氯化天竺葵素对照品

仪器信息网氯化天竺葵素对照品专题为您提供2024年最新氯化天竺葵素对照品价格报价、厂家品牌的相关信息, 包括氯化天竺葵素对照品参数、型号等,不管是国产,还是进口品牌的氯化天竺葵素对照品您都可以在这里找到。 除此之外,仪器信息网还免费为您整合氯化天竺葵素对照品相关的耗材配件、试剂标物,还有氯化天竺葵素对照品相关的最新资讯、资料,以及氯化天竺葵素对照品相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

氯化天竺葵素对照品相关的资料

氯化天竺葵素对照品相关的论坛

  • 花色素标样的配制问题

    我要做花色素的定性实验,用液相色谱。买的色素标样是粉末的,要怎么配制成储备液,用什么配制呢?我的色素是芍药花素,矢车菊素和天竺葵素。

  • 液相色谱仪用国标方法测定花青素

    用国标方法测定花青素天竺葵色素时,方法都跟国标一样,但是一直未出峰。请教下各位老师,是什么原因?后面换了流动相,0.1%的磷酸水溶液和乙腈,还是未出峰。

  • 【求助】稀释标准氯化钾对照品

    用[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]测定钾盐时,用供试品溶液稀释标准氯化钾对照品,这是为什么????原文:取样品0.1克,置100ml量瓶中,加水稀释。作为供试品(B):另取标准氯化钾溶液(分析纯氯化钾191mg,置1000ml量瓶中,加水稀释)5ml,置50ml量瓶中,加(B)溶液稀释至刻度,作为对照溶液(A)。照[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]分光光度法在766.5nm处测定

氯化天竺葵素对照品相关的方案

氯化天竺葵素对照品相关的资讯

  • 解读《生活饮用水卫生标准》中的“臭和味”
    在现行的《生活饮用水卫生标准》(GB 5749-2022)中,“臭和味”这一指标位列于“感官性状和一般化学指标”部分,其所要求的限值为“无异臭、异味”。“臭和味”被列入出厂水、末梢水的必测项目,是因为臭味会导致人体感官上的不适、损害饮用水质量、影响饮用水的使用。不仅如此,产生臭味的致嗅物质的在水中浓度过高时,还会直接损害人体健康。水中的“臭和味”是由存在于水中的某些具有臭味的化合物所引起的,此类物质被称为致嗅物质。人类活动和自然环境中都会产生导致水臭的致嗅物质。现已查明水中的主要致臭物质可以分为以下8类:1、土味、霉味、腐嗅味的化合物饮用水中的土臭素、2–甲基异莰醇(2–MIB)和2,4,6–三氯茴香醚(TCA)是已经确认的一组嗅味物质。除土臭素、2–MIB和TAC外,其他化学物质也产生土霉味,嗅味类型与FPA专门研究小组报道的描述相似,但是这些物质暂时还不能用化学方法进行定性分析。2、氯味、臭氧味化合物次氯酸和次氯酸盐离子有相同的漂白剂味嗅描述。在折点之前,主要的氯化产物是一氯胺和二氯胺。当一氯胺的浓度超过5mg/L,在饮用水中很少引起嗅味问题。当二氯胺的浓度达到0.9-1.3mg/L,嗅味为适中到非常强烈,或是非常讨厌、难以忍受。但二氯胺的浓度高于0.5mg/L,能察觉到令人讨厌的氯味。3、芬香味、蔬菜香味、果味、花香味的化合物用臭氧氧化时产生碳链中碳原子数大于7的高分子醛(庚醛),具有果味的嗅味,其中癸醛具有果味/橘子味的嗅味,壬二烯能引起黄瓜味的嗅味,三氯胺有天竺葵的嗅味。对三氯胺的天竺葵的嗅味,由于还没有完整的证明过程,而且三氯胺不稳定,所以目前还未将它列入嗅味化合物。4、 药味的化合物嗅味物质年轮中溴酚是产生药味的化合物。供水管网中存在的溴酚是由于从涂层物质上淋溶下来的苯酚与水中存在的溴离子和氯发生反应的产物。当苯酚溶液中存在氨时,氨会消耗游离氯,因而降低游离氯残留量,苯酚的嗅味可能增强。饮用水中甲基碘的形成和原水有机物含量、氯化过程有关。游离氯能氧化水中的有机物和无机化合物。在饮用水中的碘化卤仿浓度达到0.30-10ug/L,就会引起药味的嗅味。5、草味、干草味、稻草味的化合物到目前为止只对两种干草味的化合物进行了定性,顺–3–已烯–1–醇和乙酸顺–3–已烯–1–醇酯,确定这两个化合物产生草味嗅味的原因。在藻类繁殖的湖水和经过处理的水中还发现了环拧檬醛,已经定性为引起干草味、木头味的嗅味物质。这个研究工作证明了认识嗅味类型和浓度之间的关系的重要性。6、腥嗅味和腐嗅味的化合物在臭氧处理的饮用水中存在腐嗅、油味和肥皂味的嗅味。嗅味物质中导致腥嗅味和腐嗅味的物质作为未知物质加入的。腥味的嗅味有可能是自然产生的。例如在海藻的纯培养中发现了腥嗅味。7、沼泽味、腐败味、硫磺味的化合物二甲基二硫化物是一种已经定性为具有腐败蔬菜嗅味的化合物,并且被加入到嗅味物质年轮中。当二甲基二硫化物存在时,某些化合物产生的腐败蔬菜的嗅味通常会有所增加。8、 化学品味、烃味、混杂味的化合物在世界范围的饮用水中,由于树脂生产过程会产生至少引起4种不同嗅味的副产物。这些化合物中,比较简单的是醛和乙二醇,但是特别引起关注的是具有甜味的副产物的2–乙基–5,5–二甲基–1,3–二氧杂环已烷(2–EDD)和2–乙基–4,4–二甲基–1,3–二氧杂环已烷(2–EMD)。饮用水和湖水中的甲基叔丁基醚(MTBE)是地下储罐泄露和作为外置马达的燃料使用中产生的一种嗅味物质。MTBE用在氧化燃料中以减少烟雾。其嗅味描述为煤油味和烃味。
  • 几个亿的油画拿来做实验:科学仪器助力解读梵高名画“吉诺夫人的肖像”
    历史绘画品,其组成结构通常比较复杂,除主要化合物外,还有一些低含量的物质,或来自艺术品本身,或与其老化过程(如分子的迁移或聚集)以及之前的保存处理方式密切相关。其中一类从绘画品检测到的微量化合物,多为微米级的颗粒物和层状物,其尺寸小于10 μm (尺寸/厚度)。为了解这些历史绘画品的组成、物理性质、历史背景和进一步理解可能的退化过程,一项重要的工作就是对这些微量化合物进行详细的组成表征,获取这些信息是发现合适的预防/保存方法来避免/减少这些老化过程的进一步发展。然而,由于可用于分析的样品量非常少,且应该尽可能减少来确保艺术品的完整性,这些微米级区域的识别就变得复杂和具有挑战性。图1. (a)世界名画,著名画家梵高的“吉诺夫人的肖像”;(b)画作中选取的用于分析的样品碎片;(c)当前多种红外技术的空间分辨率及波长依赖性对比。O-PTIR技术支持除了一些基于X射线的常用方法来表征绘画品中的无机颗粒和层状物,一些关于有机物的表征问题仍未能得到有效的解决。微米级傅里叶变换红外(µFTIR)和拉曼(µRaman)光谱技术的应用,可提供这些物质分子结构和空间分布的一些信息,但µFTIR通常受到空间分辨率的限制(约3-15 μm,且依赖于入射红外波长),难以检测到10 μm *10 μm区域内一些光谱标志物的特征吸收带,尽管拉曼光谱可实现较高的空间分辨率,却会受到荧光干扰和潜在的敏感材料损伤的限制。基于O-PTIR的全新亚微米红外光谱是最近发展起来的一项基于热膨胀的红外技术,其使用红外激光照射样品引发热膨胀,然后用可见探针激光进行红外测量。因此,其空间分辨率由可见激光的光斑大小决定,克服了传统FTIR光谱分辨率决定于红外光衍射极限的限制。另外,除了其高空间分辨率(通常远低于1 µm), 基于O-PTIR的全新亚微米红外光谱测量不需要与样品直接接触,避免了表面脱落粒子的干扰或对待分析绘画品片段的可能损害,是一种非常有前途的历史绘画品的分析方法,并有可能拓展到其他具有多彩表面的文化遗产样品。研究概述近期,比利时安特卫普大学的Karolien De Wael课题组及其合作者首次使用基于O-PTIR的全新亚微米红外光谱技术用于分析历史绘画作品中的有机颗粒物,并和基于同步辐射光源的µFTIR(µSR-FTIR)结果进行了对比。相关研究成果已成功发表在Angewandte Chemie International Edition德国应用化学上(DOI:10.1002/anie.202106058)。如图1(a-b)所示,作者选取了梵高的名画“吉诺夫人的肖像”的微小片段,尺寸约为200 µm * 200 µm * 25 µm(图1b), 画作表面层的厚度仅约为10 µm,这对于直接表征其有机组成是一个很大的挑战。在µSR-FTIR收集的高质量波谱数据中,五种主要的光谱类型可以通过特征红外吸收谱带得到有效的区分(箭头所示),分别为铅白 (2PbCO3Pb(OH)2 / PbCO3,约为1390 和1045 cm-1),CaCO3 (约为1453 和874 cm-1),干油(约为1734 cm-1),蛋白质(约为1650 和1543 cm-1,分布对应Amine Ⅰ和Amine Ⅱ)以及纤维素(1114, 1062 和 1037 cm-1)。值得注意的是,用于包埋样品的环氧树脂(1512, 和 1247 cm-1)也被检测到,且在其他几个谱图也同样发现,主要原因为µSR-FTIR红外光斑点太大,无法精准选择样品的特定微小区域。作为对比,基于O-PTIR的全新亚微米红外光谱同样可以依赖特征红外吸收谱带检测到上述的多种化合物,如下图2所示。另外,得益于其高的空间分辨率,我们可以将CaCO3和干油的谱图与铅白和干油的谱图进行有效区分,证明了这些颜料在画作中有着不同的空间分布。值得注意的是,基于O-PTIR的全新亚微米红外光谱谱图并不包含包埋树脂的特征红外吸收峰(约为1512 cm-1),这与µSR-FTIR形成鲜明的对比,原因可能在于基于O-PTIR的全新亚微米红外光谱较小的光斑允许研究人员选取远离样品边缘的目标区域,提供无树脂吸收带的红外谱图,有助于避免它们与来自其他化合物的信号重叠,以及重要光谱特征的丢失,更有效的区分样本的不同组成部分。图2. 采用µSR-FTIR和基于O-PTIR的全新亚微米红外光谱对图1所示的薄片(上)进行分析和对比。(中)绿色区域的SR-FTIR分析结果 (斑点大小: 10 µm * 10 µm);(下)黄色标记区域的O-PTIR分析结果(光斑大小: 450 nm * 450 nm)。基于O-PTIR的全新亚微米红外光谱技术的应用,成功克服了以往常用的红外和拉曼光谱法的局限性,实现了精准鉴别未知组成颗粒物的化学组成。如图3所示,获得的谱图清晰地显示出天竺葵湖颜料的主要红外吸收条带,与参考文献中其他红外技术观察到的谱图完全一致,如羧酸基团(1550和1460 cm-1),氧杂蒽和酮基团(1605,1351,1254 cm-1)。另外,由于天竺葵湖色素在可见光下会逐渐降解,有可能影响到后续其他技术的进一步分析,验证基于O-PTIR的全新亚微米红外光谱使用的可见激光是否可能会对样品造成损伤就显示十分重要。结果显示,传统FTIR所收集的光谱与O-PTIR得到的初始(图3, t0)和经过22次重复(18分钟)得到的最终结果(图3, tf)非常相似,由此证明了基于O-PTIR的全新亚微米红外光谱未对该敏感物材料造成明显损害,未来可以作为一种常用的非破坏性测试技术用于文化遗产物质的检测和分析。图3. 使用基于O-PTIR的全新亚微米红外光谱技术对粉红色颗粒进行表征。上图:选择用于分析的区域(左)及其被分析点位的放大图,a-b(右);中图: 各分析点的基于O-PTIR的全新亚微米红外光谱(黑色)和新合成的天竺葵湖颜料的参比光谱(粉红色标记);下图:对基于O-PTIR的全新亚微米红外光谱分析过程中对参考样品天竺葵湖的潜在辐射损伤的研究, 之前的FTIR光谱(粉色)与基于O-PTIR的全新亚微米红外光谱初始光谱比较(t0)和累计连续辐照22次后的光谱 (tf)。小结基于O-PTIR的全新亚微米红外光谱提供的高空间分辨率,克服了传统FTIR的衍射极限,大大扩展了传统分子光谱技术的边界,用于分析历史绘画作品和文物具有很大的优势,即使只有微小的碎片可用于分析。另外基于高空间分辨率,基于O-PTIR的全新亚微米红外光谱不仅可以提供较少的重叠光谱,有助于识别微米和纳米组成在样品中的不均匀性,也大大降低分析所需样本的大小。这对于文化遗产的研究和保存具有明显的优势,可以最大化获得信息的同时最小化对物体的侵入性采样,因此有助于保护艺术品的完整性。
  • Angewandte:解读梵高名画“吉诺夫人的肖像” ——O-PTIR光热红外光谱技术提供纳米尺度的空间分辨率
    前言历史绘画品,其组成结构通常比较复杂,除主要化合物外,还有一些低含量的物质,或来自艺术品本身,或与其老化过程(如分子的迁移或聚集)以及之前的保存处理方式密切相关。其中一类从绘画品检测到的微量化合物,多为微米的颗粒物和层状物,其尺寸小于10 μm (尺寸/厚度)。为了解这些历史绘画品的组成、物理性质、历史背景和进一步理解可能的退化过程,一项重要的工作就是对这些微量化合物进行详细的组成表征,获取这些信息是发现合适的预防/保存方法来避免/减少这些老化过程的进一步发展。然而,由于可用于分析的样品量非常少,且应该尽可能减少来确保艺术品的完整性,这些微米区域的识别就变得复杂和具有挑战性。图1.(a)名画,著名画家梵高的“吉诺夫人的肖像”;(b)画作中选取的用于分析的样品碎片;(c)当前多种红外技术的空间分辨率及波长依赖性对比。除了一些基于X射线的常用方法来表征绘画品中的无机颗粒和层状物,一些关于有机物的表征问题仍未能得到有效的解决。微米傅里叶变换红外(µFTIR)和拉曼(µRaman)光谱技术的应用,可提供这些物质分子结构和空间分布的一些信息,但µFTIR通常受到空间分辨率的限制(约3-15 μm,且依赖于入射红外波长),难以检测到10 μm *10 μm区域内一些光谱标志物的特征吸收带,尽管拉曼光谱可实现较高的空间分辨率,却会受到荧光干扰和潜在的敏感材料损伤的限制。O-PTIR是近发展起来的一项基于热膨胀的红外技术,其使用红外激光照射样品引发热膨胀,然后用可见探针激光进行红外测量。因此,其空间分辨率由可见激光的光斑大小决定,克服了传统FTIR光谱分辨率决定于红外光衍射限的限制。另外,除了其高空间分辨率(通常远低于1 µm), O-PTIR测量不需要与样品直接接触,避免了表面脱落粒子的干扰或对待分析绘画品片段的可能损害,是一种非常有前途的历史绘画品的分析方法,并有可能拓展到其他具有多彩表面的文化遗产样品。近期,比利时安特卫普大学的Karolien De Wael课题组及其合作者次使用O-PTIR技术用于分析历史绘画作品中的有机颗粒物,并和基于同步辐射光源的µFTIR(µSR-FTIR)结果进行了对比。相关研究成果已成功发表在Angewandte Chemie International Edition德国应用化学上(DOI:10.1002/anie.202106058)。如图1(a-b)所示,作者选取了梵高的名画“吉诺夫人的肖像”的微小片段,尺寸约为200 µm * 200 µm * 25 µm(图1b), 画作表面层的厚度仅约为10 µm,这对于直接表征其有机组成是一个很大的挑战。在µSR-FTIR收集的高质量波谱数据中,五种主要的光谱类型可以通过特征红外吸收谱带得到有效的区分(箭头所示),分别为铅白 (2PbCO3Pb(OH)2 / PbCO3,约为1390 和1045 cm-1),CaCO3 (约为1453 和874 cm-1),干油(约为1734 cm-1),蛋白质(约为1650 和1543 cm-1,分布对应Amine Ⅰ和Amine Ⅱ)以及纤维素(1114, 1062 和 1037 cm-1)。值得注意的是,用于包埋样品的环氧树脂(1512, 和 1247 cm-1)也被检测到,且在其他几个谱图也同样发现,主要原因为µSR-FTIR红外光斑点太大,无法选择样品的特定微小区域。作为对比,O-PTIR同样可以依赖特征红外吸收谱带检测到上述的多种化合物,如下图2所示。另外,得益于其高的空间分辨率,我们可以将CaCO3和干油的谱图与铅白和干油的谱图进行有效区分,证明了这些颜料在画作中有着不同的空间分布。值得注意的是,O-PTIR谱图并不包含包埋树脂的特征红外吸收峰(约为1512 cm-1),这与µSR-FTIR形成鲜明的对比,原因可能在于O-PTIR较小的光斑允许研究人员选取远离样品边缘的目标区域,提供无树脂吸收带的红外谱图,有助于避免它们与来自其他化合物的信号重叠,以及重要光谱特征的丢失,更有效的区分样本的不同组成部分。图2. 采用µSR-FTIR和O-PTIR对图1所示的薄片(上)进行分析和对比。(中)绿色区域的SR-FTIR分析结果 (斑点大小: 10 µm * 10 µm);(下)黄色标记区域的O-PTIR分析结果(光斑大小: 450 nm * 450 nm)。 O-PTIR技术的应用,成功克服了以往常用的红外和拉曼光谱法的局限性,实现了鉴别未知组成颗粒物的化学组成。如图3所示,获得的谱图清晰地显示出天竺葵湖颜料的主要红外吸收条带,与参考文献中其他红外技术观察到的谱图完全一致,如羧酸基团(1550和1460 cm-1),氧杂蒽和酮基团(1605,1351,1254 cm-1)。另外,由于天竺葵湖色素在可见光下会逐渐降解,有可能影响到后续其他技术的进一步分析,验证O-PTIR使用的可见激光是否可能会对样品造成损伤就显示十分重要。结果显示,传统FTIR所收集的光谱与O-PTIR得到的初始(图3, t0)和经过22次重复(18分钟)得到的终结果(图3, tf)非常相似,由此证明了O-PTIR未对该敏感物材料造成明显损害,未来可以作为一种常用的非破坏性测试技术用于文化遗产物质的检测和分析。图3. 使用O-PTIR光谱技术对粉红色颗粒进行表征。上图:选择用于分析的区域(左)及其被分析点位的放大图,a-b(右);中图: 各分析点的O-PTIR光谱(黑色)和新合成的天竺葵湖颜料的参比光谱(粉红色标记);下图:对O-PTIR分析过程中对参考样品天竺葵湖的潜在辐射损伤的研究, 之前的FTIR光谱(粉色)与OPTIR初始光谱比较(t0)和累计连续辐照22次后的光谱 (tf)。 O-PTIR提供的高空间分辨率,克服了传统FTIR的衍射限,大大扩展了传统分子光谱技术的边界,用于分析历史绘画作品和文物具有很大的优势,即使只有微小的碎片可用于分析。另外基于高空间分辨率,O-PTIR不仅可以提供较少的重叠光谱,有助于识别微米和纳米组成在样品中的不均匀性,也大大降低分析所需样本的大小。这对于文化遗产的研究和保存具有明显的优势,可以大化获得信息的同时小化对物体的侵入性采样,因此有助于保护艺术品的完整性。 参考文献:[1] Karolien De Wael et.al. Nanoscale analysis of historical paintings by means of O-PTIR spectroscopy: The identification of the organic particles in L’Arlésienne (portrait of Madame Ginoux) by Van Gogh. Angewandte Chemie International Edition, 2021, DOI: 10.1002/anie.202106058.

氯化天竺葵素对照品相关的仪器

  • 氯化胆碱简介:中文名称:氯化胆碱中文别名:氯化胆脂;氯化2-羟乙基三甲铵;增蛋素英文名称:Choline chlorideCAS NO:67-48-1结构式:HOCH2CH2N(CH3)3Cl分子式:C5H14ClNO分子量:139.63含量(%):50%、60%、98%熔点(℃):302~305(分解)毒性LD50(mg/kg):大鼠经口6640性状:吸湿性晶体。二、性状熔点(℃):302~305(分解)毒性LD50(mg/kg):大鼠经口6640性状:吸湿性晶体。溶解性:易溶于水及醇类,水溶液几乎呈中性,不溶于醚、石油醚、苯及二硫化碳。微有鱼腥臭,咸苦味,易潮解,在碱溶液中不稳定。三、用途江氯化胆碱还是一种植物光合作用促进剂,对增加产量有明显的效果。小麦、水稻在孕穗期喷施可促进小穗分化,多结穗粒,灌浆期喷施可加快灌浆速度,穗粒饱满,千粒重增加25克。亦可用于玉米、甘蔗、甘薯、马铃薯、萝卜、洋葱、棉花、 、蔬菜、葡萄、芒果等增加产量,在不同气候、生态环境条件下效果稳定;块根等地下部分生长作物在膨大初期每亩用60水剂1020毫升(有效成分612克),加水30升稀释(15003000倍),喷施2--3次,膨大增产效果明显; 观赏植物杜鹃花、一品红、天竺葵、木槿等调节生长;小麦、大麦、燕麦抗倒伏 。 氯化胆碱还是一种植物光合作用促进剂,对增加产量有明显的效果。小麦、水稻在孕穗期喷施可促进小穗分化,多结穗粒,灌浆期喷施可加快灌浆速度,穗粒饱满,千粒重增加25克。亦可用于玉米、甘蔗、甘薯、马铃薯、萝卜、洋葱、棉花、烟草、蔬菜、葡萄、芒果等增加产量,在不同气候、生态环境条件下效果稳定;块根等地下部分生长作物在膨大初期每亩用60水剂1020毫升(有效成分612克),加水30升稀释(15003000倍),喷施2--3次
    留言咨询
  • 氯化胆碱 农业级氯化胆碱 饲料级氯化胆碱 食品级氯化胆碱氯化胆碱白色吸湿性结晶,无味,有鱼腥臭。Mp240℃。10%水溶液pH5-6,在碱液中不稳定。本品易溶于水和乙醇,不溶于乙醚、石油醚、苯和二硫化碳。低毒,LD50(大鼠,经口)3400 mg/kg氯化胆碱作用用途组织培养基、饲料添加剂,临床用于抗脂肪肝剂。用于治疗脂肪肝和肝硬化,也用作饲料添加剂,能刺激卵巢多产蛋、产仔及禽畜、鱼类等增重氯化胆碱能有效的预防和治疗畜禽器官内的脂肪沉积和组织变性。能促进氨基酸的吸收与合成。能增强畜禽的体质和抗病能力,促进生长发育,提高禽类产蛋率。用量1-2g/kg。是一种高效的营养增补剂及祛脂剂作为饲料添加剂,氯化胆碱具有以下生理作用:可预防肝脏、肾脏中的脂肪积累及其组织变性;可促进氨基酸的再组合;可提高氨基酸,尤其是必需的氨基酸蛋氨酸在体内的利用率。在日本,氯化胆碱的98%用作鸡、猪、肉牛及鱼虾等动物饲料添加剂。大部分加工成粉剂,50%粉剂的制法是在混合器中预先加入适当粒度的赋形剂,而后滴加氯化胆碱水溶液,经混合、干燥而得。有些商品粉剂还配合有维生素、矿物质、药物等。氯化胆碱是维生素B属药物,用于肝炎、肝机能退化、早期肝硬化、恶性贫血等症。氯化胆碱还是一种植物光合作用促进剂,对增加产量有明显的效果。小麦、水稻在孕穗期喷施可促进小穗分化,多结穗粒,灌浆期喷施可加快灌浆速度,穗粒饱满,千粒重增加2~5克。亦可用于玉米、甘蔗、甘薯、马铃薯、萝卜、洋葱、棉花、烟草、蔬菜、葡萄、芒果等增加产量,在不同气候、生态环境条件下效果稳定;块根等地下部分生长作物在膨大初期每亩用60%水剂10~20毫升(有效成分6~12克),加水30升稀释(1500~3000倍),喷施2--3次,膨大增产效果明显; 观赏植物杜鹃花、一品红、天竺葵、木槿等调节生长;小麦、大麦、燕麦抗倒伏 。
    留言咨询
  • Sanotac致力于天然产物和中药对照品分离纯化、化学药物杂质对照品分离纯化应用的中压制备色谱、制备液相色谱技术的开发,系统软件符合“CFDA GXP和FDA 21CFR Part 11 ”法规要求,可实现多达 4元梯度洗脱和自动馏分收集,同时兼容ge AKTA、isco、biotage,buchi、biorad等中压分离纯化制备色谱的色谱柱和纯化柱,是一款高效、功能强大的模块化快速纯化制备液相色谱,在中药化学对照品分离纯化领域已经得到广泛应用:皂苷类对照品分离纯化 ,黄酮类对照品分离纯化,异黄酮类对照品分离纯化,香豆素类对照品分离纯化,色原酮类对照品分离纯化,生物碱类对照品分离纯化,酚酸类对照品分离纯化,萜类对照品分离纯化,蒽醌类对照品分离纯化,木脂素类对照品分离纯化。快速纯化制备液相色谱系统技术特点: *微处理器控制,高速双驱动和平行的泵头具有高速的腔室压力反馈,补偿再填充和溶剂压缩效果,实现在宽动态范围内获得精确高重现的流速。 *采用轮曲线补偿技术有效控制流量脉动,保证最低的基线噪声。 *多点流量校正曲线,保证在全流量范围内的流量精度。 *浮动柱塞设计,保证高压密封圈的使用寿命。 *10个用户程序,可实现流量和梯度编程。 *双波长检测、波长时间程序和停泵扫描——三种测定方式使得基线噪音和漂移降到最低,获得了最高的灵敏度和最低检测限,以及更宽的线性范围。对应各种测定需求,可以同时对主要成分、副产物和杂质进行可靠的定量。 *可快速便捷的更换灯和流通池,氘灯钨灯实现智能切换,确保正常运行时间的最大化。系统自动收集器特点: ?独创的运动原理,直线和旋转运动结合,可最迅速地到这任意收集位置 ?体积、时间、闺值、斜率组合多种收集模式,满足各种收集需要,可设 立普通模式、顺序收集和循环收集 ?精确的最小管路设计,减少样品在流通池后扩散带来的收集不准确 ?软件延迟体积的设置,使收集更精准,产品更纯净 ?采用高精度切瓶技术,废液通道独立,切换瓶过程无滴漏 ?分于动和自动两种收集方式,操作简单、方便 ?配套软件可以实时采集多路波长信号,收集信号可任意选择 ?实时显示设备状态、连接和收集瓶位置,收集直观,位置清晰 ?兼容多种收集容器,最多可允许收集瓶: 13--15mm 试管 120 支 ?具有收集容器自识别功能,可防止使用不同型号收集容器时安放错位 ?最大程度的空间利用,设备占用空间小,使用方便。 快速纯化制备液相色谱技术参数: 泵头316L不锈钢泵 高精度、低脉冲、耐腐蚀 (peek泵头可选)流速范围0.01-100.00ml/min(梯度)流速精度±0.5%压力范围0-20MPa压力脉动≤0.2MPa梯度类型台阶、线性变化梯度、可在线修改梯度和流速最小梯度调节1%检测器光源氘灯+钨灯(进口)检测波长190-800nm 全波长检测器 双波长同时检测波长精度±1nm吸光度范围0-2AU收集全自动收集器收集管架2×60支试管(Φ15mm*150mm试管) 其他规格可以选配收集模式普通模式(按时间收集、峰收集、阈值收集)、顺序收集、循环收集手动上样阀制备色谱阀(标配10ml定量环)上样方式固体上样或液体上样电源220V±10% 50Hz色谱软件控制通过sanochrom色谱软件控制泵、紫外、自动收集器等组件设置与运行控制界面图形界面,USB接口+RS-232可接口,采用基于Windows7/Windows 8/Windows 10的PC软件工作站,软件符合“CFDA GXP和FDA 21CFR Part 11 ”法规要求
    留言咨询

氯化天竺葵素对照品相关的耗材

  • 弗喹诺酮快速检测卡
    本产品为弗喹诺酮快速检测卡,弗喹诺酮快速检测卡用于定性、半定量检测液态奶、奶粉(含婴儿奶粉),蜂蜜、水产、畜禽组织中中弗喹诺酮残留,弗喹诺酮快速检测卡整个检测过程只需要5~8分钟左右。检测灵敏度见下表:药品名称灵敏度(ppb)药品名称灵敏度(ppb)盐酸环丙沙星20盐酸沙拉沙星10诺氟沙星10甲磺胺达氟沙星40氧氟沙星20甲磺胺培氟沙星50盐酸恩诺沙星40盐酸双氟沙星80 【检测原理】弗喹诺酮快速检测卡应用竞争抑制免疫层析的原理,样本中的弗喹诺酮在侧向移动的过程中与胶体金标记的特异性单克隆抗体结合,抑制了抗体和NC膜检测线上弗喹诺酮-BSA偶联物的结合。如果样本中弗喹诺酮含量大于上表灵敏度,检测线不显颜色,结果为阳性;反之,检测线显红色,结果为阴性。【产品组成】弗喹诺酮快速检测卡(40份/盒);说明书(1份/盒);塑料吸管(40个/盒);【使用步骤】(1)测试前请完整阅读使用说明书,并将未开封的检测卡和待检样本溶液回复至常温;(2)从包装袋中取出检测卡后请尽快使用;(3)将检测卡平放,用滴管吸取待检样品溶液,滴加3滴(约75 μL) 于加样孔中,加样后开始计时;(4)结果应在5~10分钟读取,15分钟后判读无效;(5)读取结果时,检测卡水平置于观察者正面,如右图所示。【结果判断】s 阴性(-): T线显色(测试线,靠近加样孔一端),表明样品中弗喹诺酮浓度低于检测限或不含弗喹诺酮残留。s 阳性(+): T线无显色,表明样品中弗喹诺酮浓度高于检测限。s 无效:未出现C线,可能操作不当或检测卡已失效。在此情况下,应再次仔细阅读说明书,并用新的检测卡重新测试。【注意事项】⑴请勿触摸检测卡中央的白色膜面;请勿使用过期的检测卡。⑵本公司提供的滴管请勿重复使用;本公司提供的试剂请勿食用。⑶若需直接检测标准品,请用我方提供的PBS缓冲液进行配制。⑷自来水、蒸馏水或去离子水不能作为阴性对照。⑸由于样本的差异,有的检测线颜色可能偏淡或偏灰,但只要出现条带,就可判定为阴性结果。⑹出现阳性结果,建议用本卡复查一次。气质联用法是弗喹诺酮检测的确证方法。⑺样本中的固体杂质颗粒会导致假阳性结果,取样时弃去肉眼可见的颗粒部分,有条件时请离心后取上清液做检测。【精密度】同时用本产品和弗喹诺酮ELISA检测试剂盒对包括146份阴性样本和140份阳性样本的286份样品进行检测,结果表明本产品与弗喹诺酮ELISA检测试剂盒的结果符合率为98.1%。【储存及有效期】原包装在4-30 ℃阴凉避光干燥处储存,有效期为12个月,批号和有效期见包装盒弗喹诺酮快速检测卡 http://www.csy17.com/pro587.html
  • SureGuide gRNA 对照试剂盒,20 次反应
    SureGuide gRNA 对照试剂盒为 CRISPR 研究提供对照 gRNA 和对照 DNA 靶标。对照 gRNA 为 gRNA 制备的质量评估提供了参比。对照 DNA 靶标用于测量 CRISPR/Cas 实验中的酶切效率。 包含这些对照以获得安捷伦用于体外 CRISPR/Cas 研究的一体化解决方案的所有优势。 特征明确的对照材料可监测 CRISPR/Cas 实验每个步骤的情况。 知晓您的实验何时成功并尽早纠正任何问题。在进行进一步的实验之前,对照 gRNA 有助于评估 gRNA 制备的质量,在制备的 gRNA 不适用时避免浪费时间和精力,适用时可进一步增加您对实验的信心。对照 DNA 靶标用于确定 CRISPR/Cas 实验中的 DNA 酶切效率,以确认实验结果的有效性。根据您的需求量身定制。="" href='https://www.agilent.com/common/requestQuote.jsp?source=contactus”联系我们 返回页首
  • 对照防脱载玻片
    我们在组织病理学研究中应用对照载玻片(control slides),可以方便的知道样本哪个来自病人,哪个来自对照。l 具有Superfrost玻片的一切优点。l 病人和对照样本集中于一张玻片l 有利于病人和对照样本的阳性鉴别l 校准正确的染色流程l 染色过程中样本均紧密贴附于玻片l 方便持久的玻片辨识 订购信息:货号产品名称规格63448-10 Control Slide 329+ 144/包63448-20Control Slide 334+ 144/包

氯化天竺葵素对照品相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制