酯树脂

仪器信息网酯树脂专题为您整合酯树脂相关的最新文章,在酯树脂专题,您不仅可以免费浏览酯树脂的资讯, 同时您还可以浏览酯树脂的相关资料、解决方案,参与社区酯树脂话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

酯树脂相关的耗材

  • 三菱树脂、三菱树脂的分离
    三菱树脂、三菱树脂的分离: 三菱化学阳离子交换树脂、三菱化学阴离子交换树脂、合成吸附三菱树脂。 三菱化学阳离子交换树脂技术参数: 强酸性阳离子交换树脂 凝胶型-SK系列,凝胶型-UBK型,多孔型-PK系列和高多孔型-HPK系列 弱酸性阳离子交换树脂 甲基丙烯酸型-WK10系列和丙烯酸型-WK40 以下为详细说明: 含强酸性磺酸交换基的苯乙烯高分子聚合物,有凝胶型的SK系列,多孔型的PK系列及高多孔型的HPK系列,树脂离子型为Na型。 三菱化学阴离子交换树脂技术参数: 强碱性阴离子交换树脂 凝胶型-DIAION SA10,SA20 凝胶型-UBA系列。 多孔型-PA系列。 高多孔型-HPA系列。 弱阴离子交换树脂 丙烯酸型-WA10、苯乙烯型-DIAIONWA20,WA21 苯乙烯二甲胺型-WA30 DIAION强阴离子交换树脂是季胺盐(NR+)键合聚苯乙烯聚合物,DIAION的产品,有凝胶型SA系列,多孔型PA系列及高多孔型HPA系列,标准品为CL型。三甲基胺基的I型强阴离子树脂的碱性高,用于逆向再生系统,处理水中的硅胶,泄露很低。I型强阴离子树脂的化学稳定性高,与Ⅱ型阴离子树脂或丙烯酸树脂比较,能用于较高的温度,Ⅱ型强阴离子交换树脂,含二甲乙醇胺基,其碱性较低,优点是较I型易再生及具较高交换容量。 合成吸附三菱树脂: 苯乙烯型-DIAION HP20,HP21 DIAION HP20和HP21是高多孔性苯乙烯的吸附/脱附树脂。适合吸附大分子,而且使用普通有机溶剂,酸和碱,即可很容易的游离出吸附物质。DIAION HP20和HP21在各种工业应用上很广泛,特别是天然物和小蛋白质的吸附、脱盐和脱色。 苯乙烯型-SEPABEADS SP825,SP850 SP825和SP850也是高多孔性苯乙烯的合成吸附剂。表面积比HP20系列大很多,孔径分布比HP20均匀,表面积约是HP20的2倍,对小分子(1500MW)吸附也是HP20的2倍,这个系列被推荐用于吸附、脱盐和脱色。 如果您还有疑问对三菱树脂、三菱树脂的分离,请登录北京绿百草科技发展有限公司的官方网站进行咨询。
  • 超净树脂/XAD-2树脂
    超净树脂 相当与 XAD-2树脂— Restek的独家产品!用于吸附空气中的半挥性发物质清洁度,GC测试和标定。数量:100克回答几个问题Restek的超净树脂和 XAD-2树脂相同吗?是的,其制作工艺符合原始 XAD?-2 的全部技术指标,包括成分、孔径、和表面积。特别是对SVOC成分表现突出。Restek超净树脂使用前需要焙烧老化吗?不用,Restek超净树脂与其他树脂不同,出厂前已经完成全部焙烧老化工艺。当我们说超净树脂已经预清洗过了,你完全可以相信!Restek超净树脂能否安全用于 ECD 检测器?可以,Restek的清洁过程有一个特殊的步骤,可以清除掉对ECD检测器有响应的化合物。虽然树脂是采集多环芳烃一种优良的吸附剂,但它需要大量的清理,因为它的许多杂质是多环芳烃化合物。为了使您避免费时的清理,我们为你做清洁!我们用GC毛细管柱/氢火焰离子化检测器测试每批树脂,以确保清洁。然而,取决于你的应用程序,可能需要额外的清洁。Restek超净树脂,通常消除了空气采样时清洁和测试树脂的麻烦。应用方法方法应用EPATO-13A环境空气的各种PAHASTM D6209环境空气的各种PAHEPA 方法 23固定污染源排放的二噁英EPA 方法0010固定污染源排放的SVOC订货信息:产品描述cat.#超净树脂, 100 克24230
  • 超净树脂
    超净树脂 相当与 XAD-2树脂— Restek的独家产品!1、超净树脂 用于吸附空气中的半挥性发物质2、超净树脂 清洁度,GC测试和标定。3、超净树脂 数量:100克回答几个问题1、Restek的超净树脂和 XAD?-2树脂相同吗?是的,其制作工艺符合原始 XAD?-2 的全部技术指标,包括成分、孔径、和表面积。特别是对SVOC成分表现突出。2、Restek超净树脂使用前需要焙烧老化吗?不用,Restek超净树脂与其他树脂不同,出厂前已经完成全部焙烧老化工艺。当我们说超净树脂已经预清洗过了,你完全可以相信!3、Restek超净树脂能否安全用于 ECD 检测器?可以,Restek的清洁过程有一个特殊的步骤,可以清除掉对ECD检测器有响应的化合物。.虽然树脂是采集多环芳烃一种优良的吸附剂,但它需要大量的清理,因为它的许多杂质是多环芳烃化合物。为了使您避免费时的清理,我们为你做清洁!我们用GC毛细管柱/氢火焰离子化检测器测试每批树脂,以确保清洁。然而,取决于你的应用程序,可能需要额外的清洁。产品描述 cat.# 超净树脂, 100 克 24230Restek超净树脂,通常消除了空气采样时清洁和测试树脂的麻烦。应用方法方法 应用EPA TO-13A 环境空气的各种PAHASTM D6209 环境空气的各种PAHEPA 方法 23 固定污染源排放的二噁英EPA 方法0010 固定污染源排放的SVOC

酯树脂相关的仪器

  • 热固性树脂 400-659-9826
    仪器简介:《热固性树脂》分册通过大量实例全面深入地介绍和讨论了热分析在热固性树脂方面的应用。主要内容包括:热分析技术DSC、TMDSC、TGA、TMA和DMA等;热固性树脂的结构、性能和应用;热固性树脂的基本热效应;环氧树脂、不饱和聚酯树脂、酚醛树脂、丙烯酸类树脂、聚氨酯树脂等的热分析-固化反应(等温固化、光固化、后固化、转化率、反应动力学、配比/催化剂/活性稀释剂影响等)、玻璃化转变(Tg与固化度、Tg的各种测试法、凝胶化、时间温度转换图等)、填料和增强纤维的影响、印制线路板分析(Tg、分层、老化等)、缩聚、加聚、模塑料、树脂软化、层压板、热导率、粘合剂&hellip &hellip 目录应用一览表(第一至第三章)应用一览表(第四至第九章)1.热分析概论1.1 差示扫描量热法(DSC)1.1.1 常规1.1.2 温度调制1.1.2.1 ADSC1.1.2.2 IsoStep1.1.2.3 TOPEMTM1.2 热重分析(TGA)1.3 热机械分析(TMA)1.4 动态热机械分析(DMA)1.5 与TGA的同步测量1.5.1 同步DSC和差热分析(DTA,SDTA)1.5.2 逸出气体分析(EGA)1.5.2.1 TGA-MS1.5.2.2 TGA-FTIR2.热固性树脂的结构、性能和应用2.1 概述2.2 热固性树脂的化学结构2.2.1 大分子2.2.2 热固性树脂概述2.2.3 树脂2.2.3.1 环氧树脂2.2.3.2 酚醛树脂2.2.3.3 氨基树脂2.2.3.4 醇酸树脂,不饱和聚酯树脂2.2.3.5 乙烯基酯树脂2.2.3.6 烯丙基、DAP模塑料2.2.3.7 聚丙烯酸酯2.2.3.8 聚氨酯体系2.2.3.9 二氰酸酯树脂2.2.3.10 聚酰亚胺、双马来酰亚胺树脂2.2.3.11 硅树脂2.3 固化反应2.3.1 交联步骤2.3.2 TTT图2.3.3 固化动力学2.4 热固性树脂的应用2.4.1 热固性树脂的性能2.4.2 加工2.4.3 各种树脂的应用领域和性能2.4.3.1 环氧树脂2.4.3.2 酚醛树脂2.4.3.3 氨基树脂2.4.3.4 聚酯树脂2.4.3.5 乙烯基酯树脂2.4.3.6 苯二酸二烯丙酯模塑料2.4.3.7 丙烯酸酯树脂2.4.3.8 聚氨酯2.4.3.9 聚酰亚胺2.4.3.10 硅树脂2.4.3.11 使用范围和应用概述2.5 热固性树脂的表征方法2.5.1 所需信息的概述2.5.2 表征热固性树脂的热分析技术2.5.3 玻璃化转变2.5.3.1 玻璃化转变和松弛:热学和动态玻璃化转变2.5.3.2 玻璃化转变温度的测定2.5.4 热固性树脂分析的标准方法3.热固性树脂的基本热效应3.1 热效应的DSC测量3.1.1 玻璃化转变的测定3.1.1.1 玻璃化转变温度的DSC测量3.1.1.2 用DSC计算玻璃化转变的方法3.1.1.3 样品预处理对玻璃化转变的影响3.1.1.4 玻璃化转变的ADSC测量3.1.2 比热容测定3.1.3 用DSC测试的固化反应3.1.3.1 动态固化:第一次和第二次升温测量3.1.3.2 等温固化的DSC测量3.1.3.3 后固化和固化度的DSC测量3.1.3.4 玻璃化转变与转化率的关系3.1.3.5 固化速率和动力学的等温测量3.1.3.6 固化速率的动态测量3.1.3.7 动力学计算和预测3.1.4 玻璃化转变和后固化的分离(TOPEMTM法)3.1.5 紫外光固化的DSC测量3.2 效应的TGA测量3.2.1 热固性树脂升温时的质量变化3.2.2 含量测定:水分、填料和树脂含量3.2.3 苯酚-甲醛缩合反应的TGA分析3.3 效应的TMA测量3.3.1 线膨胀系数的测定3.3.2 玻璃化转变的TMA测量3.3.2.1 测定玻璃化转变的膨胀曲线3.3.2.2 薄涂层软化温度的测定3.3.2.3 由弯曲测试测定玻璃化转变3.3.3 固化反应的TMA测量3.3.3.1 固化反应的弯曲测量研究3.3.3.2 凝胶时间的DLTMA测定3.4 效应的DMA测量3.4.1 玻璃化转变的DMA测量3.4.2 玻璃化转变的频率依赖性3.4.3 动态玻璃化转变3.4.4 等温频率扫描3.4.5 主曲线绘制和力学松弛频率谱3.4.6 固化的DMA测量3.5 玻璃化转变DSC、TMA和DMA测量的比较4.环氧树脂4.1 影响固化反应的因素4.1.1 固化条件(温度、时间)的影响4.1.2 组分混合比例的影响4.1.3 促进剂类型的影响4.1.4 促进剂含量对固化反应的影响4.1.5 环氧树脂:转化率行为的预测和验证4.1.6 环氧树脂固化的DMA测量4.1.7 预浸料固化的DMA测量4.1.8 粉末涂层的固化4.2 影响玻璃化转变的因素4.2.1 重复后固化对玻璃化转变的影响4.2.2 化学计量对固化和最终玻璃化转变温度的影响4.2.3 活性稀释剂对最终玻璃化转变温度的影响4.2.4 玻璃化4.2.4.1 玻璃化转变温度与转化率关系的测定4.2.4.2 等温固化反应中化学引发玻璃化转变的温度调制DSC测量4.2.4.3 非模型动力学和固化过程中的玻璃化4.2.4.4 固化过程中玻璃化的测量4.2.5 TTT图的测定4.2.5.1 TTT图:由后固化实验测定4.2.5.2 TTT图:温度调制DSC的应用4.2.5.3玻璃化和非模型动力学4.2.6 等温固化的凝胶点和力学玻璃化转变4.2.6.1 固化反应中剪切模量的变化4.2.6.2 固化反应中剪切模量的频率依赖性4.3 贮存效应4.3.1 贮存后的后固化4.3.2 环氧树脂-碳纤维:贮存对预浸料的影响4.4 填料和增强纤维4.4.1 玻璃化转变温度和&ldquo 固化因子&rdquo 按照IPC-TM-650的DSc测定4.4.2 玻璃化转变温度和z-轴热膨胀按照IPC-TM-650的TMA测定4.4.3 印制线路板,纤维取向对膨胀行为的影响4.4.4 碳纤维增强树脂玻璃化转变的测定4.4.5 复合材料纤维含量的热重分析测定4.4.6 预浸料中的碳纤维含量4.5 材料性能的检测4.5.1 印制线路板生产中的质量保证4.5.2 碳纤维增强热固性树脂的玻璃化转变测定4.5.3 按照ASTM标准E1641和E1877求解分解动力学和长期稳定性4.5.4 印制线路板的老化4.5.5 分解产物的TGA-Ms分析4.5.6 印制线路板分层的TMA-EGA测量4.5.7 印制线路板分层时问按照IPC-TM-650的TMA测定4.5.8 质量保证,黏结层的失效分析4.5.9 油与增强环氧树脂管的相互作用5.不饱和聚酯树脂5.1 进货控制:固化特性和玻璃化转变5.2 不饱和聚酯:促进剂含量的影响5.3 不饱和聚酯:硬化剂含量的影响5.4 抑制剂对等温固化的影响5.5 不饱和聚酯:贮存后的固化行为5.6 乙烯基酯树脂:由促进剂引起的固化温度的移动5.7 乙烯基酯一玻璃纤维:使用后管材的固化度5.8 粉末涂料的紫外光固化5.9 加工片状模塑料的模塑时间6.甲醛树脂6.1 酚醛树脂:测试条件的影响6.2 酚醛树脂:用TMA区别完全和部分固化的酚醛树脂6.3 酚醛树脂:树脂的软化行为6.4 两种不同的填充三聚氰胺甲醛/酚醛树脂模塑料6.5 酚醛树脂:胶合板的纸预浸料6.6 酚醛树脂:缩聚反应的TGA/SDTA研究6.7 酚醛树脂:可溶性酚醛树脂的固化动力学6.8 脲醛树脂模塑料:加工(模塑)的影响6.9 脲醛树脂:模塑料固化动力学6.10 酚醛树脂:热导率的测定7.甲基丙烯酸类树脂7.1 牙科复合材料的光固化8.聚氨酯体系8.1 聚氨酯:含溶剂的双组分体系8.2 聚氨酯:在不同温度下的加成聚合8.3 聚氨酯漆涂层的软化温度8.4 聚氨酯模塑料:作为质量标准的玻璃化转变9.其它树脂体系9.1 双马来酰亚胺树脂-碳纤维:贮存温度对预浸料黏性的影响9.2 黏合剂的光固化附录:缩写和首字母缩拼词与热固性树脂有关的所用术语文献
    留言咨询
  • 邦德仕树脂反应釜 不饱和树脂设备 反应釜是化工生产中典型的主体反应设备,在树脂、胶粘剂(玻璃胶、白乳胶等)、油漆涂料、硅胶等化工产品生产中被广泛应用。通过搅拌、加热、冷却而对多种物料进行分散混合,从而进行反应聚合。其结构一般由釜体、传动装置、搅拌装置、加热装置、冷却装置、密封装置组成。相应配套的辅助设备:分馏柱、冷凝器、分水器、收集罐、过滤器等。您可以提出您所需要的处理量、设备形式、规格要求或您需要加工的物料的性质,邦德仕的销售工程师会提供让您满意的方案。 反应釜,是化工产品生产中典型的主体反应设备,在树脂、胶粘剂、油漆涂料、化妆品、制药、建筑材料、染料、助剂、清洗剂等化工生产中被广泛应用。通过搅拌、加热、冷却、抽真空、加压等环境条件,使得物料在釜体内进行物理混合或化学反应过程得以改性。 邦德仕不饱和聚酯树脂设备介绍:  不饱和聚酯树脂设备是用于生产饱和树脂、聚氨酯树脂、环氧树脂、不饱和聚酯树脂、酚醛树脂、环氧树脂、ABS树脂、油漆的关键设备。增加部分滴加设备则为生产胶黏剂、水性乳液等化工产品的主要设备。  全套不饱和聚酯树脂设备由反应锅、竖式分馏柱、卧式冷凝器、贮水器、溢油槽、管线(对稀釜)等组成,全套设备与物料接触部分均采用304/316不锈钢制作。 我们注重信誉,注重品质,注重服务,为客户解决设备技术上的难题,指导客户在生产中的制作工艺,加强与客户的交流,并且服务到位,一年保修。
    留言咨询
  • 泉州海德能水处理设备有限公司打造水处理行业一站式现货采购平台电话: 地址:泉州市鲤城区常泰街道新塘工业区(新园路130号)生产批发:反渗透膜、纳滤膜、超滤膜、膜壳、滤芯、滤壳、树脂、活性炭、玻璃钢罐、阀头、过滤器、阻垢剂、有机玻璃柱、泵、压力表、流量计等所有水处理配件等;联系方式泉州海德能水处理设备有限公司电话: 地址:泉州市鲤城区常泰街道新塘工业区(新园路130号)
    留言咨询

酯树脂相关的方案

  • 北京佳仪:裂解同时甲基化研究双酚A二氰酸酯树脂及其与酚醛环氧树脂共混物的热分解
    氰酸酯是近年来得到快速发展的一种新型热固性树脂基体,与环氧树脂共混是氰酸酯树脂最重要的改性方法之一,如今大多数商品化的氰酸酯树脂预浸料都是氰酸酯树脂/环氧树脂共混物。氰酸酯树脂/环氧树脂共混物不是简单的物理共混物,两者之间存在着复杂的共聚反应,这些反应的存在使得氰酸酯树脂/环氧树脂共混物的某些性能比氰酸酯树脂均聚物还要优异,如吸湿性和韧性等。热固性树脂的交联反应过程非常复杂,且树脂由液态变为不溶不熔的三维固体网络,因而其固化表征比较困难。裂解气相色谱-质谱(PyGC-MS)是表征聚合物结构非常方便的方法,为树脂固化过程中的结构变化表征提供了可能,是跟踪固化反应的有限的几种表征手段之一。裂解同时甲基化技术是热裂解技术的重要进展之一,即将样品与烷基化试剂(如四甲基氢氧化铵)在裂解器中共热,裂解产物中的极性组分(如醇、酸)立即发生烷基化反应,转换为相应的弱极性衍生物(如醚、酯),并出现在谱图上,不仅谱图大为简化,且产物与样品结构的对应关系更为明确。本文采用HRPyGC-MS 作为主要研究手段,结合裂解同时甲基化技术,研究氰酸酯树脂及其与酚醛环氧树脂共混物的热分解行为,探讨氰酸酯-酚醛环氧树脂的结构特征。
  • 电位滴定法测定树脂羟值
    羟值是指1g样品中羟基所相当的氢氧化钾的毫克数,以mgKOH/g表示。羟值是环氧树脂羟基含量的量度,可以直接反映出环氧树脂分子量的大小;在聚酯多元醇的合成过程中,利用羟值与酸值的测试来监控合成反应程度,用来检验树脂分子量是否符合产品出厂要求;在聚氨酯凝胶生成时,羟值与酸值的检测数据,是异氰酸酯加入改性的重要依据。本方法采用电位滴定的方法测定树脂羟值,重复性良好、突跃明显,能够避免树脂颜色对指示剂终点判断的影响,准确地测出树脂的羟值,为树脂产品检测提供准确地依据。
  • 环氧树脂环氧当量测定
    含一个环氧基的树脂量(克/当量),即环氧树脂的平均分子量除以每一分子所含环氧基数量的值。此值为双酚A环氧树脂一般分子量的1/2。与环氧值、环氧指数一样,都是用以表示环氧树脂所含环氧基数量的重要物性指标。由此可计算出环氧树脂所需固化剂的用量。该方法采用溴化季铵盐直接滴定法,用高氯酸滴定,操作简便,出结果快,数值准确,重复性良好,是检测这类样品的不错的方法。

酯树脂相关的论坛

  • 【求助】关于聚丙烯酸树脂和乙烯树脂的问题

    我正在寻求植物标本的保护涂料。我想用聚丙烯酸树脂或乙烯树脂的溶剂作为涂料,刷涂在植物标本的表面,起到隔绝空气和防潮防腐的目的。标本经过我处理已不会腐败,但是为了保险起见,我需要再刷涂一层保护膜。我知道聚丙烯酸树脂乳液和乙烯树脂是绘画保护上光剂和油画隔离光油的原料之一,且溶于酒精。由于我不是化工领域的专业人员,我尚不清楚它们的性状和使用细节,同时也不了解“聚氧化乙烯树脂(peo) ”和我所说的绘画用乙烯树脂在使用上有什么区别。请大家帮我看下聚丙烯酸树脂和聚氧化乙烯树脂(peo) 是否能满足我以下的要求:1:保护涂层材料需要是非油性的中性物质,能达到表面覆膜的目的,拥有良好的透明性、稳定性、不变色性;又是非油性上光剂,能够与酒精(或水)调合。2:操作方便,无毒安全。由于是生物标本制品,我在使用前不得不慎重。聚丙烯酸树脂或乙烯树脂是否能用于表层涂刷?我是否能直接将其浸泡入酒精制成涂刷溶液?最后,我在什么地方才能买到聚丙烯酸树脂或乙烯树脂?诚求善解,谢谢

酯树脂相关的资料

酯树脂相关的资讯

  • 环氧树脂的羟值测定
    环氧树脂优良的物理机械和电绝缘性能、与各种材料的粘接性能、以及其使用工艺的灵活性是其他热固性塑料所不具备的。因此它能制成涂料、复合材料、浇铸料、胶粘剂、模压材料和注射成型材料,在国民经济的各个领域中得到广泛的应用。5月份,我们带来了环氧树脂水分含量检测的应用方案,现在我们带着环氧树脂羟值测定的应用方案与您见面了! 一、背景介绍羟值是指1g样品中羟基所相当的氢氧化钾的毫克数,以mgKOH/g表示。目前胶黏剂中的环氧树脂、聚酯多元醇和聚醚多元醇及聚氨酯等对羟值有要求。羟值是环氧树脂羟基含量的量度,可以直接反映出环氧树脂分子量的大小;在聚酯多元醇的合成过程中,利用羟值与酸值的测试来监控合成反应程度,用来检验树脂分子量是否符合产品出厂要求;在聚氨酯胶黏剂生成时,羟值与酸值大小,是异氰酸酯加入改性的重要依据。故我们需要对羟值进行检测。依据标准:GB/T 12008.3-2009 塑料 聚醚多元醇 第3部分:羟值的测定。 二、羟值测定方法1、测试原理用过量酸酐与产品中羟基反应生成酯和酸,多余的酸酐水解成酸,再用碱进行中和滴定。根据氢氧化钠的消耗量,可计算出产品的羟值。由于滴定终点颜色变化不易观察,因此通过电位来指示终点。 2、仪器及试剂:● ZDJ-5B型自动滴定仪● 231-01 pH玻璃电极+232-01参比电极● 咪唑、吡啶、邻苯二甲酸酐、0.5mol/L氢氧化钠标定滴定溶液 3、测试(1)样品前处理:● 向试料和空白锥形瓶中准确移取25ml邻苯二甲酸酐酰化试剂。摇动瓶子,至试料溶解,每个锥形瓶接上空气冷凝管,放在115+2℃油浴里30min。● 加热后,将装置从油浴中拿出并冷却至室温。用30ml吡啶冲洗冷凝管并取下冷凝管。将溶液定量转移到250ml烧杯中,用20mL吡啶冲洗锥形瓶。(2)空白测定:将空白样品置于滴定仪上,用氢氧化钠标准滴定溶液滴定至终点。(3)样品测定:将试样置于滴定仪上,用氢氧化钠标准滴定溶液滴定至终点。注意事项图1 样品测定曲线 (1)过量的水会破坏酯化试剂而干扰测定,试剂需要保持干燥,酰化试剂吸潮后需要重新配置。(2)酯化完成,冷却后,可以先加少量水,使过量的酸酐直接水解,在用氢氧化钠标准溶液进行滴定。(3)样品的取样量要进行估算,尽可能的使试料质量与理论计算值相近。 三、仪器推荐ZDJ-5B型自动滴定仪● 7寸彩色触摸电容屏,导航式操作;● 支持电位滴定;● 实时显示测试方法、滴定曲线和测量结果;● 可定义计算公式,直接显示计算结果;● 支持滴定剂管理功能;● 支持pH的标定、测量功能;● 支持USB、RS232连接PC,双向通讯;● 可直接连接自动进样器实现批量样品的自动测量。
  • 树脂类填料的分类
    树脂通常有两部分组成:一部分为聚合单体和交联剂通过聚合反应生成的具有三维空间的网络骨架,这部分也被称为树脂骨架;另一部分为连接在骨架上的特殊功能基团。其中三维骨架类型和结构决定树脂主要的物理性能,如稳定性、孔结构、密度、溶胀度等;而三维骨架上连接的特殊官能团则在应用时对吸附何种物质起决定性作用。根据骨架上连接的官能团的类型和性质树脂可分为以下几种:非离子型树脂这类树脂中不含特殊的离子和官能团,与其他物质作用时主要依靠分子间的范德华力,而不形成化学键,对不同物质的吸附选择性主要依靠被吸附分子的极性确定。非离子型树脂对弱极性和非极性的有机化合物有很强的吸附作用,这类树脂广泛应用于药物分离、色素提取等领域。金属离子配位型树脂金属离子配位型树脂的骨架上带有特殊的配位基团和配位离子,可以与金属离子进行络合反应,使两者之间形成配位键,树脂与被吸附物质间通过配位键相互作用而吸附到树脂上的,该吸附过程为化学吸附。这类树脂也称为螯合树脂,多用于水溶液过渡金属离子的选择性分离与富集。螯合树脂的官能团是含有一个或多个配位原子的功能基团,可进行配位的原子都具有提供电子对的性质,常见配位原子主要为 O、N、S、P 等元素的原子。这些原子和被吸附物质作用时都可提供配位的孤电子对,因此螯合树脂也可根据配位原子的种类,分为氧配位型螯合树脂、氮配位型螯合树脂、硫配位型螯合树脂等。含有氧原子的螯合官能团有:—OH(醇、酚)、—COOH(羧酸)、—O—(醚、冠醚)、—CO—(醛、酮、醌)、—COOR(酯、盐)、—NO2(硝基)、—NO(亚硝基)等;以氮为配位原子的螯合官能团有:—NH(胺)、2C=NH(亚胺)、C=N—R(席夫碱)、C=N—OH(肟)、—CONH2(酰胺)、—N=N—(偶氮)等。离子型树脂 离子型树脂的骨架上所连的管能团是一种或几种具有化学活性的官能基团,其在水溶液中能离解出某些阳离子(如H+或 Na+)或阴离子(如OH-或Cl-),解离之后骨架上所带的离子基团可以与不同反离子通过静电引力发生作用,将带有相反电荷的离子型物质吸附到树脂上。在水溶液中与其他离子基团作用时,由于竞争性吸附,原来配对的反离子被新的离子取代。树脂中化学活性基团的种类决定了树脂的主要性质和类别。根据交换的离子,离子交换树脂可分为阳离子交换树脂和阴离子交换树脂,阳离子树脂又分为强酸性和弱酸性两类,阴离子树脂又分为强碱性和弱碱性两类。离子型树脂带的强酸性官能团有磺酸基(—SO3H),这种官能团在碱性、中性,甚至在酸性介质中都有交换功能;弱酸性的官能团有羧基(—COOH)或磷酸基(—PO(OH)2),这些官能团只有在pH=5~6,碱性或接近中性的介质中才有离子交换能力;强碱性官能团有季胺基团(NR3),这种官能团在酸性、碱性、中性介质中都可进行离子交换;弱碱性的官能团有伯胺(—NH2)、仲胺(—NHR)和叔胺(—NR2),这几种官能团只有在中性或酸性介质中进行离子交换。此外,树脂也可按化学结构分为极性和非极性树脂。非极性树脂是指由非极性单体聚合而成,如二乙烯苯为单体聚合而成的树脂。极性树脂又可分为强极性、极性和中极性树脂。强极性树脂是含有吡啶基、氨基官能团的树脂;中极性树脂一般有含酯基、羰基的单体聚合而成;极性树脂通常是含有酰氨基、亚砜基、氰基的单体聚合而成。
  • 脂溶性聚合物环氧树脂及甲基硅油分子量分布测定
    脂溶性聚合物环氧树脂及甲基硅油分子量分布测定刘兴国 熊亮 曹建明 金燕美丽而寒冷的冬天又到了,室外大雪纷飞,喜欢运动的小伙伴们由户外转战室内,场馆内羽毛球、乒乓球、篮球大战相继上演,运动的身姿和蓝绿色地面、明亮的篮板构成了一道道靓丽的风景线。你可知道这漂亮的场地和器材是用什么材料制造的吗?学化学的你可能回答:“有机材料。”其实这些都是聚合物材料,绿色和蓝色的防滑地面材料为环氧树脂,有机玻璃的篮板材料为聚甲基丙烯酸甲酯。这些均为脂溶性聚合物材料的产品,它们已渗透到日常生活和高端科技的方方面面,从每天要用到的塑料袋到航天材料都可看见它们的身影。 今天,飞飞给大家重点介绍两种脂溶性聚合物。一种是低分子型环氧树脂,是由双酚A和环氧丙烷在氢氧化钠作用下缩聚而成,室温下为黄色液体或半固体,耐热、耐化学药品、电气绝缘性好,广泛用于绝缘材料、玻璃钢、涂料等领域,是常用的基础化工材料。另外一种为甲基硅油,它具有突出的耐高低温性、极低的玻璃化温度、很低的溶解度参数和介电常数等,在织物整理剂、皮革涂饰剂、化妆品、涂料和光敏材料等领域广泛应用。 分子量分布是表征聚合物的重要指标,对聚合物材料的物理机械性能和成型加工性能影响显著。常用测定方法有:粘度法、激光光散射法、质谱法和体积排阻色谱法 (SEC法),其中凝胶渗透色谱法(GPC法)作为体积排阻色谱法的一类,方便快捷、设备普及,具有广泛适用性。通过本文,飞飞给大家介绍以聚苯乙烯为标样,GPC法测定低分子量环氧树脂以及甲基硅油分子量的方法,通过对分子量分布的准确控制可以很好地保证产品的质量。变色龙软件GPC扩展包可以非常方便地将采集的GPC数据进行处理,快速地得到分子量分布的信息,而且该扩展包完全免费。 本实验仪器配置如下:仪器:赛默飞 U3000高效液相色谱仪泵:ISO3100 Pump自动进样器:WPS 3000SL Autosampler柱温箱:TCC3000 Column Compartment检测器:ERC 521示差检测器变色龙色谱管理软件 Chromeleon CDS 7.2 1. 环氧树脂分子量测定双酚A型环氧树脂基本结构及以它为材料制造的体育馆环氧地坪见图1:图1 双酚A型环氧树脂基本结构及体育馆环氧地坪色谱条件如下:分析柱:TSKgel G2500HXL 300*7.8mm,P/N:0016135(适用分子量范围100-20000);TSKgel G3000HXL 300*7.8mm,P/N:0016136(适用分子量范围500-60000);TSKgel G5000HXL 300*7.8mm,P/N:0016138(适用分子量范围1000-4000000);三根色谱柱串联分析。柱温:25℃RI检测器:过滤常数:2s,温度:35℃流动相:四氢呋喃,流速1.0mL/min进样量:15µL 对照品为聚苯乙烯,分子量分别为162,370,580,935,1250,1890,3050和4910;称取适量对照品用四氢呋喃超声溶解,浓度0.02mg/mL。样品用四氢呋喃溶解,浓度0.1mg/mL,测定谱图见图2。 图2不同分子量聚苯乙烯对照品测定谱图注:580和370两个对照品出厂报告上polydispersity多分散系数分别为1.13和1.15,分子量集中度差,所以峰形呈现为多簇小峰。其余对照品多分散系数均小于1.05,峰形呈对称单峰。 校正曲线及相关系数如下: 图3 校正曲线校正曲线方程y=-0.0006x3+0.0502x2-1.5496x+20.4439,相关系数R=0.9998。不同厂家不同批次环氧树脂样品测定结果如下: 表1 环氧树脂样品测定结果样品名称 重均分子量Mw样品-1 387样品-2 401样品-3 396 2. 甲基硅油分子量测定测试甲基硅油的分子量及其分布,常用的GPC方法是采用甲苯或四氢呋喃作为流动相,但是由于甲苯属于管制类试剂,不易购买,因此飞飞采用四氢呋喃(THF)作为流动相来测定硅油的分子量及其分布,结果显示分离与色谱峰形均较好。对照品为聚苯乙烯,分子量分别为1210,2880,6540,22800,56600和129000;称取适量对照品用四氢呋喃超声溶解,浓度约1.0mg/mL。样品用四氢呋喃溶解,浓度1mg/mL。色谱条件如下:分析柱:Shodex KF-805L 8.0*300mm(适用分子量范围300-2000000);柱温:30℃RI检测器温度:31℃流动相:四氢呋喃,流速0.8mL/min进样量:100µL 对照品测定谱图及校正曲线如下:图4 对照品测定谱图及校正曲线 校正曲线方程y=-0.0182x3+0.5987x2-7.1522x+34.6655,相关系数R=0.9996。甲基硅油样品测定结果数均分子量为20727,重均分子量为36273,Z均分子量为59280,Z+1均分子量为91320。总结到这里,飞飞给大家介绍了采用U3000液相结合变色龙软件采集和处理数据,分析低分子量环氧树脂和甲基硅油分子量的方法,由于两者分子量范围差异较大,实验采用了两组不同分子量的聚苯乙烯标准品作为对照品。对于环氧树脂由于需要测定的是低分子量聚合物且对照品分子量接近,所以采用了三根截留分子量不同的凝胶柱串联进行测定,结果更为准确。变色龙GPC分子量计算扩展包功能强大,导入和使用方便,为广大变色龙工作站用户扩展使用GPC功能带来便利。本文介绍的为脂溶性聚合物的分子量测定,对于水溶性聚合物的分子量分布测定,飞飞这里有较多应用文章供大家参考,感兴趣的朋友可联系我索取,这里给大家提供一篇最常用的,右旋糖酐40的分子量分布测定,扫描以下二维码既可查阅。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制