱性表面,然后再涂渍聚乙二醇类固定液,来实现对偏碱性化合物的分析。● 酸改性聚乙二醇固定液:是由聚乙二醇与不同酸反应而成的酯类固定液,使用最多的是FFAP(硝基对苯二甲酸改性的聚乙二醇),主要用于分析小分子的有机酸、挥发性脂肪酸和酚类化合物等。
  • 新型高效液相色谱手性固定相可高效分离手性分子
    p style=" line-height: 1.5em " & nbsp & nbsp  化学界中,有一大类分子存在手性异构体,它们就像左右手,虽然看上去一模一样,但完全不能重叠,这类分子被称为“手性分子”。 /p p style=" line-height: 1.5em "   一些药物中的手性分子在生物活性、代谢过程和毒性等方面存在显著差别,有的差异甚至如“治病”和“致病”这样,是天壤之别。因此,如何更为经济、高效、便捷地将手性分子的“左右手”分开,获取其中有益部分,成为化学界竞相攻关的课题。 /p p style=" text-align: center line-height: 1.5em " img src=" https://img1.17img.cn/17img/images/201812/uepic/e33f45e4-27e0-4e3c-ae08-784ed71a581e.jpg" title=" 20181119203959326.jpg" alt=" 20181119203959326.jpg" / /p p style=" text-align: center line-height: 1.5em " 生物分子COF 1作为手性固定相用于手性拆分(南开大学供图) /p p style=" line-height: 1.5em "   南开大学药学院研究员陈瑶课题组与该校化学学院教授张振杰、美国南佛罗利达大学教授马胜前合作,利用生物分子诱导的策略设计合成了一类手性共价有机框架材料,并将其成功应用于多种药物、氨基酸等小分子的手性分离。该材料具有造价低、效率高、普适性强等特点,具有完全自主知识产权,作为新型“分手”利器,它将大幅降低手性药物的生产成本。相关研究结果日前在线发表于《德国应用化学》。 /p p style=" line-height: 1.5em "   液相色谱技术是获取手性分子单一构型对映体的重要手段之一,具有高手性分离性能的手性固定相是这一技术的关键。含有手性分子的混合物流经分离柱时,由于作用力大小不同,不同的异构体分别在不同的时间流出,进而实现手性分离的目标。 /p p style=" line-height: 1.5em "   “简单来说,液相色谱仪中的分离柱就像一个隧道。外观、型号看起来完全一样的汽车一起驶入,交警允许有牌照的汽车可以顺利地快速通过,没有牌照的就会因为被交警调查而落后通过。这样,隧道出口先出现的都是有牌照的汽车,后出现的都是没有牌照的汽车。”陈瑶说,这其中最关键的部分就是“交警”,也就是“手性固定相”,需要识别能力强、稳定且高效。 /p p style=" line-height: 1.5em "   为创造高效的新型手性固定相,陈瑶课题组将一系列生物分子(溶菌酶、三肽、氨基酸)引入到共价有机框架材料(COFs)材料中,非手性COFs通过继承生物分子的手性特征从而变成手性COFs,进而可应用于手性分子的拆分。 /p p style=" line-height: 1.5em "   陈瑶表示,研究结果发现,通过新策略得到的BiomoleculeÌ COF 1手性固定相性能明显优于传统吸附法固定生物分子得到的手性固定相性能。“隧道中,高效、敬业的‘交警’—— 一种新型的高效液相色谱手性固定相被我们合成出来了。” /p p style=" line-height: 1.5em "   进一步研究发现,COF1材料作为手性固定相具有优异的手性分离效果,可用于正相和反相等多种分离模式,分离度Rs均达到1.3以上。连续使用2个月,反复进样120余次后,该材料仍具有和初始状态一样的分离效果。 /p p style=" line-height: 1.5em "   “这一研究为发展高效、耐用型的手性固定相,及拓宽共价有机框架材料在手性分离、手性催化方面的应用提供了巨大的潜力。”陈瑶介绍,新材料具有完全自主知识产权,它的应用可大幅降低分离柱的造价,打破进口依赖,也将大大降低手性药物的生产成本。 /p p style=" line-height: 1.5em "   论文链接:https://doi.org/10.1002/anie.201810571 /p p br/ /p

硅油色谱固定液相关的仪器

  • 满足以下国家标准HJ 38-2017《固定污染源废气 总烃、甲烷和非甲烷总烃的测定 气相色谱法》HJ 212-2017《污染源在线自动监控(监测)系统数据传输标准》【产品概述】Ontech610是一款高度集成的非甲烷总烃分析仪,可连续在线监测固定污染源中的总烃、甲烷、非甲烷总烃及苯系物。Ontech610采用定量环进样,一个12位多通阀,该系统采用专用色谱柱组合,中心切割加反吹技术;设计完全按照国标HJ 38-2017 标准设计,是一款可监测固定污染源废气中总烃、非甲烷总烃、甲烷的在线色谱仪,同时可根据用户需求定制监测因子。【产品特点】连续监测污染源中总烃、非甲烷总烃、甲烷及苯系物5u设计,高度集成采用中心切割加反吹技术全气路采用EPC控压,稳定性优良完善的设备保护和报警功能【应用场合】石化行业化工行业工业喷涂行业包装印刷行业大学及科研机构
    留言咨询
  • 产品概况仪器采用专用色谱柱组合、中心切割反吹技术和氢火焰离子化检测器(FID)、火焰光度检测器(FPD)技术相结合的专利技术进行甲烷、非甲烷总烃、苯系物和硫化物的检测。根据客户需要定制不同监测系统。 产品特点分析方法与标准方法一致,采用GC-FID方法检测对于硫化物的检测,采用GC-FPD方法全程高温180℃伴热样品传输、高温检测,避免高飞点VOCs吸附和冷凝,测量更准确连续运行免维护设计,开机自动循环运行,真正意义上的在线分析全程流路保温180℃设计,无水汽凝结,避免部件腐蚀退化,适用于高温/高湿/腐蚀性的工况全部管路和器件均经过硫钝化处理,对目标硫化物无吸附非甲烷总烃和苯、甲苯、甲硫醇等组分同时在线检测 参考标准HJ/QC 93032-2010气相色谱仪型式评价大纲JJG 700-2016气相色谱仪检定规程HJ/T 38-1999固定污染源排气中非甲烷总烃的测定GB 16297-1996大气污染物排放标准GB 3095-1996环境空气质量标准GB 50236-96现场设备、工业管道焊接工程施工及验收规范HJ/T 212-2005 污染源在线自动监控(监测)系统数据传输标准HJ 1013-2018 固定污染源废气非甲烷总烃连续监测系统技术要求及检测方法 应用领域石化、喷涂、印刷、制革等排放口固定污染源在线监测。
    留言咨询
  • TGI-3000 固定污染源 挥发性有机物 在线监测系统固定污染源笨系物在线监测系统(VOCs) 系统概述TGI-3000 固定汚染源挥发性有机物(非甲烷总烃、苯系物、有机硫)在线监测系统,集采样探头、温压流一体机、伴热管线、预处理系统、湿氧模块及分析仪表于一体,以自主研发的在线气相色谱仪为核心。样气多级过滤除尘,管路全程伴热无冷点,固定污染源笨系物在线监测系统(VOCs)使用优质进口色谱柱分离后 FID / FPD 分析烟气浓度,结合温压流工况数据,将排放数据结果输出到上位机系统,并通过数采仪上传至相关部门,或通过相关协议输送至 DCS。系统安全可靠,适用于各种工业环境,测量结果实时准确,运行成本低,满足国家标准和行业标准对挥发性有机物的监测要求。该系统可用于监测固定汚染源废气中总烃、甲烷、非甲烷总烃、苯系物、氯苯、乙醛、丙烯醛、甲醇、氯乙烯、丙烯腈、硫化物等一种或多种化合物。固定污染源笨系物在线监测系统(VOCs) 应用行业 ? 制药? 石化? 涂料? 印刷? 化学? 家具制造? 橡胶制品? 纺织染整? 制鞋工业? 船舶工业? 汽车制造 系统特点 标准化设计• 国标要求的气相色谱法分析• 全热法预处理设计固定污染源笨系物在线监测系统(VOCs)运行稳定安全,数据真实可靠• 采样管线选用PTFE 或耐腐蚀、惰性化材质,减少管路吸附造成的损失 • 全程高温伴热,避免高沸点烃类物质冷凝“积油”及部件腐蚀无人值守、操作方便• 探头具备自动吹扫功能,可自动去除滤芯表面的粉尘,延长滤芯使用寿命• 具备自动校准功能,实现无人值守高兼容性设计• 支持一拖二要求• 支持数采仪和 DCS 通讯• 支持防爆及非防爆需求 系统组成 预处理系统• 高温探头• 采样管线• 全程伴热预处理系统 • 正压防爆预处理系统控制系统及软件• 上位机工控系统• 系统控制软件 固定污染源笨系物在线监测系统(VOCs) 技术参数 在线气相色谱仪• 非甲烷总烃• 苯系物• 非甲烷总烃/苯系物 • 有机硫气源• 零气发生器• 氢气发生器• 空气压缩机• 氮气发生器辅助监测• 温压流一体式探头• 温压流一体式探头(防爆) • 湿氧模块标定系统• 气体动态校准仪• 标准气体(固定污染源笨系物在线监测系统(VOCs)) 项目 检测能力非甲烷总烃 总烃、甲烷、非甲烷总烃苯系物苯、甲苯、乙苯、二甲苯、三甲苯、苯乙烯、异丙苯有机硫硫化氢、羰基硫、甲硫醇、甲硫醚、乙硫醇、二甲二硫醚、二硫化碳分析周期1 min~3 min(可选)2 min~20 min(可选)10 min~30 min(可选)量程0.01 ppm~10000 ppm(可选)0.05 ppm~1000 ppm(可选)0.1 ppm~500 ppm(可选)检出限≤ 0.01 ppm≤ 0.05 ppm≤ 0.05 ppm重复性 1%24 h漂移 2% F.S.线性误差 1% F.S.环境温度影响≤ 3% F.S.氧对零点影响≤ 1% F.S.平行性3%固定污染源笨系物在线监测系统(VOCs)
    留言咨询

硅油色谱固定液相关的耗材

  • 气相色谱耗材 固定液
    Silicone DC-11固定液Silicone GE SE-30固定液Silicone GE SE-30固定液OV-1固定液 OV-7固定液Silicone OV-1 Vinyl Modified固定液聚乙二醇400聚乙二醇550聚乙二醇1000聚乙二醇1500聚乙二醇1540聚乙二醇4000聚乙二醇6000有机皂土34邻苯二甲酸二丁酯邻苯二甲酸二癸酯邻苯二甲酸二壬酯 DNP(固定液)聚二乙二醇丁二酸酯(DEGS)聚己二酸新戊二醇酯(NPGA)邻苯二甲酸2-丁基乙酯Igepal CO-630固定液UCON LB-550-X,固定液曲拉通 X-100Silicone OV-1701-OH Modified 固定液曲拉通 X-305Silicone OV-101-OH Modified 固定液阿皮松L(固定液)UCON 50-HB-280-X固定液Igepal CO-880固定液Silicone DC-401固定液Silicone GE SF-96固定液固定液,Silicone OV-225,10gSilicone OV-215 Vinyl Modified固定液邻苯二甲酸乙烯基二醇酯(EGP)1,2,3-三(2-氰乙氧基)丙烷(TCEP)Silicone OV-61-OH Modified固定液Silicone OV-225-OH固定液OV-351固定液固定液,Silicone OV-225 Vinyl Modified,3gSilicone DC-550固定液Silicone DC-710固定液OV-3固定液Silicone OV-275 Vinyl Modified固定液Silicone OV-61固定液Silicone OV-35 Vinyl Modified固定液OV-73 固定液Silicone DC-HIVAC 油脂Silicone DC QF-1固定液Silicone OV-22固定液Carbowax 20M-TPA 固定液Citroflex A-4固定液Silicone DC FS-1265固定液Silicone OV-25固定液 聚乙二醇20M 固定液,60-250°C丁烷 1,4 二醇琥珀酸酯双(2-氰乙基)甲酰胺Silicone OV-105固定液Citroflex 4固定液氰乙基蔗糖Silicone OV-11固定Silicone OV-202固定液Silicone OV-210固定液癸二酸双2-乙基己酯己二酸二异癸酯OV-235 固定液OV-245 固定液OV-255 固定液OV-265 固定液Silicone OV-275固定液环氧树脂1001甲酰胺OV-330固定液甘油卤烃油 14-25Hallcomid M-18 OL固定液六甲基磷酰胺KEL-F Oil #3固定液KEL-F Oil #10固定液莱克桑(聚碳酸酯)甘露醇NUJOL固定液苯基二乙基胺聚苯醚,5环聚苯醚,6环聚丙二醇聚乙烯基吡咯烷酮(PVP)丙二醇Reoplex 400固定液Span 80固定液 角鲨烷角鲨烯乙酸异丁酸蔗糖酯(SAIB)Silicone UCC W-98固定液Tergitol NPX固定液B,B-硫代丙二腈磷酸三甲酚酯(TCP)三乙醇胺HI-EFF-1BP固定液B,B-亚氨基二丙腈山梨醇阿皮松MOV-17-OH固定液
  • 气相色谱法测定异氟烷, FFAP为固定液
    气相色谱法测定异氟烷, FFAP为固定液 关键词:异氟烷,FFAP,2010年药典,气相色谱法,北京绿百草 2010年中国药典标准:异氟烷测定色谱条件:照气相色谱法(附录Ⅵ E)测定,以2-硝基对苯二酸改性的聚乙二醇(FFAP)为固定液,柱温为60℃;采用电子捕获检测器,检测器温度为220℃.理论板数按异氟烷峰计算不低于15000,异氟烷峰与相邻杂质峰的分离度应符合要求。(中国药典二部P293) 需要详细的药典标准请联系北京绿百草:010-51659766. 登录网站获得更多产品信息: www.greenherbs.com.cN
  • OV-101固定液
    色谱固定液 OV-101固定液

硅油色谱固定液相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制