实验级制冷型仪

仪器信息网实验级制冷型仪专题为您提供2024年最新实验级制冷型仪价格报价、厂家品牌的相关信息, 包括实验级制冷型仪参数、型号等,不管是国产,还是进口品牌的实验级制冷型仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合实验级制冷型仪相关的耗材配件、试剂标物,还有实验级制冷型仪相关的最新资讯、资料,以及实验级制冷型仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

实验级制冷型仪相关的厂商

  • 嘉兴鸿旭制冷设备有限公司主营风幕柜加湿器、蔬果架加湿器、冷库加湿器、气调库加湿器等各种加湿器、超声波加湿器、湿膜加湿器、高压微雾加湿器、离心加湿器、除湿机、工业除湿机、管道除湿机等等。我公司主营加湿器能够广泛应用于半导体电子设备厂房、光纤、电子、烟草行业、净化行业、电池行业、纺织厂、喷漆厂、印刷厂、造纸厂、木材厂、制药车间、计算机房、程控机房、电信机房、精密机械、精密机房、仪器仪表、图书室、实验室、美术馆、博物馆、医院手术室、地下工程、电脑室、资料室、档案馆、保龄球馆、储藏、家庭、写字楼、宾馆公寓饭店、气调库、大棚、菌种培植、园艺、温室、食品加工车间等中央空tiaO系统加湿或空间直接加湿(保湿、恒湿、回潮、降温、消毒、保鲜、储藏、植绒、降尘、除静电、云雾景观、美容护肤)实现对生活环境的舒适性加湿和生产加工测试储运环境的工艺性加湿。
    留言咨询
  • 北京亿达制冷设备有限公司隶属深圳安亿达北京分部是一家专业研发、生产、销售制冷设备及空调设备的厂商。如冷热水系统设计与安装工程、洁净空调工程、恒温恒湿仓储与实验室、售后维修与保养等为一体化的冷暖专业性方案解决厂商。深圳市安亿达制冷设备有限公司隶属于Anyda集团,公司成立于2003年,,注册资本 500万元 ,占地面积8900㎡,本公司专业提供制冷设备的设计研发、生产制造、销售、维护及注塑等周边设备的配套工程服务。安亿达拥有多年研发和专业制造生产经验,集现代化与一体的管理,严格执行ISO90012000和CE欧盟管理体系标准,使企业发展不断向前迈进,为满足客户需求,投入大量资金,不断加强人才培训与生产技术改良,以先进的技术和严谨的控管系统实现专业品牌形象。公司为全面提高市场竞争力大量选用欧美日等国的高品质配件,引进各种先进的加工设备,如CNC加工设备、AMADA数控冲床、数控折床、自动恒温测试台等,使产品品质得到大幅度提高。公司聘请多名高级工程师、大批专业技术人员,凭借“勇于创新,精益求精,专注制冷,用心服务”的核心价值,创造出一批又一批的高质量、高效率制冷设备。长期以来,依靠安亿达良好的社会形象,培养了大量忠实客户,产品远销欧美非洲等国家,深受客户欢迎。希望通过我们的专业水平和不懈努力,做好制冷企业领军形象,为客户量身打造优化节能方案。本公司主要产品有:螺杆式冷水机组、工业冷水机组、风冷式冷水机、水冷式冷水机、恒温冷水机、冷热两用一体机、满液式冷水机、防爆型冷水机、低温冷水机、盐水冷冻机、乙二醇冷冻机、激光冷水机、电镀冷水机、化工冷水机、食品专用冷水机、药品专用冷水机、养殖专用冷水机、注塑专用冷水机、混泥土专用冷水机、工业冷风机、低温冷风机、冷油机、运水式模温机、运油式模温机、恒温恒湿空调、水冷柜式空调、中央空调机组、空气能热水机组、冷却塔等。公司建立了一整套完整的销售和售后服务网络,分别在北京、天津、上海、山东、浙江、四川、重庆、江苏、福建、广西、贵州等地设立了办事处,以满足客户的任何需要。无论何时何地,深圳安亿达制冷将与您同行,成功的路上,我们助您一臂之力。
    留言咨询
  • 深圳市吉美斯制冷设备有限公司从事温度控制系统工程有10多年历史了。为了更好 的服务客户先后在深圳,天津,南宁,广州,上海,重庆等地区成 立多个办事处服务点。以生产冷水机,冷冻机,冰水机,冷水机组,冰水机组,冷冻机 组,工业冷水机,水冷机,工业冷冻机,水冷式冷水机,风冷式冷水机,制冷机,螺杆冷 水机,螺杆冷冻机,螺杆冰水机、冷风机、低温螺杆机、超低温冷冻机、冷热一体 机、冷油机,加热器和其它非标 温度控制设备。公司拥有最先进的管理制度,一流的技术力量,专业资深的技术团队,可根 据每一位顾客要求,量身定制最实用、最完美、最经济的技术方案,以最热诚的 态度,最专业贴心的技术,服务每一位顾客,帮顾客解决控温问题。
    留言咨询

实验级制冷型仪相关的仪器

  • NOVA 实验级制冷型光纤光谱仪极致弱光,完美分析 复享仪器的旗舰产品NOVA系列光纤光谱仪是一款具有热电内制冷技术的面阵背照式光谱仪,采用了高分辨光学平台,兼具了高分辨和低噪音的能力,特别适用于需要长时间曝光的弱光检测场合,例如需要进行荧光信号检测和拉曼信号检测的用户。 NOVA系列光纤光谱仪采用高分辨光学平台,平衡光谱仪光学分辨率与灵敏度性能;使用了高灵敏的探测器,和先进的片内制冷技术,能够感知更为微弱的光谱信号,是实验室弱光领域检测的首选产品。 NOVA可以达到90%的量子化效率,同时具备了更优秀的紫外响应和更低的杂散光处理技术,高信噪比和高速信号传输等特点。完美地结合了滨松面阵背照式FFT-CCD、复享EX光栅和EX滤光片技术,兼具了低电子噪音、高紫外灵敏度、高量子化效率、高动态范围和超宽谱段等诸多优点,是众多有弱光检测,紫外灵敏及宽谱段需求之领域的最高端产品。 产品概述极弱荧光测量系统更高信噪比和灵敏度拉曼/荧光/角分辨测量NOVA具有单点1000:1的信噪比,高于PG2000-Pro的500:1,和FX的300:1。另外,由于NOVA的纵向像素更多,因此,其信噪比性能实际上会更加优秀由于NOVA的优秀性能,如果配上合适的滤光片和探头就可以探测液体、固体和粉末的荧光信号,甚至拉曼信号;如果配上显微镜,就可以探测微小区域的微弱光谱信号更多信息:应用案例反射/透射/吸收光谱测量高灵敏光谱测量显微荧光光谱测量等离子和辐射测量弱光检测荧光分析拉曼光谱分析等弱光检测领域通过显微镜的C口连接NOVA制冷型光谱仪,测量微区荧光光谱 微区荧光光谱,例如量子点荧光、细胞荧光等,由于样品微小,使用普通光谱仪难以获得有效光谱信息。利用高灵敏的制冷型光谱仪NOVA,组合商用显微镜,可以获取指定位置的微区样品荧光光谱信息。另外,为了提高显微镜至光谱仪的光强耦合效率,复享还提供旁轴光谱输出接口,详见iMicro系列产品。通过制冷型光谱仪NOVA测量传感光纤的细微光谱变化 当温度、压力或振动变化时,传感光纤的光谱特性会发生变化。使用具有高灵敏和高稳定的制冷型光谱仪NOVA,能够有效提高光谱测量的精度,从而更好地研究光纤传感器的光谱特性。通过制冷型光谱仪NOVA测量液体的微弱荧光辐射 有些溶液的荧光信号非常微弱,为了捕捉这些微弱的荧光型号,需要使用具有高灵敏的制冷型光谱仪NOVA。同时,由于NOVA能够实现长达15分钟的积分曝光,因此能够收集更加微弱的光谱信号。应用高灵敏的制冷型光谱仪NOVA动态监测药物在活体动物体内的动力学变化 不同于切片样品,通常,活体动物体内的药物荧光会非常微弱。同时,使用大型光谱仪对活体动物进行光谱测量非常困难,因此,在这种研究中需要使用具有高灵敏的微型光谱仪。制冷型光谱仪NOVA就是能够满足这种应用的微型光谱仪。其具有极佳的便携性,能满足各种复杂的实验条件。加上复享丰富的光谱测量附件,基于NOVA的光谱测量系统非常适合此类的科学研究。 除此之外,如果配备积分球或余弦矫正器,还可以测量药物发光的绝对辐射强度,有利于对药物的外量子化效率进行研究。典型图谱几款光谱仪暗背景光谱对比 在完全无光(暗背景)的情况下,光谱仪采集的信号完全来自于本身的噪音。因此,对比暗背景光谱,即可以知道光谱仪的噪音水平。上图是工业级光谱仪FX4000、研究级高灵敏光谱仪PG2000-Pro、和实验室级制冷型光谱仪NOVA的暗背景光谱对比图。可以看出,NOVA的噪音要远低于FX4000,同时也明显优于PG2000-Pro产品特点1、高分辨光学平台,平衡光谱仪光学分辨率与灵敏度性能;2、全谱段技术,使用线性渐变消高阶滤光片和可变闪耀光栅,解决了宽谱段效率均衡与高阶干扰的问题,最宽谱段覆盖范围达200-1100 nm;3、低噪音技术,热电内制冷技术(TEC)极大地降低了光谱仪的暗电流噪音,信噪比可达1000:14、长时曝光技术,最长曝光时间可达15min,提升了光谱仪的弱光采集能力;5、底层调用技术,支持系统集成开发,方便用户更快速地开发光谱仪应用程序。关键技术EX宽谱段技术EX技术是复享科技的核心技术之一,包括了EX全波段滤光片技术和EX可变波长闪耀光栅技术。EX技术可以将光谱仪一次采谱波段拓展至深紫外190 nm至近红外1100 nm波段。低杂散光技术 低杂散光技术能够有效地降低光谱仪内部的杂散光,适用于高精度的吸收、透过、反射和吸收度测量。复享的各款光谱仪产品均可以配置低杂散光技术面阵背照式技术面阵背照式技术具有低噪音、高量子化效率、深紫外灵敏的优点。复享仪器采用高品质的面阵背照式FFT-CCD,为弱光检测和超快检测带来全新光谱设备热电制冷技术通过在CCD芯片内集成热电制冷器,能够更加精确地降低CCD片内温度。复享的实验室级产品均采用内制冷技术降低光谱仪的暗电流噪音,延长积分时间高分辨技术使用基于PG的高分辨光学平台,具有100mm焦距,同时使用对称式C-T光路,消除像差,有效地提升光谱分辨率产品性能探测器(典型值)项目值型号:S7031-1006类型:面阵背照式FFT-CCD制冷:内一级热电制冷(TEC)像素:1044×64 total pixels探测器面积:纵向24.576 mm,横向1.392 mm阱深:纵向320 ke-,横向1000 ke-量子化效率:峰值95%,250 nm处85%暗电流噪音:10 e-/pixel/sec @ 0 oC光谱仪项目值光谱范围:200-1100 nm (视光栅而定)光学分辨率:0.41-6.78 nm信噪比:1000:1A/D转化:16 bits暗噪音:6 RMS Counts@10 ms动态范围10000:1积分时间:8 ms-15 minutes矫正线性度:99%杂散光:0.85% at 600nm制冷项目值范围:0 oC to 50.0 oC no condensation起始点:软件控制,低于环境温度40 oC,最低-15 oC稳定性:+/-0.1 oC
    留言咨询
  • NOVA 实验级制冷型光纤光谱仪极致弱光,完美分析 复享仪器的旗舰产品NOVA系列光纤光谱仪是一款具有热电内制冷技术的面阵背照式光谱仪,采用了高分辨光学平台,兼具了高分辨和低噪音的能力,特别适用于需要长时间曝光的弱光检测场合,例如需要进行荧光信号检测和拉曼信号检测的用户。 NOVA系列光纤光谱仪采用高分辨光学平台,平衡光谱仪光学分辨率与灵敏度性能;使用了高灵敏的探测器,和先进的片内制冷技术,能够感知更为微弱的光谱信号,是实验室弱光领域检测的首选产品。 NOVA可以达到90%的量子化效率,同时具备了更优秀的紫外响应和更低的杂散光处理技术,高信噪比和高速信号传输等特点。完美地结合了滨松面阵背照式FFT-CCD、复享EX光栅和EX滤光片技术,兼具了低电子噪音、高紫外灵敏度、高量子化效率、高动态范围和超宽谱段等诸多优点,是众多有弱光检测,紫外灵敏及宽谱段需求之领域的最高端产品。 产品概述极弱荧光测量系统更高信噪比和灵敏度拉曼/荧光/角分辨测量NOVA具有单点1000:1的信噪比,高于PG2000-Pro的500:1,和FX的300:1。另外,由于NOVA的纵向像素更多,因此,其信噪比性能实际上会更加优秀由于NOVA的优秀性能,如果配上合适的滤光片和探头就可以探测液体、固体和粉末的荧光信号,甚至拉曼信号;如果配上显微镜,就可以探测微小区域的微弱光谱信号更多信息:应用案例反射/透射/吸收光谱测量高灵敏光谱测量显微荧光光谱测量等离子和辐射测量弱光检测荧光分析拉曼光谱分析等弱光检测领域通过显微镜的C口连接NOVA制冷型光谱仪,测量微区荧光光谱 微区荧光光谱,例如量子点荧光、细胞荧光等,由于样品微小,使用普通光谱仪难以获得有效光谱信息。利用高灵敏的制冷型光谱仪NOVA,组合商用显微镜,可以获取指定位置的微区样品荧光光谱信息。另外,为了提高显微镜至光谱仪的光强耦合效率,复享还提供旁轴光谱输出接口,详见iMicro系列产品。通过制冷型光谱仪NOVA测量传感光纤的细微光谱变化 当温度、压力或振动变化时,传感光纤的光谱特性会发生变化。使用具有高灵敏和高稳定的制冷型光谱仪NOVA,能够有效提高光谱测量的精度,从而更好地研究光纤传感器的光谱特性。通过制冷型光谱仪NOVA测量液体的微弱荧光辐射 有些溶液的荧光信号非常微弱,为了捕捉这些微弱的荧光型号,需要使用具有高灵敏的制冷型光谱仪NOVA。同时,由于NOVA能够实现长达15分钟的积分曝光,因此能够收集更加微弱的光谱信号。应用高灵敏的制冷型光谱仪NOVA动态监测药物在活体动物体内的动力学变化 不同于切片样品,通常,活体动物体内的药物荧光会非常微弱。同时,使用大型光谱仪对活体动物进行光谱测量非常困难,因此,在这种研究中需要使用具有高灵敏的微型光谱仪。制冷型光谱仪NOVA就是能够满足这种应用的微型光谱仪。其具有极佳的便携性,能满足各种复杂的实验条件。加上复享丰富的光谱测量附件,基于NOVA的光谱测量系统非常适合此类的科学研究。 除此之外,如果配备积分球或余弦矫正器,还可以测量药物发光的绝对辐射强度,有利于对药物的外量子化效率进行研究。典型图谱几款光谱仪暗背景光谱对比 在完全无光(暗背景)的情况下,光谱仪采集的信号完全来自于本身的噪音。因此,对比暗背景光谱,即可以知道光谱仪的噪音水平。上图是工业级光谱仪FX4000、研究级高灵敏光谱仪PG2000-Pro、和实验室级制冷型光谱仪NOVA的暗背景光谱对比图。可以看出,NOVA的噪音要远低于FX4000,同时也明显优于PG2000-Pro产品特点1、高分辨光学平台,平衡光谱仪光学分辨率与灵敏度性能;2、全谱段技术,使用线性渐变消高阶滤光片和可变闪耀光栅,解决了宽谱段效率均衡与高阶干扰的问题,最宽谱段覆盖范围达200-1100 nm;3、低噪音技术,热电内制冷技术(TEC)极大地降低了光谱仪的暗电流噪音,信噪比可达1000:14、长时曝光技术,最长曝光时间可达15min,提升了光谱仪的弱光采集能力;5、底层调用技术,支持系统集成开发,方便用户更快速地开发光谱仪应用程序。关键技术EX宽谱段技术EX技术是复享科技的核心技术之一,包括了EX全波段滤光片技术和EX可变波长闪耀光栅技术。EX技术可以将光谱仪一次采谱波段拓展至深紫外190 nm至近红外1100 nm波段。低杂散光技术 低杂散光技术能够有效地降低光谱仪内部的杂散光,适用于高精度的吸收、透过、反射和吸收度测量。复享的各款光谱仪产品均可以配置低杂散光技术面阵背照式技术面阵背照式技术具有低噪音、高量子化效率、深紫外灵敏的优点。复享仪器采用高品质的面阵背照式FFT-CCD,为弱光检测和超快检测带来全新光谱设备热电制冷技术通过在CCD芯片内集成热电制冷器,能够更加精确地降低CCD片内温度。复享的实验室级产品均采用内制冷技术降低光谱仪的暗电流噪音,延长积分时间高分辨技术使用基于PG的高分辨光学平台,具有100mm焦距,同时使用对称式C-T光路,消除像差,有效地提升光谱分辨率产品性能探测器(典型值)项目值型号:S7031-1006类型:面阵背照式FFT-CCD制冷:内一级热电制冷(TEC)像素:1044×64 total pixels探测器面积:纵向24.576 mm,横向1.392 mm阱深:纵向320 ke-,横向1000 ke-量子化效率:峰值95%,250 nm处85%暗电流噪音:10 e-/pixel/sec @ 0 oC光谱仪项目值光谱范围:200-1100 nm (视光栅而定)光学分辨率:0.41-6.78 nm信噪比:1000:1A/D转化:16 bits暗噪音:6 RMS Counts@10 ms动态范围10000:1积分时间:8 ms-15 minutes矫正线性度:99%杂散光:0.85% at 600nm制冷项目值范围:0 oC to 50.0 oC no condensation起始点:软件控制,低于环境温度40 oC,最低-15 oC稳定性:+/-0.1 oC
    留言咨询
  • ICE是一款科研级适用于极弱光检测的微型光谱仪,采用滨松面阵背照式探测器FFT-CCD,长焦高分辨率光学平台及光学组件设计,具有更低的杂散光和更高的灵敏度。适用于需要极弱光谱检测及紫外光谱分析的领域,如实验室级科学研究、荧光光谱分析、拉曼光谱分析、深紫外光谱分析、显微光谱分析、吸收光谱分析等。产品说明芯片制冷----主动芯片级热电制冷CCD,制冷性能更优越,信噪比更高;弱光检测----多像素、高信噪比,便于弱光检测;长时曝光----1044x64面阵背照式探测器,灵敏度更高、*效曝光时间更长,非常适合拉曼、荧光等微弱光信号采集;快速开发----提供软件开发工具,封装所有功能,一处添加,多处调用支持定制-----波长范围从190nm到1100nm可选,狭缝从5um到250um可选
    留言咨询

实验级制冷型仪相关的资讯

  • 小菲课堂|制冷型or非制冷型红外热像仪,我们该如何抉择?
    多年来,科学家、研究人员和研发专家热衷于将红外热像仪运用在广泛的应用领域中,包括工业研发、学术研究、无损检测(NDT)和材料检测,以及国防与航空航天等。但是,并非所有的红外热像仪均具有同等的品质功能,或者可用于一些专门的应用。譬如,要想获得精确的测量值,则需要配备高速定格动画功能的先进红外热像仪。今天,小菲就教大家如何选择制冷型和非制冷型红外热像仪!各有千秋制冷型红外热像仪先进的制冷型红外热像仪配有集成低温制冷机的成像探测器。这是一款可将探测器温度降低至制冷温度的设备。为了将热噪声降至场景成像信号水平之下,探测器温度的下降必不可少。制冷型红外热像仪是最敏感型红外热像仪,可探测物体间最细微的温差。它们工作在光谱中波红外(MWIR)波段和长波红外(LWIR)波段,因为从物理学角度来讲在这些波段热灵敏度较高。热灵敏度是指信号变化相对于目标温度变化。热灵敏度越高,就越容易探测那些目标温度与背景差异不大的场景。FLIR A6700sc是一款科研级中波红外锑化铟热像仪,能生成细节丰富的327,680像素热图像。非制冷型红外热像仪非制冷型红外红外热像仪是一款其中配备的成像探测器无需低温制冷的红外热像仪。常见的探测器设计基于热释电探测器,这是一种拥有较大温度测量系数的小型氧化钒电阻,表面积较大、热容量低,以及热绝缘效果佳。场景温度变化会导致红外探测器温度变化,从而将转化为电信号,并经过处理产生图像。非制冷型探测器用在长波红外(LWIR)波段中,与地面温度类似的目标在该波段中放射出的红外热能最多。相比制冷式探测器,非制冷型探测器的制造步骤更少,产率更高,真空包装成本更低,而且非制冷型红外热像仪无需极其高昂的低温制冷机设备。非制冷型红外热像仪配有较少的活动部件,在类似的工作条件下,其往往较制冷型红外热像仪具有更长的使用寿命。FLIR T650sc配备一台非制冷型氧化钒(VOx)微测辐射热计探测器,能生成640×480像素的热图像。非制冷型红外热像仪展现的优势带来了两难的问题:研发/科学应用什么时候使用制冷型红外热像仪?答案是:取决于应用需求。实例对比如果你想要发现微小的温差变化,需要图像质量,拍摄快速移动或发热目标;如果你需要看清热变化过程,或者测量极小目标的温度;如果你希望在非常明确的电磁波谱部位可见热对象;抑或你希望将红外热像仪与其他测温设备同步工作,制冷型红外热像仪则是适合你的仪器。01速度制冷型红外热像仪的成像速度快于非制冷型红外热像仪。高速热像成像的曝光时间可达到微秒,能够停止动态场景的表观运动,并可捕获每秒62,000帧以上的帧速率。其应用包括热分析和动态分析喷气式发动机涡轮叶片、汽车轮胎或安全气囊检测、超音速弹丸,以及爆炸等。制冷型红外热像仪具有极快的响应速度,并充分利用全局快门优势。这意味着它们能够同时读出所有的像素,而并非如非制冷型红外热像仪一样逐行读取,从而使制冷型红外热像仪能够捕获清晰的图像和对移动物体进行测温。这些红外图像对比了以20 mph速度旋转的轮胎的拍摄效果。左边这张是用制冷型红外热像仪拍摄的。您可能会觉得轮胎并未在转动,但这是制冷型红外热像仪在极其高速条件下的拍摄结果,它会“定格”轮胎的转动。非制冷型红外热像仪的拍摄速度太慢,无法捕捉到轮胎旋转时使得轮辐显得透明的瞬间。02空间分辨率下面热图像对比了采用制冷型和非制冷型红外热像仪系统可实现的特写放大效果。左边的红外图像是用带4倍近焦镜头和像元间距13μm制冷型红外热像仪的组合装置拍摄的,其光斑尺寸为3.5μm。右边的红外图像是用带1倍近焦镜头和像元间距25μm非制冷型红外热像仪的组合装置拍摄的,其光斑尺寸为25μm。由于传感红外波长较短,制冷型红外热像仪通常具有比非制冷型红外热像仪更强的放大功能。由于制冷型红外热像仪的灵敏度更高,因此可使用带更多光学元件或更厚元件的镜头而不降低信号噪声比,从而提升了放大功能。03灵敏度制冷型红外热像仪灵敏度改善带来的价值往往并不显而易见。为了对比灵敏度的优势,我们做了一个快速的灵敏度实验。我们将手按在墙上停留几秒钟来创建手印的热图像,以此进行对比。开始的两张图像显示了手移开瞬间的手印。第二组图像显示了两分钟后手印的热特征。您可看见:制冷型红外热像仪仍能捕捉手印的大部分热特征,而非制冷型红外热像仪仅能捕捉其部分热特征。显而易见,制冷型红外热像仪比非制冷型红外热像仪能检测到更细微的温差,其检测的持续时间也更长。这意味着:制冷型红外热像仪能更清晰地显示被测目标的细节,并能帮助您检测到最微弱的热异常。04光谱滤波制冷型红外热像仪优势之一是能够轻松进行光谱滤波,以便侦测细节和测温,而这两点使用非制冷型红外热像仪则难以做到。实例一:我们使用了滤片,将其置于镜头后的滤片支架内或者内置在杜瓦探测器组件内,以便让火焰完整成像。过去,终端用户希望测量和表征火焰内的煤颗粒的燃烧现象。借助“看穿火焰”的光谱红外滤片,我们对制冷型红外热像仪进行了光谱波段滤波处理,在该波段中火焰为穿透式,因而我们能够对煤颗粒进行成像。图一为不带火焰滤片拍摄的图像,我们看到的都是火焰本身。第二张图为带火焰滤片拍摄的图像,我们能够清晰地看清煤颗粒燃烧情况。05同步精确的红外热像仪同步和触发功能使红外热像仪成为高速、高热灵敏度应用的理想之选。通过快照模式工作,FLIR A6750sc能够同步捕捉热活动中的所有像素。这对于监测快速移动物体时尤其重要,在这种时候,标准的非制冷式红外热像仪会使图像变得模糊。图中的图像即是良好的示例。在该例中,我们扔下一枚硬币,并通过传感器触发红外热像仪拍摄图像。两次抛扔相同硬币时,同时触发红外热像仪,你每次都会看到物体处于相同的位置。借助非制冷式红外探测器红外热像仪,你根本无法捕获硬币,因为其无法触发此类型探测器。如果不走运的话,图像可能模糊不清。FLIR红外热像仪配备制冷型探测器的红外热像仪比配备非制冷型探测器的红外热像仪具有更多优势,但是这类热像仪价格更昂贵。FLIR高性能制冷型红外热像仪有FLIR A6750sc、A8300sc、SC6000、SC7000、SC8000、X6000sc和X8000sc,它们在红外中波和红外长波光谱波段中具有超快速、超灵敏性能,而FLIR A6250sc则可在近红外光谱波段中操作。FLIR还提供各种非制冷式红外热像仪,包括入门级桌面实验套件和像FLIR T650sc一样的高端系统。专用镜头和软件将让您的红外热像仪解决方案满足特定的应用。选择制冷型与非制冷型红外热像仪主要是根据您的用途
  • 小菲课堂|详细解读制冷型与非制冷型光学气体成像热像仪
    十多年来,FLIR光学气体成像(OGI)热像仪一直用来可视化各种气体泄漏。这些OGI热像仪的开发是为了“看到”各种气体,包括碳氢化合物、二氧化碳、六氟化硫、制冷剂、一氧化碳、氨等。FLIR OGI热像仪被应用于各行各业,包括减少排放、提高生产效率和确保安全的工作环境。与其他检测技术相比,OGI热像仪的一大优势是该技术能够在不中断工业过程的情况下精准定位气体泄漏部件。从历史上看,OGI热像仪一直采用制冷型红外探测器,与非制冷型红外探测器相比具有多个优势,但成本往往更高。非制冷型红外探测器技术的进步使得像FLIR OGI热像仪这样的制造商,能够为相关行业设计和开发成本较低的OGI解决方案。尽管成本较低,但与使用制冷型探测器的热像仪相比,使用非制冷型红外探测器的热像仪存在一定局限性。光学气体成像背后的科学在我们讨论OGI热像仪中制冷或非制冷探测器的问题之前,我们可以先解释这项技术背后的理论。光学气体成像可以比作通过普通的摄像机进行观察,但操作员看到的是一股类似烟雾的气体喷出。如果没有OGI热像仪,这将是肉眼完全看不见的。为了能看到这种气体飘动,OGI热像仪使用了一种独特的光谱(依赖于波长)过滤方法,使它能够检测到特定的气体化合物。在制冷型探测器中,滤波器将允许通过探测器的辐射波长限制在一个非常窄的波段,称为带通,这种技术被称为光谱自适应。光谱自适应OGI热像仪利用某些分子的吸收特性,将它们在原生环境中可视化。热像仪焦平面阵列(FPAs)和光学系统专门调整到非常窄的光谱范围,通常在数百纳米左右,因此具有超选择性。只能检测到由窄带通滤波器分隔的红外区域中的被气体吸收的红外波段。大多数化合物的红外吸收特性取决于波长。氢、氧和氮等惰性气体无法直接成像。黄色区域显示了一个光谱滤波器,设计用于对应大部分背景红外能量将被甲烷吸收的波长范围。(图中横坐标代表波长,纵坐标代表甲烷气体的透射率)如果将OGI热像仪对准没有气体泄漏的场景,视野中的物体将通过热像仪的镜头和滤光片透射和反射红外辐射。如果物体和热像仪之间存在气体云,并且该气体吸收滤波器带通范围内的辐射,那么通过气体云到达探测器的辐射量将减少或增加。具体情况要看气体云与背景的关系,云与背景之间必须有一个辐射的对比。总而言之,让气体可见的关键是:气体必须吸收热像仪看到的波段中的红外辐射;气体云必须与背景形成辐射对比;气体云的表面温度必须与背景不同。此外,运动使气体云更容易可视化。熟悉光学气体成像相关的波长为了解决理解“制冷与非制冷”光学气体成像热像仪的挑战,您需要了解与光学气体成像相关的波长以及这些热像仪中使用的探测器。OGI热像仪的两个主要波长通常被称为中波(3到5微米)和长波(7到12微米)。在气体成像领域,这些区域也可以称为“功能区”和“指纹区”。在功能区,一个热像仪可以看到单一类别的更多气体,而许多单独的气体在指纹区有特定的吸收特征。几乎所有碳氢化合物气体都在FLIR GF320的过滤区域(黄色部分)吸收能量,但在长波或指纹区域(蓝色部分)有不同的吸收特征虽然许多气体在中波和长波区域都有吸收特性,但也有气体仅在一个红外波段发射和吸收。有些气体在中波而非长波光谱中发射和吸收(如一氧化碳/CO)和吸收,另一些仅在长波光谱中发射和吸收(如六氟化硫/SF6)。这些气体不属于指纹或功能区,通常指烃类气体。下面是CO和SF6气体的红外光谱图。制冷与非制冷型探测器制冷型OGI热像仪使用需要冷却到低温(约77K或-321°F)的量子探测器,可以是中波或长波探测器。检测功能区碳氢化合物气体(如甲烷)的中波热像仪通常在3-5μm(微米)范围内工作,并使用锑化铟(InSb)探测器。检测SF6等气体的制冷型长波热像仪在8-12μm范围内工作,可以使用量子阱红外光电探测器(QWIP)。制冷型OGI热像仪有一个集成了低温冷却器的成像传感器,其可以将传感器温度降低到低温。传感器温度的降低对于将探测器噪声降低到低于被成像场景的信号水平是必要的。制冷机运动部件的机械公差非常小,随着时间的推移会磨损,氦气也会慢慢通过气体密封。最终,在运行1万至1.3万小时后,需要对冷却器进行重建。带有制冷探测器的热像仪有一个与探测器连接的滤波器。这种设计可以防止滤波器和探测器之间的任何杂散辐射交换,从而提高图像热灵敏度,进而会使光学气体成像仪更有效地可视化某些气体,甚至使OGI热像仪符合美国环保局的OOOOa或其他要求等监管标准。用制冷型热像仪拍摄墙上手印的图像和两分钟后再次拍摄的图像用非制冷型热像仪拍摄墙上手印的图像和两分钟后再次拍摄的图像非制冷OGI热像仪使用微测辐射热计探测器,不需要制冷探测器所需的额外零件。它们通常由氧化钒(VOx)或非晶硅(a-Si)制成,在7-14μm范围内具有响应性。它们比制冷型热像仪更容易制造,但热灵敏度或噪声等效温差(NETD)较差,这使得更难以可视化较小的气体泄漏。NETD是一个指标,表示热像仪可以探测的最小温度差异。上图显示了制冷和非制冷探测器灵敏度的差异。更好的NETD将使制冷型OGI热像仪检测气体的效果至少是非制冷的五倍。用于确定OGI热像仪检测气体效果的类似标准是噪声等效浓度长度(NECL),该标准确定在定义的拍摄距离上可以检测到多少气体。例如,用于甲烷检测的FLIR GF320制冷型OGI热像仪(3-5μm探测器)的NECL小于20 ppm*m,而非制冷型(7-14μm探测器)的NECL大于100 ppm*m。对于非制冷型的OGI热像仪,另一个需要考虑的是滤波器。有些热像仪没有在长波光谱中过滤,这意味着它们只是一个完全开放的探测器,使用独特的分析来可视化气体。FLIR的高灵敏度模式(HSM)是利用软件和分析来增强气体可视化的热像仪示例。有些热像仪内部设置更有针对性的过滤器。这些滤波器可能与镜头有关,在探测器和镜头之间,以多种方式设计。使用非制冷过滤,由于限制到达热像仪探测器的辐射,您会失去热灵敏度。这将导致产生更高的NETD热灵敏度值,但可以提供与气体成像相关的更好图像。随着光谱滤波器宽度变窄以聚焦于特定气体时,来自场景的辐射减少,而探测器的噪声保持不变,来自滤波器的反射辐射增加。这会产生与气体成像相关的更高质量的图像,但会降低热像仪用于温度测量(辐射测量)的热灵敏度。当你使用冷滤镜时,比如制冷型OGI热像仪,这种现象就可以避免,因为反射的辐射量非常小。如何选择制冷与非制冷型OGI热像仪FLIR GF320甲烷和VOC检测用红外热像仪
  • 温度试验箱对制冷剂的要求
    p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 适应温度环境试验箱的制冷剂显然应该满足温度环境试验的基本要求,包括:& nbsp /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " strong 1)标准气化温度(ts) /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 制冷剂从液态蒸发成为气态的温度由其工作压力所决定,在标准大气压下制冷剂由液态蒸发成为气态的温度称为制冷剂的标准气化温度(ts),如R22的标准气化温度ts=-40.8° C;R502的标准气化温度ts=-45.6° C;R404A的标准气化温度ts=-47.6° C;R23的标准气化温度ts=-82.2° C。制冷剂工作压力越低,其气化温度也越低,反之,如果要求某制冷剂(如R12)的蒸发温度到达某个低温值(-40° C),则必须调整其工作压力低于某个相应的压力(如0.6MPa),称该压力值为饱和蒸汽压力。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 为了避免空气渗入到制冷系统内降低制冷效率,温度试验箱制冷系统正常运行压力(如蒸发压力,冷凝压力,吸气压力等)一般都应稍高于当地的大气环境压力,因此制冷剂的标准气化温度(ts)是温度试验箱可能达到的最低极限温度。考虑到蒸发器传热的温差要求,温度试验箱可能达到的最低温度一般应比制冷剂的标准气化温度(ts)高3° C~7° C。& nbsp /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " strong 2)冷凝压力Pk不能太高 /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 冷凝压力Pk是从压缩机排出的高温高压的蒸汽在冷凝中被冷却为液态的工作压力,这个压力受冷却介质的温度和压缩机排气压力所制约。压缩机排气压力越高,冷却介质的温度越低,则制冷剂的蒸气越容易冷凝。但是提高压缩机的排气压力不仅会加大压缩机的功耗,缩短压缩机的工作寿命,而且容易出现工质的泄漏。另一方面,冷却介质的温度受大气环境温度(风冷)和冷却水温度(水冷)的限制不可能太低,通常情况下,冷却介质进入冷凝器的入口温度为24° C~29° C,冷凝器出口处冷却的温度为40° C~50° C,冷却介质的平均温度在30° C~50° C范围内,例如制冷剂R502的冷凝压力Pk大体是1.5MPa~2.0MPa,由于工质在管道内流动的压阻损失,压缩机的排气压力必须高于冷凝压力Pk,所以使用制冷剂R502的压缩机排气压力必须是1.8MPa~2.2MPa。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " strong & nbsp 3)制冷剂的溶油性与溶水性 /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 制冷剂应该有一定的溶油性和溶水性。制冷剂中溶入润滑油后,有利于制冷系统中各种运转零部件的润滑,特别是在冷凝器中具有溶油性的液态制冷剂会带走因冷凝效应凝聚在冷凝器内壁上的油膜,可以降低贴符在冷凝器内壁上油膜对冷凝器热交换效率的影响。但是当液态制冷剂带着溶油进入蒸发器后,随着液态制冷剂的蒸发,气化,会在蒸发器内在实际的制冷系统中,压缩机的排气口之后都加装有油气分离器,限制制冷剂中的溶油量。同时在蒸发器的安装中采取一些回油的措施,如复叠式制冷机组中的蒸发冷凝器通常采用盘管式蒸发器,液态制冷剂从盘管的上部进入蒸发冷凝器,气化后的蒸汽从下部返回压缩机吸气口,吸附在蒸发器的内壁的油液也会在重力与压缩机吸气负压的作用下返回压缩机的油池中。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 对于壳管式蒸发器,回气管道安装时必须向压缩机吸气口方向有一定的倾斜度,便于残留的油液依靠重力的集油作用,被压缩机的吸气负压吸回压缩机内。制冷系统中渗入水汽会在低温段的局部地方形成“冰塞”,阻挡制冷剂的顺利流动,所以在制冷系统中无一例外地在冷凝器之前都安装有“干燥过虑器”,吸收可能渗入制冷系统中的水分,并且在安装和维修制冷系统时,适当增加抽真空的时间,以有利于制冷系统中残留水分在真空状态下加速蒸发、排除。但这些措施不能完全清除渗入制冷系统中的水汽。为确保制冷系统正常工作,采用具有溶水性的制冷剂可以携带极少量残余的水汽循环运行。例如采用溶水性能好的氨作为制冷工质的制冷系统,基本上无“冰塞”之忧,而采用溶水性能差的氟利昂作为制冷工质的制冷系统必须特别重视“干燥”除水的要求,及时更换“干燥”过滤器的滤芯。 /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " strong 4)& nbsp 制冷剂单位容积的制冷量 /strong /span /p p style=" text-align: justify text-indent: 2em " span style=" font-family: & quot times new roman& quot " 此外,还希望制冷剂单位容积的制冷量大,可减小制冷机组的尺寸;具有较高的导热系数,可减少冷凝器和蒸发器的换热的面积;黏度低且密度较小,可降低管道流动中的阻力,减少管路压降;化学及物理性能稳定,无腐蚀性,无毒,不燃烧,不爆炸,具有一定的抗电性能等。在实际工程中,温度环境试验箱最低极限温度一般为:-40° C~-35° C或-75° C~-70° C,采用大气环境温度的风和地表的水为冷却介质的冷凝器进口温度通常不高于30° C,故温度试验箱制冷系统最常使用的制冷剂是R404A和R23(R508B)。 /span /p

实验级制冷型仪相关的方案

实验级制冷型仪相关的资料

实验级制冷型仪相关的论坛

  • 实验室冷水机制冷系统充注制冷剂的相关规定

    实验室冷水机制冷系统中的制冷剂如同人体中的血液一样,是实验室冷水机制冷系统中不不可划缺的一部分。实验室冷水机制冷系统中的制冷剂是属于易燃易爆物品,,因此,对冷水机制冷剂的存放、搬运、使用都必须十分小心,下面我们来了解一下关于实验室冷水机制冷系统制冷剂的相关规定。 对于压缩式制冷系统充灌制冷剂应遵守的规定,制冷剂应符合设计的要求,冷水机制冷剂充入的总量应符合设计或设备技术文件的规定。 应先将系统抽真空,其真空度应符合设备技术文件的规定,然后将装制冷剂的钢瓶与系统的注液阀接通,氟利昂系统的注液阀接通前应加干燥过滤器,使制冷剂注入系统,在充灌过程中按规定向冷凝器供冷却水或蒸发器供载冷剂;当系统内的压力升至0.1~0.2MPa(表压)时,应进行全面检查,无异常情况后,再继续充制冷剂,R11制冷剂除外;当系统压力与钢瓶压力相同时,方可开动压缩机,加快制冷剂充入速度。 另外需要提醒大家的是,若实验室冷水机需要航空运输,则需要先为实验室冷水机进行制冷剂(冷媒)抽真空处理,方可进行航空运输。

  • 不锈钢冷热冲击试验箱制冷与水箱之间的关系

    不锈钢冷热冲击试验箱制冷与水箱之间的关系

    不锈钢冷热冲击试验箱可以模拟极高危与极低温之间连续循环交替的环境,对于材料结构与复合型材料进行可靠性测试。由于测试发生的环境比较恶劣,所以对不锈钢冷热冲击试验箱的整体材质、性能、技术要求等都相当的高。而最值得关注的便是试验箱温度升降的问题,即制冷系统与加热系统之间的协调工作。 对于不锈钢冷热冲击试验箱的制冷我们清楚的知道可靠性试验箱常规制冷有两种,其中就会用到水箱。当水箱之中的冷却水温度不断升高,则会导致制冷效果下降,无法正常完成冷热环境之间的合理切换,导致试验效果降低,最终导致试验失败。此时,我们需要对制冷系统进行问题排查,首先是讲水温进行控制,检查散热材质是否阻塞,对水箱中的污垢与藻类进行清除,同时对整个制冷系统进行检查。不锈钢冷热冲击试验箱中的水路循环,是决定温度变化的重要条件之一,因此对内部水路系统的清洁工作不容小觑。主要有外部水箱、引水管、内部水管通道、过滤装置与喷头等。对于两箱式试验箱,具备梁祝制冷系统,其中一组为主要工作,另一组则为辅助工作。制冷出现问题需要检查:制冷压缩机、电气系统、内部管道。http://ng1.17img.cn/bbsfiles/images/2017/02/201702141531_01_3081755_3.jpg

  • 低温试验箱不同制冷方式的区别

    低温试验箱不同制冷方式的区别[url=http://www.meryou.cn]低温试验箱[/url]顾名思义就是用来做低温试验的,低温试验箱的制冷系统可谓是重中之重,那么问题来了,低温试验箱做低温试验制冷时是用液氮制冷好还是压缩机制冷好呢?两者又有什么不同呢?两者之间共有三处不同分别为:制冷方式、温度范围、降温速度。一:制冷方式不同。液氮制冷,一般是使用液氮直接喷在试验箱箱体内部,液氮在试验箱内部吸热蒸汽化,带走热量,使试验箱降温 而压缩机制冷,一般是将制冷系统的蒸发器设计在试验箱内,蒸发器内部的制冷剂一般采用环保制冷剂,经过节流装置的制冷剂在蒸发器内部(不是直接进入试验箱)蒸发汽化,吸收蒸发器外围的热量,使试验箱降温 二:温度范围不同。对于需要提供低于-40℃—— -195℃的试验环境时,通常会选择液氮制冷的方式 对于需要提供低于0℃—— -80℃的试验环境时,选择压缩机制冷的方式的低温试验箱较多,因为液氮是消耗性的,每次低温的获得都必须消耗液氮 三:降温速度不同。液氮制冷的高低温试验箱降温速度快,考虑到温度的快速恒定和过冲问题,一般设计为10℃/min 压缩机制冷的高低温试验箱由于低温环境的获得成本高,一般设计的降温速度为1℃/min   通过以上的内容,相信您对低温试验箱制冷方式有了大致的了解,我们在做低温试验的时候,应当根据试验的要求来做出正确的选择,只有选择正确了,其效果才会达到最好。

实验级制冷型仪相关的耗材

  • testo 316-3 冷媒检漏仪(制冷剂检漏仪)
    testo 316-3 冷媒检漏仪(制冷剂检漏仪)产品参数:灵敏度4g/a (克/年)可检测的冷媒R22,R134a,R-404A,R-410A,R507,R438 以及所有的CFC,HFC和HCFC符合法规SAE J1627、EN14624、EG 2004/108/EG报警LED和声音报警操作温度- 20 ~ 50°C操作湿度20 ~ 80%RH存储温度0 ~ 50°C存储温度0 ~ 50°C电源2节D型1号电池电池寿命连续使用16小时传感器寿命80 ~ 100小时重量约500g(含电池)testo 316-3 冷媒检漏仪(制冷剂检漏仪)
  • 通风式/制冷式迷你离心机
    Micro Star 17和17R迷你离心机是一款集高功率、通用性和便利性于一身的安全、紧凑且操作简单的实验室仪器。无论是通风式Micro Star 17,还是制冷式Micro Star 17R,都旨在加速常规的样品制备过程。相比螺旋盖,可以一键开关转子操作的特制生物封存转子盖能够缩短检索时间。 静音运行,可达到17000 ×g的强大性能“点击式”生物封存转子盖可以保持用户和样品的安全操作简单;直观控制和明亮易读的显示屏通风式/制冷式迷你离心机说明 包装规格 VWR目录号 迷你离心机,通风款,Micro Star 17。 1VWRI521-1646 微量离心管,制冷式,Micro Star 17R 1VWRI521-1647
  • 循环水制冷系统
    ICP/ICP-MS循环水制冷系统的详细资料: 详情请联系吴小姐:15080317079 循环水制冷系统 电感耦合等离子发射光谱和等离子发射光谱-质谱专用 WhisperCool. 制冷系统 Ø 采用PolyScience WhisperCool制冷设计,增强操作安全,内置安全装置。 Ø 可靠、节能。 Ø 其工作范围从-10℃到40 ℃。 Ø 内置高度直观的工艺和自动保护系统。 Ø 超大数字显示器 Ø 点触式温度控制 Ø 温度和压力/流量读数 Ø 操作安静 Ø 低流量报警 Ø 维护简单 Ø 高低温报警 实验制冷器混合冷却液 N0776099 蒸馏水配制而成,含有可以控制黑藻及其他耐药菌株的添加剂,不含非乙二醇。5.5加仑 ELAN冷却液 WE016558 每瓶一升。ELAN 9000/6X00/DRC系列仪器必须使用这种冷却液。同时它也适用于有机物制冷器。 热交换系统 ELAN 9000/DRC II/e系统的制冷系统。风冷循环,无制冷。不能放在温度超过30 ° C (86 ° F)的地方。需要使用 ELAN 冷却液 (WE016558)。 120V, 60Hz N8122248 220/250 V, 50/60Hz N8122247 风机及和通风口 通风系统用来去除样品测定产生的酸气、烟雾和蒸汽等。包括排气罩、夹具和风机。不包括管道。PerkinElmer维修工程师不允许安装这些部件。 Ø 保护实验室人员不受有害气体侵害 Ø 保护仪器不受腐蚀性气体破坏 Ø 提高仪器稳定性 110V 03030447 230V 03030448 制冷器/循环水冷却系统 仪器型号 所需电源 工作温度 流量 零件编号 ELAN 5000/6X00/DRCs 208&ndash 230V, 60Hz, 8A -15° 到 40 ° C 60 psi: 4.3 gpm/16.3 Lpm N0772036 ELAN 5000/6X00/DRCs 240V, 50Hz, 8.5A -15° 到 40 ° C 60 psi: 4.3 gpm/16.3 Lpm N0772035 Optima 2X00/4X00/5X00/7X00 208&ndash 230V, 60Hz, 8A -15° 到 40 ° C 60 psi: 4.3 gpm/16.3 Lpm N0772036 Optima 2X00/4X00/5X00/7X00 240V, 50Hz, 8.5A -15° 到 40 ° C 60 psi: 4.3 gpm/16.3 Lpm N0772035 Optima 3X00 120V, 60Hz, 13.1A -5° 到 40 ° C 60 psi: 1 gpm/3.8 Lpm N0691883 Optima 3X00 240V, 50Hz, 7.3A -5° 到 40 ° C 60 psi: 1 gpm/3.8 Lpm N0691884
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制