美洛西林钠对照品

仪器信息网美洛西林钠对照品专题为您提供2024年最新美洛西林钠对照品价格报价、厂家品牌的相关信息, 包括美洛西林钠对照品参数、型号等,不管是国产,还是进口品牌的美洛西林钠对照品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合美洛西林钠对照品相关的耗材配件、试剂标物,还有美洛西林钠对照品相关的最新资讯、资料,以及美洛西林钠对照品相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

美洛西林钠对照品相关的资料

美洛西林钠对照品相关的论坛

  • 【求助】急!!!氨苄西林钠聚合物对照溶液严重拖尾!!!

    我在做氨苄西林钠聚合物,在以水为流动相B的时候,进样对照溶液,对照溶液严重拖尾,流速1.0。对照溶液浓度0.5mg/ml。在这个过程中调过流速0.8,但峰很宽;流速1.2只是出峰时间提前而已,拖尾问题没有改善。调过对照溶液浓度0.25mg/ml,拖尾仍然没有改善。水用的是注射用水,抽滤2遍。有关文献中又说对照溶液严重拖尾可以加0.5%葡萄糖溶液或0.01mol/l甘氨酸适量,抑制氨苄西林和葡聚糖凝胶的缔合。我两个都试过了,没有改善啊。这个适量真的是很难控制,几滴?几毫升?求求各位老师帮帮我吧,对照溶液严重拖尾啊!!!怎么办???

  • 【原创大赛】近红外光谱分析技术用于美洛西林钠舒巴坦钠药物混合过程在线混合均匀度终点监测

    【原创大赛】近红外光谱分析技术用于美洛西林钠舒巴坦钠药物混合过程在线混合均匀度终点监测

    [align=center][b][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术用于美洛西林钠舒巴坦钠药物混合过程在线混合均匀度终点监测[/b][/align][align=left][b]摘要: [/b]利用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术,对美洛西林钠、舒巴坦钠混合过程进行了在线监测。在研究中,分别建立了基于MBSD法的定性分析模型和基于舒巴坦钠百分含量的定量分析模型,通过3个平行实验的在线混合过程,结果显示MBSD法和舒巴坦钠百分含量测定法均能有效的监测其混合过程,有效的证明了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱分析技术用于舒巴坦钠、美洛西林钠混合在线监测的可行性。[/align][b]关键词[/b]:[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url];分析模型;混合均匀度;在线监测自从2004年美国食品与药品监督管理局提出“过程分析技术”以来,全球的药品生产企业正在向着更高技术含量的生产方式和质量控制方式进军。近红外(Near infrared,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url])光谱分析技术因其快速,无损的特点成为“过程分析技术”的重要组成部分,是制药企业进行产品中间体质量控制的重要方法之一。传统的检测方法为高效液相色谱法,紫外可见分光光度法等需要停止混合操作时才能取样检测,并且等待检测结果所需的时间也比较长,工作效率比较低,而[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱可以进行在线检测,连续记录不同混合时间内混合物的光谱图,建立数学模型对采集数据进行分析,从而判断各组分之间是否已经达到质量均一,工作效率大幅度的提高。本研究利用 [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url] 光谱分析技术在线监测美洛西林钠舒巴坦钠的药物混合过程,从而实现混合终点的准确判断。[b]1 材料1.1试剂[/b]美洛西林钠(13102041,山东瑞阳制药有限公司)舒巴坦钠(SS201310-26,江西东风制药有限公司)[b]1.2仪器和软件[/b]AntarisII型傅里叶变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url](美国ThermoFisher公司),附有积分球采样模块;RESULT采样软件;电子分析天平(Sartorius BT224S,德国);TQ数据处理软件;表面皿;药匙;自制搅拌器。[b]2 方法2.1样品的准备[/b]精密称取舒巴坦钠固体原料药10.00g,美洛西林钠固体原料药40.00g,以备进行在线混合光谱的采集。平行制备3批样品,进行混合光谱的采集。[b]2.2模型的建立[/b]目前,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱分析技术用于混合过程在线监测的方法可分为活性药物成分(API)定量分析模型监测和基于移动块标准偏差(MBSD)的定性分析模型监测。前者为基于API药物含量的定量监测模型,当达到混合终点时,API的含量趋于一定值,可以依据模型监测的含量是否达到理论值并趋于稳定进行混合终点的监测;后者为基于光谱的标准偏差的定性监测模型。MBSD法的基本原理为:连续采集的若干张光谱间的标准偏差变化率趋于稳定并小于限定的一阈值时可认为达到了混合终点。其具体的计算步骤为:首先确定用于计算光谱标准偏差的光谱的条数n(即移动块的宽度),当[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱分析仪器采集到n张光谱后计算n张光谱的峰面积(或最大峰高、平均峰高等)的标准差,当采集到n+1张光谱时将第一张光谱移除,计算最近n张光谱的标准差,如此类推,最终得到随时间变化的光谱的标准偏差,根据标准差的变化进行混合终点的监测。本研究中建立了舒巴坦钠含量的定量分析模型和基于MBSD法的定性分析模型同时对用于混合终点的判断。[b]2.3在线混合光谱的采集[/b]将称取的美洛西林钠、舒巴坦钠原料药样品放入表面皿中,然后将表面皿放在Antaris II型傅里叶变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]积分球采样模块的上面,采用积分球漫反射采样方式进行光谱的采集。在运行在线混合工作流的同时采用自制的搅拌器进行样品的混合,采集得到混合过程的原始光谱,同时监测混合过程。波长范围10000-4000cm[sup]-1[/sup],每张光谱扫描次数4,混合过程中每间隔5s进行一张光谱的采集,光谱分辨率为8.0cm[sup]-1[/sup],每4个小时进行背景光谱的采集。每张[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱由1557个变量点组成。[b]2.4定量定性分析模型用于终点判断数据分析[/b]将在线混合过程进行监测,得到在线混合过程数据进行分析,以便了解混合全过程信息以及混合过程的监测。[b]2.5混合终点分析[/b]当得到混合终点时分别采集混合后的样品6处的原始[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱,利用舒巴坦钠的定量分析模型预测混合终点时不同样品点处的舒巴坦钠的含量,判别是否混合均匀。[b]3 实验结果3.1分析模型的建立[/b]本研究中分别建立了在线混合过程的舒巴坦钠定量监测模型和基于移动块标准偏差的定性监测模型。[b]3.1.1 定性分析模型的建立[/b]目前混合均匀度在线监测常用的方法为MBSD法,本研究中MBSD法定性建模的参数为:选择的3个光谱区间包括全光谱、5275.6-4806.3cm[sup]-1[/sup](称为Region1)及7096.76-6344.66cm[sup]-1[/sup](称为Region2);用于计算光谱偏差的光谱的条数为5(即移动块的宽度为5)。[b]3.1.2 定量分析模型的建立[/b]本研究中所建立的定量分析模型用于监测混合过程中舒巴坦钠的百分含量的变化,因为本实验中舒巴坦钠和美洛西林钠两者间的混合比为4:1,当达到混合终点时,舒巴坦钠的百分含量应该在20%左右。其模型的具体参数见上一章中得到的舒巴坦钠百分含量的定量分析模型。[b]3.2混合在线过程数据分析[/b]本研究中平行进行了3次混合过程的在线监测,分别对3次实验结果进行分析,以充分了解混合监测过程。[b]3.2.1 第一批实验结果分析3.2.1.1 原始光谱图[/b]图1给出了混合过程中采集得到的208张原始光谱,由图中可知,处于下面的光谱较稀疏,可能属于混合刚开始的阶段,光谱会有较大的差异;处于上面的光谱较密集,其原因为随着混合的不断进行,光谱间差异越来越小,所以光谱较集中。[align=center][img=,498,274]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141912_01_1626619_3.png[/img][/align][align=center]图1 第一批混合过程原始光谱[/align][align=center] [/align][b]3.2.1.2 在线混合过程结果分析[/b]图2为定性分析模型中得到的3个光谱区间的峰面图,其中M1为全光谱建模的峰面积变化,M2为Region 1(5275.6-4806.3cm-1)的峰面积变化,M2为Region 2(7096.76-6344.66cm-1)的峰面积变化,由峰面积的变化图可知,混合过程的前100s其变化较为明显,M1不断升高,M2和M3(7096.76-6344.66cm-1)不断下降,之后峰面积值趋于稳定。[align=center][img=,525,234]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141913_01_1626619_3.png[/img][/align][align=center]图2 光谱区间峰面积图[/align]图3为舒巴坦钠含量及标准偏差变化图,由图中显示在混合的初期阶段,尤其是前100s左右,四个表征混合均匀度的参数均有着较大的变化趋势,在200-300s间四个参数有稍微较小的波动,此后随着混合过程的不断进行,表征混合均匀度的四个参数变化范围均变小,模型给出的舒巴坦钠的百分含量在20%左右,舒巴坦钠和美洛西林钠混合较为均匀,达到了混合终点。由图可知前100s是混合的主要阶段,此阶段舒巴坦钠的百分含量和标准偏差均有着明显的变化。[align=center][img=,538,292]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141914_01_1626619_3.png[/img][/align][align=center]图 3 含量和标准偏差变化图[/align][align=center](a舒巴坦钠百分含量变化 b全光谱峰面积标准差 c Region1峰面积标准差 d Region2峰面积标准差)[/align][align=left] 当达到混合终点时分别采集表面皿下6个点的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱,根据建立的模型测定其舒巴坦钠的百分含量,看混合是否均匀。表2给出了用所建模型得到的6个点的舒巴坦钠的百分含量值,6个点舒巴坦钠的百分含量值在20%左右,说明混合较为均一,但是最大的值达到了22.41%,可能是由于混合装置过于简陋,加上是人为搅拌进行混合,不能达到很好的混合,部分地方没有进行很好的混合。从实验的可行性方面,初步证实了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]技术用于美洛西林钠舒巴坦钠混合的可行性。[/align][align=center]表1混合后不同点舒巴坦钠百分含量值[/align][align=center] [img=,570,70]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141915_01_1626619_3.png[/img][/align][b]3.2.2 第二批实验结果分析3.2.2.1 原始光谱图[/b]图4给出了第二批混合过程中采集得到的203张原始光谱,其混合过程原始光谱的特征和第一批混合过程较为相似,混合初期光谱变化较为明显,随着混合的进行,光谱差异变小,光谱较为密集。[align=center][img=,488,280]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141915_02_1626619_3.png[/img][/align][align=center]图4 第二批混合过程原始光谱[/align][align=left] [b]3.2.2.2 在线混合过程结果分析[/b][/align]图5为各个光谱波段峰面积的变化图,由图中显示开始的100s内峰面积有着较大的变化幅度,随着混合的不断进行,峰面积的变化趋势不断减小并逐渐趋于稳定。[align=center][img=,516,307]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141916_01_1626619_3.png[/img][/align][align=center]图5 光谱区间峰面积图[/align][align=center](a 全光谱峰面积 bRegion 1峰面积 cRegion 2峰面积)[/align]图6为舒巴坦钠含量及标准偏差变化图,由图可知在混合的初期阶段大约0-100 s时,舒巴坦钠百分含量值及峰面积的标准偏差值有着明显的变化,全光谱峰面积的标准偏差(Full Range STD)在200-400 s间有较为明显的波段,此后随着混合过程的不断进行,四个参数变化范围均变小,模型给出的舒巴坦钠的百分含量在20%左右。由此可知前100 s是混合的主要阶段,此阶段舒巴坦钠的百分含量和标准偏差均有着明显的变化。[align=center][img=,551,327]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141917_01_1626619_3.png[/img][/align][align=center]图6 含量和标准偏差变化图[/align][align=center](a 舒巴坦钠百分含量 b 全光谱峰面积标准偏差 c Region 1峰面积标准偏差 d Region 2峰面积标准偏差)[/align]当达到混合终点时,采集表面皿底部6处的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱,检测混合过程是否达到均一,表2列出来了6处的舒巴坦钠的百分含量值,由表2可知达到混合结束后得到的6处的舒巴坦钠的百分含量均在20%左右,说明混合较为均匀。同时,由于实验条件的限制加上搅拌时人为因素的影响等,各点之间含量也着较大的差异。[align=center]表2 舒巴坦钠百分含量[/align][align=center] [img=,566,84]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141918_01_1626619_3.png[/img][/align][b]3.2.3 第三批实验结果分析3.2.3.1 原始光谱图[/b]图7给出了混合过程中采集得到的207张原始光谱,由图中可知,得到的原始光谱图与第一批和第二批有着相似的结果,即混合的初期光谱差异大,因此光谱较为稀疏(偏下方的光谱),随着混合的进行,光谱间差异变小,光谱变得密集(偏上方的光谱)。[align=center][img=,505,262]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141919_01_1626619_3.png[/img][/align][align=center]图7 第三批混合过程原始光谱[/align][b]3.2.3.2 在线混合过程结果分析[/b]图8给出了混合过程中3个光谱区间峰面积的变化趋势值,由图中可知0-100s间三个光谱区间的峰面积有着明显的变化,100-200s间峰面积有着明显的变化,但是变化幅度没有前100s大,200s以后峰面积变化趋势变小。说明前200s是混合的主要阶段,峰面积变化较为明显。[align=center][img=,519,343]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141919_02_1626619_3.png[/img][/align][align=center]图 8 光谱区间峰面积图[/align][align=center](a 全光谱峰面积 bRegion 1峰面积 cRegion 2峰面积)[/align]图9为舒巴坦钠百分含量及光谱峰面积的标准偏差随时间变化的趋势图,其变化趋势和峰面积的变化趋势相似,前100s变化幅度较大,100-200s间也有较为明显的变化,但是变化幅度不是很明显,200s后舒巴坦钠的百分含量和峰面积的标准偏差均趋于稳定,说明此时光谱差异变小,混合趋于均匀。[align=center][img=,529,352]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141920_01_1626619_3.png[/img][/align][align=center]图9 含量和标准偏差变化图[/align][align=center](a舒巴坦钠百分含量变化 b全光谱峰面积标准差 c Region1峰面积标准差 d Region2峰面积标准差)[/align]表3为达到混合终点时采集表面皿底部的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱得到的不同点的舒巴坦钠的百分含量值,由表中显示6个点的舒巴坦钠的百分含量值在20%左右,但是6个点之间舒巴坦钠百分含量间存在较大的差异,测得的最小值为17.80%,其原因可能是一方面由于实验条件的限制混合不够均匀,一方面用于舒巴坦钠含量测定的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]定量分析模型也有一定的偏差,可能引起含量检测的差异存在。[align=center]表3 混合后不同点舒巴坦钠百分含量值[/align][align=center] [img=,564,66]http://ng1.17img.cn/bbsfiles/images/2017/09/201709141921_01_1626619_3.png[/img][/align][b]3.3小结[/b]通过3个混合平行实验的进行可知所建立的基于MBSD法的定性分析模型和基于舒巴坦钠百分含量的定量分析模型能够有效的监测舒巴坦钠、美洛西林钠的混合过程。由舒巴坦钠百分含量和标准偏差变化图可知两者的变化有着相关性,当舒巴坦钠的百分含量变化幅度大时,其标准偏差的变化幅度也较大,因此两者均可以用于混合过程的在线监测,证实了实验的可行性。[b]4 结论和讨论[/b]本研究采用AntarisII傅里叶变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]对美洛西林钠、舒巴坦钠混合过程进行了在线监测。在研究中,分别建立了基于MBSD法的定性分析模型和基于舒巴坦钠百分含量的定量分析模型,然后Antaris II傅里叶变换[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]漫反射采样方式采集混合过程中的光谱,实时监测混合过程的进行。通过3个平行实验的在线混合过程,结果显示MBSD法和舒巴坦钠百分含量测定法均能有效的监测其混合过程,有效的证明了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱分析技术用于舒巴坦钠、美洛西林钠混合在线监测的可行性。此外,MBSD法因为无需进行一级数据的采集,方法较为简单且容易理解,目前常用于混合过程的在线监测。本研究中有效证实了[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]光谱分析技术在舒巴坦钠美洛西林钠样品在线混合过程中应用的可行性,在样品的在线混合监测中有着重要的应用价值和应用前景。该技术能够克服传统方法费时、繁琐等缺点,而且可以实现过程的实时在线监测,让生产者充分了解整个生产过程中的参数变化。 [b]参考文献[/b]陆婉珍, 褚小立. [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]([url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url])和过程分析技术(PAT). 现代科学仪器, 2007(004):13-17.SieslerH, Ozaki Y, Kawata S, et al. Near-infrared spectroscopy: principles .Instruments, Applications, 2002:35-181.Bhushan,K.R.,et al.Detection of breastcancer microcalcifications using a dual-modality SPECT/[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url] fluorescent probe. J Am Chem Soc, 2008. 130(52):17648-17649.贾燕花. [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术在化学药品生产过程控制应用初探. 北京协和医学院, 2011.Fevotte.G,et al.Applications of [url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]spectroscopy to monitoring and analyzing the solid state during industrialcrystallization processes . Int J Pharm, 2004, 273(1):159-169.张敏.盐酸林可霉素多晶型分子构象对其红外光谱行为的影响.中国抗生素杂志, 2005, 30(009):529-532.Blanco M,R Goz"01ez Ba,E.Bertran,Monitoring powder blending in pharmaceutical processes by use of nearinfrared spectroscopy . Talanta, 2002, 56(1):203-212,田科雄.不同装载系数和混合时间对添加剂预混料混合均匀度的影响.河北畜牧兽医, 2004, 20(9):52-53.孙栋. 基于[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术的几种固体粉末混合均匀度快速检测研究. 山东大学硕士学位论文, 2012年.

美洛西林钠对照品相关的方案

  • 血浆中美罗培南、他唑巴坦、哌拉西林和地塞米松的全自动定量检测
    岛津LCMS-8060和CLAM-2030联合使用,可以同时定量皮质类激素地塞米松和3种抗生素他唑巴坦、美罗培南和哌拉西林。此方法可以通过5分钟运行和全自动样品制备实现快速分析。LCMS-8060的灵敏度可以扫描定量动态范围在1至100 ng/mL之间的样品。每个对照样品的重复性均低于15%,准确度在85-115%之间,这些结果验证了该方法的鲁棒性和有效性。
  • Cometro高效液相色谱系统-阿莫西林有关物质检测
    阿莫西林有关物质检测一、实验方法 Cometro高效液相色谱系统; 色谱柱:Comasil C18 250*4.6mm,5μm; 波长:254nm; 流速:1.0ml/min; 样品:阿莫西林原料样品(约2mg/ml),对照品(20μg/ml); 进样量:20μl 流动相:A 磷酸盐(pH=5)-乙腈=99:1; B 磷酸盐(pH=5)-乙腈=80:20。 梯度洗脱时间/min流动相A/%流动相B/% 0.00 92 815.00928 40.00 0 10055.000100 56.00 92 870.00928二、实验结果1、阿莫西林样品Channel A Results Name Retention Time Area Theoretical plates (USP) Resolution (USP)12.787946461110.00000 2 5.142 27245 9917 13.4913437.08024450115328.24395 阿莫西林 11.223 4690129 8036 10.83894417.26882531199510.68492 5 25.923 13824 160765 19.46456627.47078571614745.81389 7 30.797 10138 315697 13.50415831.830153393725634.83051 9 33.063 4103 206428 4.936511034.923201423596407.09890 11 37.430 3251 64676 6.101471239.79230501088574.40964 梯度假峰 41.345 8157 266135 3.86885梯度假峰46.2103161520574113.36384 梯度假峰 58.990 38043 61357 18.792752、阿莫西林对照品Channel A Results Name Retention Time Area Theoretical plates (USP) Resolution (USP)阿莫西林12.74853226120320.00000 梯度假峰 41.603 6591 367607 78.05457梯度假峰46.4172467924544914.82780 梯度假峰 58.977 48226 57297 18.466543、梯度空白Channel A Results Name Retention Time Area Theoretical plates (USP) Resolution (USP)梯度假峰41.51365603523790.00000 梯度假峰 46.323 24802 236337 14.55634梯度假峰58.977428665680018.45865三、结论 1、第一张图关注8个杂质小峰,第二张图关注12min处的大峰。由第三张图我们可以判断41min,46min,58min处的峰为梯度假峰,因此不予考虑,其次根据药典规定“供试品溶液任何小于对照溶液主峰面积0.05倍(53226*0.05=2613.3)的峰可忽略不计”,实验者已经在积分的时候忽略。 2、根据有关物质的二条规定我们逐条分析: 供试品溶液色谱图中如有杂质峰,单个杂质峰面积不得大于对照溶液主峰面积; 分析:对照品的主峰面积为53226,杂质1-12均小于它,此点合格。 各杂质峰面积的和不得大于对照溶液主峰的三倍。 分析:对照品主峰面积的三倍为159678,杂质1-12峰面积和为147116,此点合格。 3、此样品符合10版药典阿莫西林有关物质相关标准。
  • 阿莫西林钠在BioCoreSEC-150上的分离
    阿莫西林是光谱类抗生素,阿莫西林钠是半合成的光谱青霉素,属氨基青霉素类,对格兰阴性和阳性菌均有杀菌作用,不耐青霉素霉。使用纳谱分析SEC-150色谱柱,在pH7.0流动相条件下,检测波长为254nm,取本品适量,精密称定,加流动相溶解并稀释成每1ml中含1mg的溶液,取20μ l注入液相色谱仪。

美洛西林钠对照品相关的资讯

  • 对照品如何保存,又应该如何使用?
    对照品系指用于鉴别、检查、含量测定的标准物质,包括杂质对照品,不包括色谱用的内标物质。在药品检验工作中我们常会用到一种用来检查药品质量的特殊参照物——药品标准物质(对照品)。它在药品检验中具有十分重要的地位。随着仪器分析的广泛使用,必将越来越多地使用药品标准物质。下面远慕生物就来介绍一下如何对对照品进行保存和使用:  (1)对照品应按说明书规定的条件妥善保存,一般置干燥阴凉处保存,某些对照品如维生素E等需避光低温保存。要注意对照品的使用期限,过期、变质的对照品不宜再使用。开瓶后建议短期内用完,避免开瓶后长期不用,同时,在重复使用过程中应尽量避免对照品的分解、污染或吸潮。  (2)使用中检所对照品时,应严格按说明书执行。一般情况下,供鉴别、检查用的对照品不能用于含量测定。红外鉴别用的对照品使用时应注意与样品在晶型上的差异,必要时可采用相同的方法对样品和对照品重结晶。例如氨苄西林钠具有多种不同的晶型,可用丙酮对样品和对照品重结晶后测定,以确保二者晶型和红外光谱图的一致。  (3)由中国药品生物制品检定所提供的对照品或国际对照品为法定对照品,以法定对照品作对照标化的原料可称为二级对照品或工作对照品。药品生产单位为节约成本,可使用工作对照品进行日常检验,但药品检验所必须使用法定的对照品,出具的检验报告书才具有法律效力。  (4)除另有规定外,对照品使用时应采用适宜的方法测定其水分的含量,按干燥品(或无水物)进行计算后使用,否则会造成含量测定结果偏高。对热稳定的对照品可直接干燥后使用;对热不稳定的对照品可同时另取一份作干燥失重,扣除水分后使用。此外,对照品若含有结晶水或盐基,使用时应注意其换算。  远慕生物提供以下服务:  1.中药提取物的定制研发和生产,中药提取物代加工相关服务。  2.中药高含量提取物的工业化高效分离及分离纯化生产  3.天然产物原料药和中间体的生产,定制(包括合成,半合成)
  • 中检院出版《化学药品对照品图谱集-质谱》分册
    《化学药品对照品图谱集》整理了600余种常用化学药品对照品各类谱图数据,从结构到性质对对照品进行了比较全面的描述。化学药品对照品是国家标准物质的重要组成部分,是依法实施药品质量控制的基础。药品标准物质的质量和水平,与医药工业的健康发展和公众安全用药休戚相关。首次结集出版的《化学药品对照品图谱》分为6本——总谱,质谱,红外、拉曼、紫外光谱,核磁共振,热分析,动态水分吸附。 《化学药品对照品图谱集-质谱》分册由中国食品药品检定研究院出版,全部质谱数据采集由岛津企业管理(中国)有限公司采用岛津产品完成,其中十种使用岛津GCMS,其余品种使用岛津LCMSMS。该书实际包含近700个常用化学药品对照品的二级质谱图,裂解规律及相关物性,是目前最全的化学药品对照品质谱图集,对药品生产企业、检验检测机构和高校科研院所人员有很好的参考价值。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 冻干过程中西林瓶破损现象分析
    冻干工艺是将液体产品在容器内进行冷冻,然后在低压环境下,通过升华形式进行干燥。而冻干制剂生产过程中可能会遇到的一个问题,就是作为容器包材的玻璃西林瓶偶尔出现破裂或破损,虽然这种现象相对罕见,但一旦发生,就可能是一个严重的问题,因为它会导致产品损失、甚至带来溢出产品和破碎玻璃渣对设备内部造成的污染。由于整个冻干过程会处于一定温差范围内进行,因此一些观点认为,这种破损现象与包材热应力有关,可以通过改变西林瓶的热性能来减少发生概率。 但事实是这样吗?本文将告诉你答案。西林瓶破损原因及种类分析在本篇引用文章中,作者通过分析西林瓶破裂形式来寻求答案,尽管文章研究的主体针对管制瓶,但破损现象在模制瓶和管制瓶上都可能发生。当然精确判断西林瓶破损的原因是复杂的,因为在冻干过程中可能会出现几种明显不同类型的破损。这些破损类型有不同的原因,需要采取不同的纠正措施。此文将重点介绍更常见的管制西林瓶的破损类型,即在大多数情况下,断裂模式如下图1所示。这种模式的特点是在玻璃瓶外表面下侧壁区域出现垂直断裂,有时在原点上方和/或下方出现分叉。 图1:冻干过程中的典型瓶裂现象当力作用在玻璃物体上时,玻璃会发生弹性变形(应变),从而产生压缩应力和拉伸应力。这些应力在玻璃中的独特分布取决于瓶型设计因素、玻璃厚度分布以及施加在物体上的力的类型。玻璃只有在拉伸应力的影响下才会破损,裂纹会沿着垂直于拉伸应力分布的方向扩展。因此,裂纹样式对应于破损时作用在玻璃物体上的力的类型是仅有的,从而有助于识别导致破裂事件的力。破裂西林瓶的不同裂纹样式示例如下图2和下图3所示。图2中的西林瓶被一个内部压力打破,这个压力是通过将西林瓶装满水,并使装满的瓶子承受液压而产生的。 图2:由于内部压力而造成的瓶裂压力最初很低,一直升高,直到小瓶破裂。断裂样式由垂直裂纹组成,该裂纹在断裂发生的精确位置上下出现分支。上图2-a)中的西林瓶显示出广泛的破裂,这是典型的相对高压。上图2-b)中的小瓶在低得多的压力下破损,显示出一个相对简单的样式,仅由一条直直的垂直裂缝构成,在下端为环状裂缝。下图3中的西林瓶被热冲击力打破,热冲击力是通过西林瓶在烘箱中加热,然后浸入冷水浴中产生的。断裂样式包括许多弯曲裂纹贯穿侧壁和瓶底区域。下图3-a)中的西林瓶在侧壁上显示出广泛的裂纹,表明在破损时存在相对较高的温差。下图3-b)中的西林瓶在较低的温差下破损,并且显示出一个相对简单的样式,该样式仅由瓶子底部周围的单个环向裂纹构成。 图3:由于热冲击而导致的瓶裂根据一些文献中总结的断裂判断方法,如上图2和上图3中的示例所示,可以得出一个假设判断,即上图1中所示的断裂样式是由于施加在西林瓶内表面的力导致瓶子向外膨胀而破裂的独特特征。同时,对在正常商业操作条件下生产的一种管制瓶进行了计算机应力分析。分析中使用的玻璃瓶的轮廓和玻璃厚度分布如下图4所示,并模拟了水冻结成冰时的膨胀水平力。下图5中显示的分析结果表明,向外膨胀力在玻璃内外表面产生的拉伸应力几乎相等,同时伴随厚度远小于圆柱体直径的薄壁圆柱体的膨胀。断裂起源将发生在外表面的该区域,因为与内表面相比,该表面具有足够严重缺陷的可能性更大。冻干过程中温度梯度是否会影响西林瓶破损?破损是否也可能是由于温度梯度产生的应力引起的呢?毕竟冻干过程中存在假定的温度梯度现象。如果温度梯度引起的断裂应力被认为与冻干过程中玻璃瓶的破损有关,则断裂样式将包括侧壁和底部区域的弯曲裂纹,其起源很可能位于底部或跟部区域的玻璃外表面,如图3所示。这与图1所示的商业生产期间破裂的西林瓶观察到的破裂样式形成直接对比。另外事实上,在正常的冻干过程中,装满药品的小瓶放在冻干机腔体内的板层上。冷量通过板层内的导热流体传导板层金属面,再缓慢冷却西林瓶的支承面区域,同时伴随辐射、对流冷却西林瓶周围的环境。由于装满产品的西林瓶瓶从室温到大约-40°C的总冷却时间通常需要较长时间才能完成,因此假设玻璃瓶内外表面之间可能产生的任何瞬时温度梯度都相对非常小。为了验证这一假设,使用理论公式来估计产生许多商业破损事件中观察到的应力大小所需的温度梯度。为了达到27.6 MPa的总断裂应力,玻璃瓶内外表面之间需要125°C的温差。对于69.0 MPa的断裂应力,需要314°C的温差。而在正常的商业冻干过程中,西林瓶冷却的方式相对柔和,玻璃中不太可能产生如此高的温度梯度。冻干过程中西林瓶破损原因总结 为证明上述论断,作者进行了如下几种实验,观察不同情况下的裂痕样式,进行进一步对比分析:Freezer test 冷冻设备试验(仅外向力)Liquid Nitrogen Immersion 液氮浸泡(加上显著的热梯度)GDFOvento Cold Bath Thermal Shock Test 烘箱至冷浴热冲击试验(仅热梯度) *得出结论:文章讨论的常见破损断裂类型是由于冷冻药品在预冻过程中产生的向外膨胀力导致的,而不是由于温度梯度。因此,玻璃瓶热性能的变化(玻璃瓶的设计变化或使用具有较低热膨胀系数的玻璃)不太可能对典型冻干过程中可能经历的破损频率产生显著差异。解决破损断裂问题的方法是进行详细的断裂分析。这种分析将清楚地区分破裂的原因,要么是由于西林瓶在生产、运输或灌装过程中的问题导致的玻璃强度降低,要么是由于产品在冻预过程中膨胀导致的作用力过大所导致的。如何减少冻干过程中的西林瓶破损?那么,如何减少产品在预冻过程中由于膨胀而产生的应力,从而减少冻干过程中西林瓶的破损呢? 让我们一起先来了解一下预冻过程中的成核理论。传统冻干的预冻过程中,晶核的形成都是随机的,如下: 图6:随机成核成核温度不同,产生的冰晶形态和大小各不相同,晶核生长的方向也是杂乱无章,导致产品在冻结过程中膨胀产生的应力比较大,从而导致西林瓶破损现象,尤其是瓶子比较大,装样量比较多时,破损现象更明显。经Controlyo技术控制成核后,所有样品在同一时间、同一温度瞬间成核,晶体生长方向也比较规则,*可以显著减少预冻时的应力,减少西林瓶破损现象。 图7:Controlyo控制成核经典案例分享用于治疗癌症的小分子药物 配方:2.5 wt% API 2 wt% NaCl (pH 7.7-7.9)100ml西林瓶,22ml 的灌装量每批85个样品 图8:随机成核与控制成核对比 从上图可以看出:用Controlyo技术在预冻过程中控制成核后,冻干后的产品显著降低了西林瓶破损率。Controlyo技术不仅可以显著减少破瓶率,还具有以下优势:样品更均一适用于高剂量样品或灌装体积较大的样品保证同一批样品及不同批次样品的均一性提高药效缩短干燥时间(30%左右)改善产品外观减少破瓶率提高产量减少产品复水时间以下引用是FDA出版并认可的结论:Controlyo晶核控制可以显著减少主干燥时间,提高蛋糕状外形,蛋糕形态,减少比表面积,提高瓶子间的均匀性,缩短复水时间。[文章摘译]:David R. Machak and Gary L. Smay,Failure of Glass Tubing Vials during Lyophilization,PDA J Pharm Sci and Tech 2019, 73 30-38*本文图片来源于网络,版权归原作者所有,如有侵权请立即联系我们删除。

美洛西林钠对照品相关的仪器

  • Sanotac致力于天然产物和中药对照品分离纯化、化学药物杂质对照品分离纯化应用的中压制备色谱、制备液相色谱技术的开发,系统软件符合“CFDA GXP和FDA 21CFR Part 11 ”法规要求,可实现多达 4元梯度洗脱和自动馏分收集,同时兼容ge AKTA、isco、biotage,buchi、biorad等中压分离纯化制备色谱的色谱柱和纯化柱,是一款高效、功能强大的模块化快速纯化制备液相色谱,在中药化学对照品分离纯化领域已经得到广泛应用:皂苷类对照品分离纯化 ,黄酮类对照品分离纯化,异黄酮类对照品分离纯化,香豆素类对照品分离纯化,色原酮类对照品分离纯化,生物碱类对照品分离纯化,酚酸类对照品分离纯化,萜类对照品分离纯化,蒽醌类对照品分离纯化,木脂素类对照品分离纯化。快速纯化制备液相色谱系统技术特点: *微处理器控制,高速双驱动和平行的泵头具有高速的腔室压力反馈,补偿再填充和溶剂压缩效果,实现在宽动态范围内获得精确高重现的流速。 *采用轮曲线补偿技术有效控制流量脉动,保证最低的基线噪声。 *多点流量校正曲线,保证在全流量范围内的流量精度。 *浮动柱塞设计,保证高压密封圈的使用寿命。 *10个用户程序,可实现流量和梯度编程。 *双波长检测、波长时间程序和停泵扫描——三种测定方式使得基线噪音和漂移降到最低,获得了最高的灵敏度和最低检测限,以及更宽的线性范围。对应各种测定需求,可以同时对主要成分、副产物和杂质进行可靠的定量。 *可快速便捷的更换灯和流通池,氘灯钨灯实现智能切换,确保正常运行时间的最大化。系统自动收集器特点: ?独创的运动原理,直线和旋转运动结合,可最迅速地到这任意收集位置 ?体积、时间、闺值、斜率组合多种收集模式,满足各种收集需要,可设 立普通模式、顺序收集和循环收集 ?精确的最小管路设计,减少样品在流通池后扩散带来的收集不准确 ?软件延迟体积的设置,使收集更精准,产品更纯净 ?采用高精度切瓶技术,废液通道独立,切换瓶过程无滴漏 ?分于动和自动两种收集方式,操作简单、方便 ?配套软件可以实时采集多路波长信号,收集信号可任意选择 ?实时显示设备状态、连接和收集瓶位置,收集直观,位置清晰 ?兼容多种收集容器,最多可允许收集瓶: 13--15mm 试管 120 支 ?具有收集容器自识别功能,可防止使用不同型号收集容器时安放错位 ?最大程度的空间利用,设备占用空间小,使用方便。 快速纯化制备液相色谱技术参数: 泵头316L不锈钢泵 高精度、低脉冲、耐腐蚀 (peek泵头可选)流速范围0.01-100.00ml/min(梯度)流速精度±0.5%压力范围0-20MPa压力脉动≤0.2MPa梯度类型台阶、线性变化梯度、可在线修改梯度和流速最小梯度调节1%检测器光源氘灯+钨灯(进口)检测波长190-800nm 全波长检测器 双波长同时检测波长精度±1nm吸光度范围0-2AU收集全自动收集器收集管架2×60支试管(Φ15mm*150mm试管) 其他规格可以选配收集模式普通模式(按时间收集、峰收集、阈值收集)、顺序收集、循环收集手动上样阀制备色谱阀(标配10ml定量环)上样方式固体上样或液体上样电源220V±10% 50Hz色谱软件控制通过sanochrom色谱软件控制泵、紫外、自动收集器等组件设置与运行控制界面图形界面,USB接口+RS-232可接口,采用基于Windows7/Windows 8/Windows 10的PC软件工作站,软件符合“CFDA GXP和FDA 21CFR Part 11 ”法规要求
    留言咨询
  • 西林瓶偏光应力仪 400-860-5168转3947
    西林瓶偏光应力仪玻璃酒瓶偏光应力仪YLY-03,采用偏振光干涉法,能够准确检测玻璃酒瓶的应力值。这款仪器符合新版药包材要求,适用于各容量玻璃酒瓶内应力值偏光测定,广泛应用于制药企业、玻璃制品厂、质检机构。 下面,将简单介绍玻璃酒瓶偏光应力仪的使用原理,包括定性测量原理和定量测量原理。 (1)定性测量原理:玻璃酒瓶偏光应力仪采用偏振光干涉法,通过观察偏振场中的干涉色序,可以定性或半定量的测量玻璃酒瓶的内应力数值。 (2)定量测量原理:由光源发出的钠光通过起偏振镜后成为直线偏振光,再由直线偏振光通过有双折射光程差的被测试样和1/4波片后,其振动方向将旋转一定角度。角度Q的数值与被测试样的双折射光程差δ成正比,其关系式为:λ取钠光为589.3,δ为589.3Q/180=3.27Q。当Q=1°时,δ=3.27纳米(每度相当于3.27纳米)。 通过以上原理,我们可以精确地测量出玻璃酒瓶内的应力值,以便后续的再次加热灼烧以分散集中的应力。这款仪器不仅满足新版药包材要求,还可广泛应用于各个领域,为质检机构、玻璃制品厂和制药企业提供强有力的技术支持。 技术参数 仪器示值 0.1nm 测量误差 2nm 偏振场直径 150mm 检偏振片旋转角度 360° 光场边沿亮度 >120cd/m² 外形尺寸 220mm×370mm×480mm(长宽高) 重 量 5Kg工作温度 15℃-50℃ 相对湿度 80%,无凝露 工作电源 220V 50Hz 西林瓶偏光应力仪 此为广告
    留言咨询
  • 多功能食品安全检测仪可快速检测200多项目,包含非食用化学物质、滥用食品添加剂、农药残留、兽药残留、重金属、病害肉、营养强化剂、抗生素类残留、激素类残留、真菌毒素类残留、化学类残留等现场的定性定量检测。 该多功能食品安全检测仪为集成化食品安全快速检测分析设备,广泛应用于食药监局、卫生部门、高教院校、科研院所、农业部门、养殖场、屠宰场、食品肉产品深加工企业、检验检疫部门等单位使用。 检测项目: 食品添加剂:二氧化硫、双氧水、亚硝酸盐、硝酸盐、苯甲酸钠、山梨酸、糖精钠、甜蜜素、安赛蜜、硫酸镁等有毒有害物质:甲醛、吊白块、硼砂、过氧化苯甲酰、溴酸钾、罗丹明B、三聚氰胺、苏丹红等果蔬中:农药残留,病害肉诊断:组胺、挥发性盐基氮、肉制品酸价、水发产品中组胺重金属含量:铅、镉、铬、汞、砷、锡、镍、铝等。食用油脂检测:过氧化值、酸价、油脂丙二醛等。瘦肉精激素类(兽药):盐酸克伦特罗、沙丁胺醇、莱克多巴胺、己烯雌酚、喹乙醇等抗生素残留类(兽药):四环素类、硝基呋喃类、磺胺类、沙星类、喹诺酮类、庆大霉素、链霉素、阿莫西林、红霉素等水产品安全类:孔雀石绿、氯霉素、呋喃妥因代谢、呋喃西林代谢、呋喃它酮代谢、呋喃唑酮代谢等真菌毒素类:食用油、粮食及饲料中黄曲霉毒素B1、奶中黄曲霉毒素M1、呕吐毒素、玉米赤霉烯酮、赭曲霉毒素A等水酒饮品分析:乳品及牛奶中蛋白质;酒中甲醇、乙醇、杂醇油;蜂蜜中果糖和葡萄糖、蔗糖、淀粉酶、酸度;水中氰化物、余氯,饮料中维C等调味品成分:食醋的总酸、酱油的总酸、芝麻油纯度、谷氨酸钠、酱油氨基酸态氮、食盐中亚铁氰化钾、食盐中碘等食用色素类:红色色素(胭脂红、苋菜红、赤藓红、诱惑红)、黄色色素(柠檬黄、日落黄)、蓝色色素(亮蓝)等动物疫病类:猪蓝耳病毒、猪瘟病毒、猪伪狂犬病毒、猪伪狂犬病毒gE蛋白、猪口蹄疫3ABC蛋白、猪口蹄疫病毒IgG、猪细小病毒、鸡禽流感等功能性能:1、安卓智能操作系统,采用更加高效的UI交互界面,仪器具有wifi联网上传、4G联网传输、GPRS无线远传、网线连接功能,快速批量上传数据。2、智能化程度高,仪器具有自检功能:具有开机自检和调零功能,具有自动检测重复性功能。3、新一代高速热敏打印机,检测完成可自动打印或批量打印检测报告和二维码。4、仪器带有监管平台,数据可局域网和互联网数据上传,检测结果直接传至食品安全监管平台。进行区域食品安全监管及大数据分析处理与数据统计,检测区域食品安全长短期动态,达到食品安全问题预估、预警5、一体化主机,包含食品安全检测模块、多通道农药残留检测模块、胶体金免疫层析检测模块。 6、一体化便携式快检设备,满足现场及流动检测使用需求,能够在同一软件下实现所有检测项目的检测,并可通过同一窗口直观显示检测结果。 7、胶体金模块检测方式:轨道式自动传输扫描,检测完成后自动退出检测卡。 8、CT线自动识别,无需手动调整。 9、仪器具有多品类多种类样品菜单库,可灵活选择检测样品,不同的检测通道可同时检测不同的样品项目。也可在仪器上直接编辑录入样品名称、检测指标、送检单位等信息并保存进样品数据库。10、产品内置操作演示视频,是您身边的化验指导专家。11、样品处理简单省力,整体操作快速、安全、便捷。 12、仪器具有自身保护功能,可设置用户名及密码,防止非工作人员操作等。13、高灵敏度,高检测精度,高重复性精度,扫描式高精度光学传感器。 14、仪器具有重新校准、锁定、恢复出厂设置功能。15、结果判定线可修改,对照值标定值可保存,断电不丢失数据。16、兼容市场上所有的胶体金卡,使用耗材不受限制,极大增强用户使用体验。
    留言咨询

美洛西林钠对照品相关的耗材

  • 天津市奥淇洛谱西林瓶(无盖)西林瓶
    底部直径2.2cm,高4cm西林瓶(penicillin bottle),又称:硼硅玻璃或钠钙玻璃管制(模制)注射剂瓶,是一种胶塞封口的小瓶子。早期盘尼西林多用其盛装,故名西林瓶。西林瓶有棕色、透明等种类、硼硅材质的西林瓶为市场上的主流产品。瓶颈部较细,瓶颈以下粗细一致。瓶口略粗于瓶颈,略细于瓶身,一般用做疫苗、生物制剂、粉针剂、冻干等药品的包装。1、制法不一样,管制瓶是先拉成玻管,然后用玻璃管在立式转盘式机器制成瓶子,模制瓶是用硼砂、 石英砂在窑炉行列机生产做成瓶子的,管制瓶不使用模具,只使用两套模轮,模制瓶需要整套模具;2、外观不一样,管制瓶外表看起来光亮些,透明度比较好,模制瓶粗糙些。西林瓶与安瓿瓶的区别:安瓿瓶:一种密封的高质量薄玻璃做的小瓶,常用于存放注射用的药物以及疫苗、血清等。最常见的就是医用的,打点滴用的药一般都是安瓿瓶。西林瓶:一种胶塞封口的小瓶子,有棕色,透明等种类,一般为玻璃材质。瓶颈部较细,瓶颈一下粗细一致;瓶口略粗于瓶颈,略细于瓶身一般用做药用注射液瓶、口服液瓶等。它们最大的区别就是安瓿瓶是密封一体的,而西林瓶是有胶塞密封的而且都比安瓿瓶厚。西林瓶一般都装无菌分装的粉末,或冻干粉针;而安瓿瓶都是用来装液体制剂的。
  • 天津市奥淇洛谱西林瓶(无盖)西林瓶
    西林瓶(penicillin bottle),又称:硼硅玻璃或钠钙玻璃管制(模制)注射剂瓶,是一种胶塞封口的小瓶子。早期盘尼西林多用其盛装,故名西林瓶。西林瓶有棕色、透明等种类、硼硅材质的西林瓶为市场上的主流产品。瓶颈部较细,瓶颈以下粗细一致。瓶口略粗于瓶颈,略细于瓶身,一般用做疫苗、生物制剂、粉针剂、冻干等药品的包装。1、制法不一样,管制瓶是先拉成玻管,然后用玻璃管在立式转盘式机器制成瓶子,模制瓶是用硼砂、 石英砂在窑炉行列机生产做成瓶子的,管制瓶不使用模具,只使用两套模轮,模制瓶需要整套模具;2、外观不一样,管制瓶外表看起来光亮些,透明度比较好,模制瓶粗糙些。西林瓶与安瓿瓶的区别:安瓿瓶:一种密封的高质量薄玻璃做的小瓶,常用于存放注射用的药物以及疫苗、血清等。最常见的就是医用的,打点滴用的药一般都是安瓿瓶。西林瓶:一种胶塞封口的小瓶子,有棕色,透明等种类,一般为玻璃材质。瓶颈部较细,瓶颈一下粗细一致;瓶口略粗于瓶颈,略细于瓶身一般用做药用注射液瓶、口服液瓶等。它们最大的区别就是安瓿瓶是密封一体的,而西林瓶是有胶塞密封的而且都比安瓿瓶厚。西林瓶一般都装无菌分装的粉末,或冻干粉针;而安瓿瓶都是用来装液体制剂的。
  • 天津市奥淇洛谱西林瓶(无盖)西林瓶 ya10035 25ml(192*1)
    西林瓶(penicillin bottle),又称:硼硅玻璃或钠钙玻璃管制(模制)注射剂瓶,是一种胶塞封口的小瓶子。早期盘尼西林多用其盛装,故名西林瓶。西林瓶有棕色、透明等种类、硼硅材质的西林瓶为市场上的主流产品。瓶颈部较细,瓶颈以下粗细一致。瓶口略粗于瓶颈,略细于瓶身,一般用做疫苗、生物制剂、粉针剂、冻干等药品的包装。1、制法不一样,管制瓶是先拉成玻管,然后用玻璃管在立式转盘式机器制成瓶子,模制瓶是用硼砂、 石英砂在窑炉行列机生产做成瓶子的,管制瓶不使用模具,只使用两套模轮,模制瓶需要整套模具;2、外观不一样,管制瓶外表看起来光亮些,透明度比较好,模制瓶粗糙些。西林瓶与安瓿瓶的区别:安瓿瓶:一种密封的高质量薄玻璃做的小瓶,常用于存放注射用的药物以及疫苗、血清等。最常见的就是医用的,打点滴用的药一般都是安瓿瓶。西林瓶:一种胶塞封口的小瓶子,有棕色,透明等种类,一般为玻璃材质。瓶颈部较细,瓶颈一下粗细一致;瓶口略粗于瓶颈,略细于瓶身一般用做药用注射液瓶、口服液瓶等。它们最大的区别就是安瓿瓶是密封一体的,而西林瓶是有胶塞密封的而且都比安瓿瓶厚。西林瓶一般都装无菌分装的粉末,或冻干粉针;而安瓿瓶都是用来装液体制剂的。

美洛西林钠对照品相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制