原花青素标准品

仪器信息网原花青素标准品专题为您提供2024年最新原花青素标准品价格报价、厂家品牌的相关信息, 包括原花青素标准品参数、型号等,不管是国产,还是进口品牌的原花青素标准品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合原花青素标准品相关的耗材配件、试剂标物,还有原花青素标准品相关的最新资讯、资料,以及原花青素标准品相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

原花青素标准品相关的资料

原花青素标准品相关的论坛

  • 原花青素标准溶液的测定,怎么不显色??

    我用香草醛-盐酸法测定葡萄枝条中的原花青素,具体方法如下:(1)试剂配制A:1%香草醛溶液(称取1.000g香草醛溶于甲醇液中,最后定容到100mL);B:8%的盐酸液(取8mL浓盐酸溶于甲醇中,定容至100mL)。显色剂:A∶B=1∶1,现用现配。(2)标准曲线绘制配制原花青素标准溶液,浓度为1.2mg/mL(精密称取儿茶素标准品0•120 0 g,用pbs缓冲溶液溶解,用甲醇定容至100 ml,配制成浓度为1 mg/ml的标准溶液。)。分别取1、2、3、4、5mL,然后定容至10mL。再各取1mL(另取1ml甲醇液为空白液),分别加入5mL显色剂,摇匀,避光,在(30±1)℃恒温水浴中保持30min。取出,在500nm波长下,用分光光度计测定其吸光值,绘制标准曲线图。这里有一个问题,我没看到有显色出现啊,应该是显什么色的?溶液标准品是应该直接用甲醇溶解,甲醇定容还是用蒸馏水溶解,甲醇定容呢????求大神解答!!!

  • 【原创大赛】软胶囊中花青素(以原花青素计)的测定方法验证

    【原创大赛】软胶囊中花青素(以原花青素计)的测定方法验证

    [align=center]软胶囊中花青素(以原花青素计)的测定方法验证[/align][align=center]西安国联质量检测技术股份有限公司[/align][align=center]食品事业部:任乐[/align]一、目的:对用《保健食品检验与评价技术规范》(2003版)中“保健食品中原花青素的测定”方法测定“软胶囊”中花青素的含量进行方法适用性验证 。二、验证内容:方法适用性验证包括检出限、线性范围、重复性、回收率、方法专属性。三、验证方法:1 范围 本标准适用于软胶囊中花青素(以原花青素计)的含量测定。2 原理原花青素是含有儿茶素和表儿茶素单元的聚合物。原花青素本身无色,但经过用热酸处理后,可以生成深红色的花青素离子。本法用分光光度法测定原花青素在水解过程中生成的花青素离子。计算试样中原花青素含量。3 试剂实验室用水为双蒸馏水,所用试剂为分析纯级。3.1 甲醇 分析纯。3.2 正丁醇 分析纯。3.3 盐酸 分析纯3.4 硫酸铁铵 NH[sub]4[/sub]Fe(SO[sub]4[/sub])[sub]2[/sub]12H[sub]2[/sub]O溶液:用浓度为2mol/L盐酸配制成2%(w/v)的溶液。3.5 原花青素标准品 来源:上海源叶生物科技有限公司 批号:YA0429YA14。4 仪器和设备4.1超声波清洗器:昆山市超声仪器有限公司 型号:KQ5200B4.2电子天平:沈阳龙腾电子有限公司 型号:JM-B10002 精度:0.0001g4.3分光光度计:北京普析通用仪器有限责任公司 型号:TU-1901或同等程度仪器 以上仪器符合检测要求。5 试样处理样品提取:挤出软胶囊内容物,搅拌均匀,称取50-100mg胶囊内容物置于小烧杯中,用20mL甲醇分数次搅拌,将原花青素洗入50mL容量瓶中,直至甲醇提取液无色,加甲醇至刻度,摇匀。6 测定标准曲线绘制:称取原花青素标准品10.27mg溶于甲醇置于10mL容量瓶中,用甲醇定容至刻度,该原花青素储备液的浓度为1027.0μg/mL。分别吸取原花青素储备液0、0.1、0.25、0.5、1.0、1.5mL置于10mL容量瓶中,加甲醇至刻度,摇匀。将正丁醇与盐酸按95:5的体积比混合后,取6mL置于具塞锥瓶中,再加入0.2mL硫酸铁铵溶液和1.0mL试样溶液,混匀,置沸水浴回流,精确加热 40min后,立即置冰水中冷却,在加热完毕15min后,于546nm波长处测吸光度,由标准曲线计算试样中原花青素的含量。7 公式试样花青素(以原花青素计)含量按下式进行计算。[img=,171,41]http://ng1.17img.cn/bbsfiles/images/2018/07/201807091807458441_5182_2904018_3.png!w171x41.jpg[/img]式中:X—样品中花青素(以原花青素计)的含量,g/100g;A—样品测定液中原花青素的含量,μg;m—样品质量,mg;V-待测样液总体积,mL。计算结果保留三位有效数字四、验证数据1 线性范围以原花青素含量(C)为横坐标,吸光度值(A)为纵坐标,绘制标准曲线,进行线性回归,得回归方程:A=0.0038c+0.0035 R[sup]2[/sup]为0.9996。[table][tr][td][align=center]原花青素含量(μg)[/align][/td][td][align=center]0[/align][/td][td][align=center]10.27[/align][/td][td][align=center]25.68[/align][/td][td][align=center]51.35[/align][/td][td][align=center]102.7[/align][/td][td][align=center]154.05[/align][/td][/tr][tr][td][align=center]A[/align][/td][td][align=center]0[/align][/td][td][align=center]0.043[/align][/td][td][align=center]0.096[/align][/td][td][align=center]0.205[/align][/td][td][align=center]0.392[/align][/td][td][align=center]0.580[/align][/td][/tr][/table][align=center][img=,605,363]http://ng1.17img.cn/bbsfiles/images/2018/07/201807091808184673_197_2904018_3.png!w605x363.jpg[/img] [/align]以上结果表明原花青素在0-154.05μg范围内,吸光值与原花青素含量线性良好,符合要求。2 检出限以零点为参比,同时在546nm处对标准曲线零管进行20次测定,计算标准偏差,以3倍标准偏差值相对应的含量即位检出限。经计算的得出,当称量为100mg时,其检出限为21.5mg/kg,符合软胶囊对浓度的要求。3 重复性称取6份试样按照上述处理方法进行试样处理,分别吸取适量样液进行比色,求得样液中花青素量。[table][tr][td][align=center]测定编号[/align][/td][td][align=center]1[/align][/td][td][align=center]2[/align][/td][td][align=center]3[/align][/td][td][align=center]4[/align][/td][td][align=center]5[/align][/td][td][align=center]6[/align][/td][/tr][tr][td][align=center]样品花青素(以原花青素计)含量g/100g[/align][/td][td][align=center]2.193[/align][/td][td][align=center]2.162[/align][/td][td][align=center]2.148[/align][/td][td][align=center]2.135[/align][/td][td][align=center]2.169[/align][/td][td][align=center]2.187[/align][/td][/tr][tr][td][align=center]平均值g/100g[/align][/td][td=6,1][align=center]2.17[/align][/td][/tr][tr][td][align=center]相对标准偏差%[/align][/td][td=6,1][align=center]1.0[/align][/td][/tr][/table]由上表可知,试样中花青素(以原花青素计)测定的重复性均值为2.17g/100g,RSD值为1.0%,符合规定。4 准确度在进行重复性试验基础上,同时进行加标试验,加标量分别为1.74g/100g,2.17g/100g,2.60g/100g结果见下表:[table][tr][td][align=center]测定编号[/align][/td][td][align=center]1[/align][/td][td][align=center]2[/align][/td][td][align=center]3[/align][/td][td][align=center]4[/align][/td][td][align=center]5[/align][/td][td][align=center]6[/align][/td][/tr][tr][td][align=center]加标后实际含量g/100g[/align][/td][td][align=center]3.81[/align][/td][td][align=center]3.89[/align][/td][td][align=center]4.32[/align][/td][td][align=center]4.27[/align][/td][td][align=center]4.59[/align][/td][td][align=center]4.62[/align][/td][/tr][tr][td][align=center]理论加标量g/100g[/align][/td][td][align=center]1.74[/align][/td][td][align=center]1.74[/align][/td][td][align=center]2.17[/align][/td][td][align=center]2.17[/align][/td][td][align=center]2.60[/align][/td][td][align=center]2.60[/align][/td][/tr][tr][td][align=center]加标样品含量g/100g[/align][/td][td][align=center]1.64[/align][/td][td][align=center]1.72[/align][/td][td][align=center]2.15[/align][/td][td][align=center]2.10[/align][/td][td][align=center]2.42[/align][/td][td][align=center]2.45[/align][/td][/tr][tr][td][align=center]加标回收率%[/align][/td][td][align=center]94.3[/align][/td][td][align=center]98.8[/align][/td][td][align=center]99.1[/align][/td][td][align=center]96.8[/align][/td][td][align=center]93.1[/align][/td][td][align=center]94.2[/align][/td][/tr][/table]由上表可以看出软胶囊中花青素(以原花青素计)测定的加标回收范围在92%-105%,符合规定。5 专属性[align=center]配制2个浓度梯度的原花青素标准溶液,1个样品处理液,1个试剂空白,按照上述处理方法进行处理,经过全波长分别扫描原花青素标准溶液,样品,试剂空白,如图所示可以看到原花青素标准品在546nm附近出现最大吸收峰,且样品在此波长处无干扰,故其专属性符合要求。[img=,690,542]http://ng1.17img.cn/bbsfiles/images/2018/07/201807091808523293_727_2904018_3.png!w690x542.jpg[/img][/align]综上所述:从检出限、线性范围、重复性、准确度、方法专属性测试结果可知,均符合方法要求,本实验方法符合软胶囊花青素(以原花青素计)的测定。

  • 花青素的测定方法

    [color=#444444]花青素的测定都有哪些方法,我查了下文献目前好像都是用的紫外分光光度计和液相色谱,但是标准只有植物源性食品中花青素的测定(用的液相),也有标液,想知道这个标准是不是所有的植物还有果实都适用?如果用紫外分光光度计,测出来的值准不准确?还有没有其他的测花青素好的方法。[/color]

原花青素标准品相关的方案

原花青素标准品相关的资讯

  • 【瑞士步琦】黑果枸杞花青素在合成生物学中的研究进展
    黑果枸杞花青素在合成生物学中的研究进展合成生物学”1简介中国科学院华南植物园农业与生物技术中心的药用植物种质创新与利用团队,在国家自然科学基金和中国科学院战略重点研究计划等项目的支持下,通过多组学联合分析,在黑果枸杞(Lycium ruthenicum)花青素代谢工程方面取得了显著的研究进展。这项研究的成果被发表在《食品前沿》(Food Frontiers)杂志上。DOI: 10.1002/fft2.4402植物天然色素花青素是一类广泛存在于植物界中的水溶性色素,属于黄酮类化合物。它们对植物的颜色表现至关重要,同时也是许多水果、蔬菜和其他植物产品呈现红色、紫色到蓝色等颜色的主要原因。其在很多领域都发挥重要作用,如:在食品工业领域,作为天然色素添加到食品和饮料中,提供颜色并增加产品吸引力。用于制作功能性食品,利用其健康促进特性等。在生物医药领域,花青素具有多种健康益处,包括强大的抗氧化活性,能够减轻氧化应激,预防某些慢性疾病。它们还具有抗炎、抗癌和改善心血管健康等潜在益处。传统上,花青素主要通过从植物中提取获得,但这受到植物生长季节的限制,周期长,含量低,且提取工艺繁琐;此外,花青素的化学全合成成本高,难度大。黑枸杞作为国家二级重点保护植物,同样也有“花青素之王”的美称。艾培炎、韦国等科研人员通过多组学联合分析,挖掘出调控花青素合成积累的核心转录因子LrAN2。在前期建立的黑果枸杞高效遗传转化体系的基础上、通过完善愈伤组织诱导、优化悬浮细胞培养体系等一系列措施,取得了悬浮愈伤组织高效合成果实花青素主成分 petanin 的突破性进展,实现了 96.23 毫克/克干重的花青素高产。这一研究成果可有效缓解野生黑果枸杞资源被过度开发利用的窘境、保护我国西北地区脆弱生态环境。3步琦合成生物学整体解决方案在实验过程中,生物样品通常会采取冷冻干燥的方式保存来保证样品的生物活性。而步琦则可提供包括-55℃/-85℃/-105℃多款高性能冷冻干燥机可选。▲ 冷冻干燥机 L-200文中所提到的,关于培养条件对 LrAN2OE 悬浮细胞花青素产量和生物量的影响,通过优化培养-基的条件(如5%蔗糖或葡萄糖对 LrAN2OE 悬浮细胞的生物量和花青素产量有积极影响),使得花青素产量最高达96.23 mg/g DW。在此阶段,步琦公司也有在线近红外手段实时监测培养基各项指标参数,帮助实验条件优化。▲ NIR-Online发酵后代谢产物的浓缩同样非常重要。通过浓缩,可以显著提高代谢产物的浓度,使其更容易进行后续的处理和应用,从而有助于简化后续的分离和纯化步骤。步琦在样品浓缩方面拥有丰富的经验和解决方案,从实验室级到工业级全方面覆盖。▲ 旋转蒸发仪 R-300▲ 工业级旋转蒸发仪 R-220 Pro浓缩产物的分离纯化是拿到目标产物花青素的关键,如文中所说,采用分析型 HPLC 在 UV 530nm 波长下对花青素进行检测并选定纯化条件。那么如何能够快速有效且大量得到花青素产物呢?步琦公司在样品制备领域拥有高性能的中压/高压制备色谱,可大大提高样品单次处理能力。▲ NIR-Online
  • 超实用!植物源性食品标准汇总及常用仪器盘点
    近年来,动物流行疾病(如禽流感、猪流感)频发,与营养有关的疾病、胃肠炎、食物中毒、抗生素类药物滥用等公共卫生问题受到了越来越多的关注。并且随着消费者消费理念的升级、素食文化的兴起、对环境保护与动物福祉责任感的增强等,让植物源性食品自带光环,植物源性食品营养已成为饮食界讨论的焦点。从营养角度来看,植物性食品具有优良的营养健康效能,其中植物蛋白能够满足人对氨基酸、蛋白质的营养需求,尤其大豆蛋白是优质蛋白,完全可以满足人体对蛋白质营养的需求,植物蛋白还具有低饱和脂肪酸、零胆固醇、无抗生素等特点。因此小编汇总整理出植物源性食品标准及常用仪器盘点,供大家参考。国家标准标准名称实施时间仪器方法(点击可查看仪器专场)GB 23200.38-2016 食品安全国家标准 植物源性食品中环己烯酮类除草剂残留量的测定 液相色谱-质谱/质谱法2017-06-18液相色谱-质谱/质谱法GB 23200.36-2016 食品安全国家标准 植物源食品中氯氟吡氧乙酸、氟硫草定、氟吡草腙和噻唑烟酸除草剂残留量的测定 液相色谱-质谱/质谱法2017-06-18液相色谱-质谱/质谱法GB 23200.35-2016 食品安全国家标准 植物源性食品中取代脲类农药残留量的测定 液相色谱-质谱法2017-06-18液相色谱-质谱/质谱法GB 23200.121-2021 食品安全国家标准 植物源性食品中331种农药及其代谢物残留量的测定 液相色谱—质谱联用法2021-09-03液相色谱-质谱/质谱法GB 23200.120-2021 食品安全国家标准 植物源性食品中甜菜安残留量的测定 液相色谱—质谱联用法2021-09-03液相色谱-质谱/质谱法GB 23200.119-2021 食品安全国家标准 植物源性食品中沙蚕毒素类农药残留量的测定 气相色谱法2021-09-03气相色谱法GB 23200.118-2021 食品安全国家标准 植物源性食品中单氰胺残留量的测定 液相色谱—质谱联用法2021-09-03液相色谱-质谱/质谱法GB 23200.117-2019 食品安全国家标准 植物源性食品中喹啉铜残留量的测定 高效液相色谱法2020-02-15高效液相色谱法GB 23200.116-2019 食品安全国家标准 植物源性食品中90种有机磷类农药及其代谢物残留量的测定 气相色谱法2020-02-15气相色谱法GB 23200.114-2018 食品安全国家标准 植物源性食品中灭瘟素残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱联用法GB 23200.113-2018 食品安全国家标准 植物源性食品中208种农药及其代谢物残留量的测定 气相色谱-质谱联用法2018-12-21气相色谱-质谱联用法GB 23200.112-2018 食品安全国家标准 植物源性食品中9种氨基甲酸酯类农药及其代谢物残留量的测定 液相色谱-柱后衍生法2018-12-21液相色谱-柱后衍生法GB 23200.111-2018 食品安全国家标准 植物源性食品中唑嘧磺草胺残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱/质谱法GB 23200.110-2018 食品安全国家标准 植物源性食品中氯吡脲残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱/质谱法GB 23200.109-2018 食品安全国家标准 植物源性食品中二氯吡啶酸残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱/质谱法GB 23200.108-2018 食品安全国家标准 植物源性食品中草铵膦残留量的测定 液相色谱-质谱联用法2018-12-21液相色谱-质谱/质谱法GB/T 40348-2021 植物源产品中辣椒素类物质的测定 液相色谱-质谱/质谱法2021-08-20液相色谱-质谱/质谱法GB/T 40267-2021 植物源产品中左旋多巴的测定 高效液相色谱法2021-12-01高效液相色谱法GB/T 40176-2021 植物源性产品中木二糖的测定 亲水保留色谱法2021-12-01亲水保留色谱法GB/T 22288-2008 植物源产品中三聚氰胺、三聚氰酸一酰胺、三聚氰酸二酰胺和三聚氰酸的测定 气相色谱-质谱法2008-12-01气相色谱-串联质谱法农业标准标准名称实施时间仪器方法NY/T 2640-2014 植物源性食品中花青素的测定 高效液相色谱法2015-01-01高效液相色谱法NY/T 2641-2014 植物源性食品中白藜芦醇和白藜芦醇苷的测定 高效液相色谱法2015-01-01高效液相色谱法NY/T 3300-2018 植物源性油料油脂中甘油三酯的测定液相色谱-串联质谱法2018-12-01液相色谱-质谱/质谱法NY/T 3565-2020 植物源食品中有机锡残留量的检测方法 气相色谱-质谱法2020-07-01气相色谱-串联质谱法NY/T 3948-2021 植物源农产品中叶黄素、玉米黄质、β-隐黄质的测定高效液相色谱法2022-05-01高效液相色谱法NY/T 3950-2021 植物源性食品中10种黄酮类化合物的测定 高效液相色谱-串联质谱法2022-05-01液相色谱-质谱/质谱法NY/T 3945-2021 植物源性食品中游离态甾醇、结合态甾醇及总甾醇的测定 气相色谱串联质谱法2022-05-01气相色谱-串联质谱法NY/T 3949-2021 植物源性食品中酚酸类化合物的测定 高效液相色谱-串联质谱法2022-05-01高效液相色谱-质谱法进出口行业标准标准名称实施时间仪器方法SN/T 2233-2020 出口植物源性食品中甲氰菊酯残留量的测定2021-07-01气相色谱-串联质谱法气相色谱法SN/T 5171-2019 出口植物源性食品中去甲乌药碱的测定 液相色谱-质谱/质谱法2020-05-01液相色谱-质谱/质谱法SN/T 0491-2019 出口植物源食品中苯氟磺胺残留量检测方法2020-05-01气相色谱法气相色谱-串联质谱法SN/T 5448-2022 出口植物源性食品中三氯甲基吡啶及其代谢物的测定 气相色谱-质谱/质谱法2022-10-01气相色谱-串联质谱法SN/T 2073-2022 出口植物源食品中7种烟碱类农药残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5445-2022 出口植物源食品中特丁硫磷及其氧类似物(亚砜、砜)的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5443-2022 出口植物源食品中氟吡禾灵、氟吡禾灵酯(含氟吡甲禾灵)及共轭物残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5365-2022 出口植物源性食品中氟唑磺隆和氟吡磺隆残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5449-2022 出口植物源性食品中消螨多残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5446-2022 出口植物源性食品中喹啉铜残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5444-2022 出口植物源食品中咪鲜胺及其代谢产物的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 5442-2022 出口植物源食品中丙硫菌唑及其代谢物残留量的测定 液相色谱-质谱/质谱法2022-10-01液相色谱-质谱/质谱法SN/T 4260-2015 出口植物源食品中粗多糖的测定 苯酚-硫酸法2016-01-01紫外分光光度计SN/T 0293-2014 出口植物源性食品中百草枯和敌草快残留量的测定 液相色谱-质谱/质谱法2014-08-01液相色谱-质谱/质谱法SN/T 0217-2014 出口植物源性食品中多种菊酯残留量的检测方法 气相色谱-质谱法2014-08-01气相色谱-串联质谱法SN/T 5221-2019 出口植物源食品中氯虫苯甲酰胺残留量的测定2020-07-01液相色谱-质谱/质谱法液相色谱法SN/T 1908-2007 泡菜等植物源性食品中寄生虫卵的分离及鉴定规程2007-12-01荧光PCR仪SN/T 3628-2013 出口植物源食品中二硝基苯胺类除草剂残留量测定 气相色谱-质谱/质谱法2014-03-01气相色谱-串联质谱法SN/T 0603-2013 出口植物源食品中四溴菊酯残留量检验方法 液相色谱-质谱/质谱法2014-06-01液相色谱-质谱/质谱法SN/T 3699-2013 出口植物源食品中4种噻唑类杀菌剂残留量的测定 液相色谱-质谱/质谱法2014-06-01液相色谱-质谱/质谱法SN/T 0151-2016 出口植物源食品中乙硫磷残留量的测定2017-03-01气相色谱法气相色谱-串联质谱法SN/T 0337-2019 出口植物源性食品中克百威及其代谢物残留量的测定 液相色谱-质谱/质谱法2020-07-01液相色谱-质谱/质谱法SN/T 0602-2016 出口植物源食品中苄草唑残留量测定方法 液相色谱-质谱/质谱法2017-03-01液相色谱-质谱/质谱法SN/T 0693-2019 出口植物源性食品中烯虫酯残留量的测定2020-07-01气相色谱-串联质谱法液相色谱法SN/T 0217.2-2017 出口植物源性食品中多种拟除虫菊酯残留量的测定 气相色谱-串联质谱法2018-06-01气相色谱-串联质谱法SN/T 5072-2018 出口植物源性食品中甲磺草胺残留量的测定 液相色谱-质谱/质谱法2018-10-01液相色谱-质谱/质谱法SN/T 0695-2018 出口植物源食品中嗪氨灵残留量的测定2018-10-01气相色谱法液相色谱-质谱/质谱法物源性食品检测标准主要集中在农药残留和活性物质检测中,GB 23200系类标准覆盖的农药种类多,数量大,涉及的基质范围广,为农药残留的风险监控提供了高效可靠的法规方法。在农业标准中更关注营养物质的检测,标准中对白藜芦醇和白藜芦醇苷、黄酮类物质、花青素、游离态甾醇等活性物质都要相应的检测方法规定。在检测方法中多用到气相色谱法、气相色谱-串联质谱法、高效液相色谱法、液相色谱-质谱/质谱法等。今年下半年仍有许多植物源性食品标准即将实施:标准名称实施时间仪器方法SN/T 5522.10-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第10部分:豌豆淀粉2023-12-01荧光PCR仪SN/T 5522.1-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第1部分:红薯淀粉2023-12-01荧光PCR仪SN/T 5522.2-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第2部分:木薯淀粉2023-12-01荧光PCR仪SN/T 5522.3-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第3部分:马铃薯淀粉2023-12-01荧光PCR仪SN/T 5522.4-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第4部分:藕淀粉2023-12-01荧光PCR仪SN/T 5522.5-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第5部分:葛根淀粉2023-12-01荧光PCR仪SN/T 5522.6-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第6部分:山药淀粉2023-12-01荧光PCR仪SN/T 5522.7-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第7部分:玉米淀粉2023-12-01荧光PCR仪SN/T 5522.8-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第8部分:小麦淀粉2023-12-01荧光PCR仪SN/T 5522.9-2023 食用淀粉植物源成分鉴别方法 实时荧光PCR法 第9部分:绿豆淀粉2023-12-01荧光PCR仪NY/T 4356-2023 植物源性食品中甜菜碱的测定 高效液相色谱法2023-08-01高效液相色谱法NY/T 4358-2023 植物源性食品中抗性淀粉的测定 分光光度法2023-08-01分光光度法NY/T 4357-2023 植物源性食品中叶绿素的测定 高效液相色谱法2023-08-01高效液相色谱法植物源性食品未实施标准.rar植物源性食品农业标准.rar
  • 中国营养保健食品协会团体标准发布公告
    4月4日,中国营养保健食品协会批准发布《保健食品用原料团体标准编制通则(一)》(T/CNHFA 111.1-2023)等20项团体标准,现予公告,自2023年4月10日起实施。 在这20项团标中,T/CNHFA 111.1-2023 为保健食品用原料团体标准编制通则(一),其他19项为保健食品用原料。标准中对原料的范围、规范性引用文件和技术要求进行了严格的要求,其中各标准附录对标志性成分检验方法进行规定。原料的标志性成分检测方法为薄层层析、紫外-可见分光光度法和高效液相色谱法。推荐发布团体标准信息序号标准编号标准名称标志性成分检验方法1T/CNHFA 111.1-2023保健食品用原料团体标准编制通则(一)//2T/CNHFA 111.2-2023保健食品用原料 枸杞子分枸杞多糖紫外-可见分光光度法3T/CNHFA 111.3-2023保健食品用原料 西洋参人参皂苷高效液相色谱法4T/CNHFA 111.4-2023保健食品用原料 黄芪黄芪甲苷高效液相色谱法5T/CNHFA 111.5-2023保健食品用原料 人参人参皂苷高效液相色谱法6T/CNHFA 111.6-2023保健食品用原料 茯苓茯苓薄层色谱7T/CNHFA 111.7-2023保健食品用原料 葛根葛根素反相高效液相色谱8T/CNHFA 111.8-2023保健食品用原料 银杏叶总黄酮醇苷高效液相色谱法9T/CNHFA 111.9-2023保健食品用原料 决明子大黄酚和橙黄决明素反相高效液相色谱10T/CNHFA 111.10-2023保健食品用原料 金银花皂苷类薄层色谱11T/CNHFA 111.11-2023保健食品用原料 红景天红景天苷反相高效液相色谱12T/CNHFA 111.12-2023保健食品用原料 丹参丹参酮类和丹酚酸 B反相高效液相色谱13T/CNHFA 111.13-2023保健食品用原料 三七人参皂苷和三七皂苷高效液相色谱法14T/CNHFA 111.14-2023保健食品用原料 淫羊藿淫羊藿苷和朝藿定高效液相色谱法15T/CNHFA 111.15-2023保健食品用原料 骨碎补柚皮苷高效液相色谱法16T/CNHFA 111.16-2023保健食品用原料 益智仁益智仁薄层色谱法17T/CNHFA 111.17-2023保健食品用原料 吴茱萸吴茱萸碱、吴茱萸次碱和柠檬苦素反相高效液相色谱18T/CNHFA 111.18-2023保健食品用原料 石斛石斛碱气相色谱法19T/CNHFA 111.19-2023保健食品用原料 铁皮石斛铁皮石斛多糖紫外-可见分光光度法20T/CNHFA 111.20-2023保健食品用原料 越橘花青素紫外-可见分光光度法[230404]111.1-2023 保健食品用原料团体标准编制通则(一).pdf.[230404]111.2-2023 保健食品用原料 枸杞子团体标准.pdf.pdf[230404]111.3-2023 保健食品用原料西洋参团体标准.pdf.pdf[230404]111.5-2023 保健食品用原料人参团体标准.pdf.pdf[230404]111.6-2023 保健食品用原料茯苓团体标准.pdf.pdf[230404]111.4-2023 保健食品用原料黄芪团体标准.pdf.pdf[230404]111.7-2023 保健食品用原料葛根团体标准.pdf.pdf[230404]111.8-2023 保健食品用原料银杏叶团体标准.pdf.pdf[230404]111.9-2023 保健食品用原料金银花团体标准.pdf.pdf[230404]111.10-2023保健食品用原料决明子团体标准.pdf.pdf[230404]111.11-2023 保健食品用原料红景天团体标准.pdf.pdf[230404]111.12-2023 保健食品用原料丹参团体标准.pdf.pdf[230404]111.13-2023 保健食品用原料三七团体标准.pdf.pdf[230404]111.14-2023 保健食品用原料淫羊藿团体标准.pdf.pdf[230404]111.15-2023 保健食品用原料骨碎补团体标准.pdf.pdf[230404]111.16-2023 保健食品用原料益智仁团体标准.pdf.pdf[230404]111.17-2023 保健食品用原料吴茱萸团体标准.pdf.pdf[230404]111.18-2023保健食品用原料石斛团体标准.pdf.pdf[230404]111.19-2023 保健食品用原料铁皮石斛团体标准.pdf.pdf[230404]111.20-2023 保健食品用原料越橘团体标准.pdf.pdf

原花青素标准品相关的仪器

  • 叶绿素花青素测定仪 400-860-5168转4713
    该设备是一款叶夹传感器,可用于测量植物叶片叶绿素和多酚含量。光学传感器可进行简单、快速、无损测量叶片中的叶绿素、多酚以及花青素。叶绿素含量精确测量叶绿素在光合与植物发育过程中起到关键的作用。该设备通过分析投射过叶片的光测量叶绿素。系统经过化学校准,测量值为 μg/cm2 (5-80 μg/cm2量程内)。夹设计传感器-测量叶片中多酚和花青素多酚主要是在接收光后合成。因而其实植物光互作历史的良好指示因子。该设备通过分析多酚以及花青素对叶绿素荧光的屏蔽效应来测量多酚和花青素。多酚和花青素含量以相对吸收单元显示:多酚,0-3;花青素,0-1.5.NBI:氮平衡指数叶绿素经常用于植物氮状态指示。多年研究和实验显示,多酚,特别是黄酮醇,也是植物氮状态的良好指示因子。NBI (氮平衡指数) 组合了叶绿素和黄酮醇与氮/碳分配相关)。该指数是植物氮状态指示因子,与大量氮元素含量直接相关。与叶绿素荧光(叶龄、叶片厚度)相比,NBI 氮平衡指数对环境条件变化不敏感。测量材料对叶绿素荧光的透射和屏蔽效应测量参数叶绿素 (CHL), 多酚 (FLAV), 叶黄素 (ANTH), NBI精度5%可重复性CHL(4,5% ), FLAV(3,5%)和ANTH可重复性CHL(1,3%), FLAV(2%)和ANTH测量区域19,6 mm2叶片厚度最大1.5 mm测量时间 1 s用户界面LCD屏,声音报警定位内置 GPS相对精度 2,5 m (CEP, 50%, 24 h 静态)存储10000多参数数据数据输出.csv 文件数据传输USB
    留言咨询
  • 一、概述ACM-200+花青素含量测量仪可快速接触式测定植物叶片和花片的花青素含量。减少研磨或损伤性化学测量方法带来的损坏!测量快速、无损并且易于进行,使研究者能够收集到与化学测定高度相关的可信赖数据。 二、用途 广泛应用于富含花青素植物的筛选及培育、蔬菜水果品质检测、植物生理生态研究(花青素与各种环境因子的关系)、食品及药品的开发等方面的科学研究。 三、测量原理 ACM200+花青素含量测量仪,通过测量样品在931nm透射率与530nm透射率,然后计算其比值得到ACI值。这是一个归一化的数学指数,与叶绿素含量测量仪使用的指数相似。但与所测样品的花青素含量显著相关,由此来反映叶片或样品厚度及花青素含量的变异。ACM-200+的设计使其高度可靠并持久耐用。它使用大面积样品测量头获得较大测量面积的信号平均值。与小面积样本测定方法相比,该方法充分考虑了测量区域面积的变异对测量结果重复性和可靠性的影响。 四、特征 l 可存储多达160,000次测量值或包含GPS数据的94,000次测量值l 轻巧便携,手持设计,便于野外测量l 显示花青素含量指数(ACI)并计算样品均值l 内置数据采集器,数据存储在非易失性闪存内,无需担心数据丢失 l USB输出:通用的USB端口可让用户快速便捷地下载数据l 图形化数据显示l 独立操作-无需PC 五、组成 主机(含电池),软件,USB通讯缆线,使用手册,便携箱 六、技术参数测量参数:两个光吸收谱带(530nm和931nm)。用来测量花青素含量并对叶片厚度进行补偿。测量区域:直径为3/8英寸的圆(0.71mm2)分辨率:+/- 1 ACI Unit重复精度:+/- 1%光源:(1) LED(峰值为530nm) (2) 红外光LED(峰值为931nm)内存容量:94,000到160,000个测量模式:单点测量模式;2~30个点平均值;自动过滤超出2&sigma 范围的10~30个点平均值注释:每个测量或需要注意的修改都可添加数字字母注释用户界面:128× 32像素显示屏,6个控制及数据操作按键,具有状态和警报提示音输出:USB1.1和可匹配GPS的RS232端口温度范围:0-50℃温度漂移:温度补偿源和检测器电路确保在整个范围内实现最小漂移电源:9v碱性电池七、产地:美国 八、参考文献 [1] Morris J.B., Wang M.L. (2007) Anthocyanin and Potential Therapeutic Traits in Clitoria, Desmodium, Catharanthus and Hibiscus Species Acta Hort. 756, ISHS 2007[2] van den Berg A.K., Perkins T.D. (2005) Nondestructive Estimation of Anthocyanin Content in Autumn Sugar Maple Leaves. HortScience 40(3):685-686. 2005[3] Henry D. Schreiber1 and Nicholas A. Wade. (2007)Field-portable Analysis of Anthocyanin Concentration in Sepals of Hydrangea macrophylla, HortScience 42(6):1323&ndash 1325. 2007.[4] Anatoly A. Gitelson, Olga B. Chivkunova, and Mark N. Merzlyak. (2009) Nondestructive Estimation of Anthocyanin and Chlorophyll in Anthocyanic Leaves. American Journal of Botany 96(10): 1861&ndash 1868. 2009.
    留言咨询
  • 花青素含量测定仪 400-860-5168转4713
    该设备是一款叶夹传感器,可用于测量植物叶片叶绿素和多酚含量。系统采用专利设计,光学传感器可进行简单、快速、无损测量叶片中的叶绿素、多酚以及花青素。叶绿素含量精确测量叶绿素在光合与植物发育过程中起到关键的作用。该设备通过分析投射过叶片的光测量叶绿素。系统经过化学校准,测量值为μg/cm2 (5-80 μg/cm2量程内)。独特夹设计传感器-测量叶片中多酚和花青素多酚主要是在接收光后合成。因而其实植物光互作历史的良好指示因子。该设备通过分析多酚以及花青素对叶绿素荧光的屏蔽效应来测量多酚和花青素。多酚和花青素含量以相对吸收单元显示:多酚,0-3;花青素,0-1.5.NBI® :氮平衡指数叶绿素经常用于植物氮状态指示。多年研究和实验显示,多酚,特别是黄酮醇,也是植物氮状态的良好指示因子。NBI® (氮平衡指数) 组合了叶绿素和黄酮醇与氮/碳分配相关)。该指数是植物氮状态指示因子,与大量氮元素含量直接相关。与叶绿素荧光(叶龄、叶片厚度)相比,NBI® 氮平衡指数对环境条件变化不敏感。测量材料对叶绿素荧光的透射和屏蔽效应测量参数叶绿素 (CHL), 多酚 (FLAV), 叶黄素 (ANTH), NBI精度5%可重复性CHL(4,5% ), FLAV(3,5%)和ANTH可重复性CHL(1,3%), FLAV(2%)和ANTH测量区域19,6 mm2叶片厚度最大1.5 mm测量时间 1 s用户界面LCD屏,声音报警定位内置 GPS相对精度 2,5 m (CEP, 50%, 24 h 静态)存储10000多参数数据数据输出.csv 文件数据传输USB
    留言咨询

原花青素标准品相关的耗材

  • 绿百草科技专业提供分析花青素的色谱柱Kromasil C18
    绿百草科技专业提供分析花青素的色谱柱Kromasil C18,货号为100-5-C18 4.6 × 250 关键词:Kromasil C18色谱柱,100-5-C18 4.6 × 250,花青素,绿百草科技 绿百草科技专业提供Kromasil C18色谱柱。货号为100-5-C18 4.6 × 250的Kromasil C18色谱柱可用来分析花青素。流动相A为甲酸/水(10/100);流动相B为甲酸/水/甲醇(5/45/50);检测温度为23℃. 绿百草科技可提供详细的操作条件和谱图。 需要详细的信息请和绿百草科技联系:010-51659766 登录网站获得更多产品信息: www.greenherbs.com.cn
  • 岛津 同位素标准品
    眼下全球生物分析行业发展如火如荼,尤其在中国因仿制药一致性评价工作的深入和推荐,生物等效性(BE)实验项目受到越来越多的关注。另外随着国民生活水平的提高和对医疗健康的重视,临床医学精准检测的发展也是突飞猛进。LCMS 仪器因其超高的灵敏度逐渐成为生物样品分析的“黄金标准”。稳定同位素标准品作为一种特殊形式的标准品,是在化合物生产合成中引入了如2H,13C,15N等稳定同位素对化合物进行标记,并提纯而制成的一类标准品。不含同位素的标准品(即原型化合物)与稳定同位素标记的标准品有着相同的化学性质、稳定性、溶解度和色谱性质。但是因为质量数上有一定差异,在质谱仪器上两者可以被区分出来。稳定同位素标准品作为内标来进行方法定量,已经成为 LCMS 仪器分析定量的“黄金标准”。
  • 尿素标准品
    元素仪测定CHNO用标准品 适用仪器及货号 Thermo finnigan、PerkinElmer、Elementar SA999925/5B
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制