人脑钠肽

仪器信息网人脑钠肽专题为您整合人脑钠肽相关的最新文章,在人脑钠肽专题,您不仅可以免费浏览人脑钠肽的资讯, 同时您还可以浏览人脑钠肽的相关资料、解决方案,参与社区人脑钠肽话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

人脑钠肽相关的耗材

  • 纳米升降台
    纳米升降台,纳米升降平台由中国领先的进口光学精密仪器旗舰型服务商-孚光精仪进口销售,精通光学,服务科学,先后为北京大学,中科院上海光机所,中国工程物理研究院,航天3院,哈工大,南开,山东大学等单位提供优质进口的纳米升降台,纳米升降平台,精密升降台。这款纳米升降台是美国进口的短行程的精密升降台,Elevator Stage,纳米升降平台特别适合竖直的Z轴应用,它具有极佳的上下定位功能,超高分辨率,超高重复精度和机械稳定性。产品特色:这款纳米升降台采用高密度交叉滚珠导向系统用于竖直导向,确保最大的稳定性。单立柱式的X滚珠导向系统提供了适度的高刚性,使得这款纳米定位台具有极小的滞后和相当大的承载能力。纳米升降台应用:这款纳米定位台比较适合对Z轴垂直升降精度较高要求的应用。比如,光学成像系统中焦平面的准直,半导体测试,视频测量等。纳米升降台参数行程:4mm驱动系统:无刷伺服-丝杆驱动最大速度:20mm/s最大负载;10kgTTL分辨率:100nm, 50nm, 25nm, 12.5nm, 10nm, 1nm重复精度:5x分辨率
  • 纳米位移平台
    纳米位移平台,真空纳米位移台由中国领先的进口光学精密仪器旗舰型服务商-孚光精仪进口销售,先后为北京大学,中科院上海光机所,中国工程物理研究院,航天3院,哈工大,南开,山东大学等单位提供优质进口的纳米位移平台,真空纳米位移台,纳米位移台.这款纳米位移平台是美国进口的高速高精度真空纳米位移台,它采用先进技术设计, 具有单轴或精密的双轴配置两种选择, 适合高真空环境和非磁性定位应用.美国进口高精度低价格系列纳米定位台,采用了陶瓷伺服电机驱动,非常适合要求精度达到纳米或压纳米的高精度和高重复精度的应用,例如:精密生命科学仪器、显微成像、纳米准直、微纳加工、光学精确定位等。X-TRIM 系列纳米位移台特色 10nm分辨率非接触线性编码系统双驱动任选:线性伺服或压电驱动高密度滚珠传导增加稳定性超紧凑的单轴或双轴纳米位移台紧凑型封装可真空使用超强工作能力,大吞吐量采用无铁芯直接驱动直线电机,驱动轴位于纳米位移台的中心线, 这种设计消除了非中心驱动导致的偏航,空回等问题.纳米位移台集成了一个高分辨率(12.5nm)非接触式线性编码器,它为闭环的伺服系统工作操作提供了精密反馈, 它的标准配置就可以提供纳米精度的定位.纳米位移平台使用能够了精密的滚珠导向系统确保了位移平台高精度性能和严格的轨迹控制。纳米位移平台也适合OEM使用,它具有较低抛面和较小尺寸,采用模块化设计,用户可堆叠使用创建多轴多部件系统。这款纳米位移平台使用了非接触式直接驱动技术,提供坚固,精确,高速的定位,满足高频率大工作量的需要。纳米定位平台使用了先进的无铁直线电机直接确定技术,确保最优异的纳米级定位性能。这款纳米定位台提供了高速度,高精度,高分辨率,高性能的卓越表现。它与传统的丝杠驱动或压电驱动相比,具有更大的工作效率和吞吐量。参数行程(mm): 25和50mm(单轴或双轴)驱动系统: 无铁芯直线电机或陶瓷伺服电机最大加速度: 由负载决定最大速度: 200mm/s (无负载时)最大推力: 24N最大负载: 2Kg精度: +/-1um/25mmTTL分辨率: 1-100nm/脉冲构造材料: 铝合金主体, 灰色氧化镀膜重复精度: 5倍精度 XT 25 XT 50 XT 2525 XT 5050 Travel Length (mm) 25 mm 50 mm 25 x 25 mm 50x 50 mm Trajectory Control Accuracy Linear Encoder ± 1.0 &mu m ± 2.0 &mu m ± 2.0 &mu m ± 4.0 &mu m Straightness/Flatness ± 1.0 &mu m ± 1.0 &mu m ± 2.0 &mu m ± 2.0 &mu m Yaw/Pitch/Roll 5 arc-sec 5 arc-sec 10 arc-sec 10 arc-sec 2 axis system Orthogonality Standard Grade NA NA 5 arc-sec 5 arc-sec High Precision NA NA 2 arc-sec 2 arc-sec Extra High Precision NA NA 1 arc-sec 1 arc-sec
  • 意大利哈纳HANNA HI2212实验室台式微电脑pH/ORP/温度测定仪
    意大利哈纳HANNA HI2212实验室台式微电脑pH/ORP/温度测定仪,产品简介HI2212和HI2213可测量pH值、温度台式测量仪。HI2213也可测量氧化还原电位(ORP),随屏显示指示标识,可以让您轻松完成各种操作。稳定指示标识功能便于数据记录。自动校准,使用HI7662温度探棒可以在pH测量过程中手动或自动进行温度补偿。 意大利哈纳HANNA HI2212实验室台式微电脑pH/ORP/温度测定仪销售热线:15300030867,张经理意大利哈纳HANNA HI2212实验室台式微电脑pH/ORP/温度测定仪,产品特性1.新款外观设计,大屏幕显示2.人性化操作界面,稳定指示标识3.自动校准,自动温度补偿4.随屏校准操作步骤提示5.同时显示pH(或mV)/温度测量6.GLP良好实验室管理功能 意大利哈纳HANNA HI2212实验室台式微电脑pH/ORP/温度测定仪意大利哈纳HANNA HI2212实验室台式微电脑pH/ORP/温度测定仪意大利哈纳HANNA HI2212实验室台式微电脑pH/ORP/温度测定仪量程pH-2.00 to 16.00 pH温度-20.0 to 120.0 ℃解析度pH0.01 pH温度0.1 ℃精度pH±0.01 pH温度±0.4 ℃(温度探头误差以外)pH校准可1-3点自动校准,内置5个校准点(pH4.01/6.86/7.01/9.18/10.01),常规两点校准温度补偿自动或手动温度补偿,-20.0 to 120.0℃电极类型采用BNC酸度电极接口,HI7662 温度探头供电方式12 Vdc电源适配器使用环境0 to 50℃ (32 to 122°F);RH max 95%尺寸/重量240×182×74mm/1.1 Kg标准配置HI2212主机、HI1131B可填充玻璃复合酸度电极(BNC接口、线长:1米)、HI7071S定制专用电极填充液(30ml)、HI7662不锈钢温度探棒(线长:1米)、HI70004(pH4.01、20mL)、HI70007(pH7.01、20mL)酸度标准缓冲液、HI76404定制专用电极支架、HI710006电源适配器、中英使用手册HI2212B主机、HI1131B/C玻璃复合酸度电极(BNC接口、线长:1米)、HI7662不锈钢温度探棒(线长:1米)、HI70004(pH4.01、20mL)、HI70007(pH7.01、20mL)酸度标准缓冲液、HI76404定制专用电极支架、HI710006电源适配器、中英使用手册HI2212B/C主机、HI1131B/C 玻璃复合酸度电极、HI7662不锈钢温度探棒、HI70004(pH4.01/20mL)、HI70007(pH7.01/20mL)酸度标准缓冲液、HI76404N电极支架、HI710006电源适配器、中英使用手册HI2212C主机、HI1230B/C塑胶复合酸度电极(BNC接口、线长:1米)、HI7662不锈钢温度探棒(线长:1米)、HI70004(pH4.01、20mL)、HI70007(pH7.01、20mL)酸度标准缓冲液、HI76404定制专用电极支架、HI710006电源适配器、中英使用手册意大利哈纳HANNA HI2212实验室台式微电脑pH/ORP/温度测定仪

人脑钠肽相关的仪器

  • NAP系列是卓立汉光采用三线摆技术、层流阻尼技术所设计的高性能气浮隔振平台,竖直方向和水平方向隔振性能好、振动恢复时间短。台面整体为三层夹心式蜂窝结构,台面厚度为100mm,可选择焊接式台面或粘接式带隔离杯台面。其中焊接式台面的平面度为0.02~0.05mm/600mm×600mm,粘接式台面平面度为0.1mm/600mm×600mm。台面上按照25mm×25mm孔距均布M6 螺纹孔,方便安装各类滑台和调整架。气浮支架采用三线摆技术与层流阻尼技术,气室为二层结构,采用整体焊接四支撑结构。固有频率:垂直方向<1.5~2.5Hz;水平方向<1~1.5Hz。隔振效率:垂直方向:5Hz时:75~92%,10Hz时:90%~95%;水平方向:5Hz时:88~94%,10Hz时:92%~98%。3个水平调节阀反应灵敏,响应时间短,水平重复精度:±0.5mm。调整高度机构分为两部分:支架下方(每个支撑腿下方)具有高度调整机构,可解决地面不平引起的支架扭曲、变形等现象。支架上方采用三个特有的高度调整机构,可以调整高度和台面水平,平台自带四角防护板,具有台面气浮高度指示功能,调节更便捷。支架自带脚轮,方便移动和调整。NAP系列气浮隔振平台竖直和水平方向隔振效果优异,适用于对隔振要求很高的光学实验,或放置精密仪器NAP气浮隔振光学平台特点:• 引入对隔振有较好效果的三线摆系统。• 采用层流阻尼元件,系统反应更灵敏。• 自带四角防护板,具有台面气浮高度指示功能,调节更便捷。 NAP系列气浮隔振光学平台命名规则:技术指标:• 固有频率:垂直方向<1.5~2.5Hz;水平方向<1~1.5Hz• 隔振效率:垂直方向:5Hz时:75~92%;10Hz时:90%~95%水平方向:5Hz时:88~94%;10Hz时:92%~98%• 隔振方式:三线摆隔振系统• 阻尼方式:层流阻尼• 工作台面:三层夹心式蜂窝结构(可选配蜂窝粘接式带隔离杯台面)• 表面平面度:焊接式台面:0.02~0.05mm/600mm×600mm粘接式台面:±0.1mm/600mm×600mm• 台面厚度:100mm• 上台板:4~6mm厚 SUS430(1Cr17) 高导磁不锈钢• 下底板:4~6mm厚碳钢,表面喷黑塑处理• 安装孔:M6• 孔距:25mm×25mm• 安装孔距边:37.5mm• 台面加支架总高度:800mm• 总高度可调范围:-10~+15mm• 支架负载:500kg• 单个隔振腿负载:125kg• *大空气压力:0.6MPa• 建议工作空气压力:0.3~0.4MPa• 水平重复精度:±0.5mm 细节说明:其它配件:NAP气浮隔振光学平台选型表:(本系列-K型号为设计规格,技术指标以*终发布内容为准) 产品型号整体规格(mm)台面厚度(mm)台面自重(Kg)支撑腿截面积(mm)支架负载能力(Kg)备注NAP10-081000×800×80010096100×1005004支撑NAP12-081200×800×800100115100×1005004支撑NAP12-091200×900×800100130100×1005004支撑NAP12-101200×1000×800100144100×1005004支撑NAP12-121200×1200×800100173100×1005004支撑NAP15-091500×900×800100162100×1005004支撑NAP15-101500×1000×800100180100×1005004支撑NAP15-121500×1200×800100216100×1005004支撑NAP10-08-K1000×800×80010092100×1005004支撑NAP12-08-K1200×800×800100111100×1005004支撑NAP12-09-K1200×900×800100124100×1005004支撑NAP12-10-K1200×1000×800100138100×1005004支撑NAP12-12-K1200×1200×800100166100×1005004支撑NAP15-09-K1500×900×800100155100×1005004支撑NAP15-10-K1500×1000×800100173100×1005004支撑NAP15-12-K1500×1200×800100207100×1005004支撑 尺寸图:
    留言咨询
  • 国仪量子自旋磁力仪 SpinMag -Ⅰ量子自旋磁力仪利用碱金属原子外层电子自旋性质,以泵浦激光作为操控手段,使碱金属原子产生自旋极化。在外界弱磁场的作用下,碱金属原子发生拉莫尔进动,改变对检测激光的吸收,从而实现高灵敏度的磁场测量。量子自旋磁力仪具有灵敏度高、体积小、能耗低、易于携带的特点,未来将引领人类在科学研究、生物医学等磁传感领域进入量子时代。应用案列:1.生物医学领域量子自旋磁力仪主要应用于心磁和脑磁研究。量子自旋磁力仪通过采集人体心脏磁场信号,获得心磁分布图像,可对心肌缺血、冠脉微循环障碍心肌病等进行功能性诊断及预后研究。脑磁比心磁的磁信号更弱,量子自旋磁力仪能够测量神经电流产生的磁场,实现人脑的电生理直接成像,为临床提供宝贵的信息。2.地球物理领域量子自旋磁力仪通过精确捕捉地球磁场的变化,获得地磁异常信息,可用于石油工业的定向钻井、地质灾害监测、矿产资源勘探等方向。国仪量子自旋磁力仪 SpinMag -Ⅰ磁性测量
    留言咨询
  • SNAP i.d. 2.0加速器 400-860-5168转5993
    多张片子,多个印迹, 多个实验条件。传统的免疫检测流程中存在很多值得改善的地方。默克密理博秉承一贯 的创新理念,力图使科学研究更加便捷和高效,创新地推出了SNAP i.d.® 2.0加速器,使Western-Blotting和免疫组织化学(IHC)检测 从此变得不同,助您轻松获得免疫检测数据,收获更多研究成就。 SNAP i.d.® 2.0加速器提高免疫检测效率的原理其实很简单:真空驱动 液流(封闭液、抗体、漂洗缓冲液),替代手工对每张膜或单张切片的 操作。因此,原来那些令人厌烦的摇晃、滴加、倾倒和等待等等步骤都 转换成SNAP i.d.® 2.0加速器上的有趣处理。 同时,SNAP i.d.® 2.0加速器有助于实现实验操作的标准化,减少操作 失误,数据结果更稳定也更具可比性。因此,借助SNAP i.d.® 2.0加速 器操作多个WB或IHC,不仅提高效率,而且保障实验结果更可靠。SNAP i.d. ® 2.0加速器在 Western Blotting中的应用传统的Western-Blotting中,各种反应主要靠 液体的扩散,SNAP i.d.® 2.0加速器利用真空抽 吸促使液体穿膜而过,大大减少了反应时间、提 高了操作效率。这种创新的技术使抗原-抗体结 合更快,非特异性结合或吸附降低,漂洗更充 分,而Western Blotting的整体效果更加优化。SNAP i.d.® 2.0 加速器带来的主要改进 &bull 获得结果更快,1天轻松完成WB&bull 多个WB同时操作,便于不同的抗体检测或 抗体优化摸索 &bull &bull 每天高品质的WB数据产出大大提高 &bull 操作标准化,减少对经验的依赖,增加数据稳定性、可比性SNAP i.d.® 2.0 加速器是如何工作的?SNAP i.d.® 2.0加速器充分利用真空抽吸驱动液体进行三维快 速扩散,使免疫检测从现在的几个小时缩短至数十分钟,原理 如图所示:1.真空抽滤使局部的抗原区域中抗体浓度加大,抗原-抗体结 合更有效,孵育时间得以大幅度减少2真空驱动从膜上带走未结合的残余抗体, WB背景信号显著减少SNAP i.d.® 2.0 加速器真空抽吸带来诸多好处:&bull 驱动液体穿膜,更充分的结合 &bull 减少过度封闭造成的信号损失 彻底的“冲洗”替代表面的漂洗 &bull 封闭-孵育-洗膜各个步骤都变得快速有效 &bull 更加快速的实验进程和更加简便的实验操作,带来的是更好 的实验体验!同等的效果,更少的耗时针对不同的样品,为了获得较好的Western Blotting检测效果,常常需要做抗体梯度稀释并进行多次杂交试验,非常费时费 力。采用SNAP i.d.® 2.0加速器进行抗体优化步骤所耗时间大幅减少,工作效率得以显著提高。健康脑和阿尔茨海默病脑样品的Tau-1蛋白Western Blotting检测抗体优化实验健康人脑和阿尔茨海默病人脑样品用CytoBuster&trade 蛋白抽提试剂(目录号71009)裂解。样品经连续稀释并经SDS-PAGE分离。转至Immobilon® -P膜后采用SNAP i.d.® 2.0加速器的MultiBlot,Mini和Midi框分别进行后续操作。 另一个对照印迹则用标准的免疫印迹方法继续操作。所有印迹均以0.5%脱脂奶(NFDM)作为封闭剂,抗Tau1抗体(目录号 MAB3420)和HRP标记山羊抗小鼠二抗(目录号AP124P),反应条件如上所示。Luminata&trade Forte HRP底物孵育后X胶片曝 光15分钟。在SNAP i.d.® 2.0上(采用Blok-CH封闭剂进行封闭) 进行的各种Western Blotting,各种分子量的目的蛋 白均能被很好地检测(下图)。产品订购信息SNAP i.d. ® 2.0 加速器在IHC中的应用我们在创新的真空驱动SNAP® i.d. 2.0系统上 又添加了一项新的功能 - 免疫组织化学检测。 每个IHC框可以固定12张切片,这样你就能同 时对这么多切片进行封闭、结合、染色及漂洗 等操作了。手工操作被大量减少,抗体检测和 各步操作的优化,使SNAP® i.d. 2.0成为提高 IHC效率的最佳帮手。SNAP i.d.® 2.0带来的主要改进:&bull 不需要使用石蜡笔 体可以收集后继续使用 切片操作时间大幅减少 洗涤步骤耗时大幅减少 可同时操作多达24张切片主要优点: &bull 使用灵活,一次可以操作1-24张切片 &bull 与标准IHC切片和操作步骤兼容与各种切片兼容,包括甲醛固定和新鲜冰冻 切片直观的设计 将封闭、洗涤、抗体孵育及标记等步骤 结合起来不需要昂贵的自动化设备而将多个样品 操作系统化 孵育盖上的检测步骤旋钮提示IHC操作进程,减少操作失误SNAP i.d.® 2.0 蛋白检测系统是如何 进行IHC操作的?SNAP i.d.® 2.0基座上是两个独立控制的真空驱 动单元,可以单独运行一个或同时运行两个IHC 框。每个IHC框可以操作1-12个玻璃切片。 每个切片盒上有注入/移除口,用于手工加入和去 除/回收小体积抗体及溶液;不需要的液体可以用 真空抽吸快速去除。 清晰而稳定的染色,更轻松有趣的操作SNAP i.d.® 2.0实际使用效果与传统方法的比较,包括固定化的切片样本SNAP i.d.® 2.0 IHC 系统获得的染色效果与传统IHC操作相当,即使是固定样本也毫不逊色。在下面 的第一个例子中,SNAP i.d.® 2.0用来检测固定的人肾组织切片中的通道蛋白1。请注意照片中可以清 楚地看到近端小管上皮和肾小球等精细的染色效果。在第二个例子中,人脑中预期定位于神经元核的 NeuN信号。尽管同时操作了12张切片,缩短了操作时间,简化了操作步骤,SNAP i.d.® 2.0获得的 染色效果很饱满而稳定,不像全自动染色系统常常出现到处是气泡或污点的糟糕情况。产品订购信息SNAP i.d.® 2.0 IHC系统 基本套装 SNAP i.d.® 2.0 IHC系统基本套装包括了进行相关步骤的全部组件:检测基座,IHC框,孵育盖,切片盒, 组装固定卡,真空连接管,简要操作说明书
    留言咨询

人脑钠肽相关的方案

  • 人脑钠素/脑钠尿肽(BNP)检测试剂盒
    人脑钠素/脑钠尿肽(BNP)检测试剂盒人脑钠素/脑钠尿肽(BNP)检测试剂盒使用说明书本试剂盒仅供研究使用。检测范围: 规格:96T/48T使用目的:本试剂盒用于测定人血清,血浆及相关液体样本中人脑钠素/脑钠尿肽(BNP)含量。实 验 原 理 本试剂盒应用双抗体夹心酶标免疫分析法测定标本中人脑钠素/脑钠尿肽(BNP)水平。用纯化的抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入人脑钠素/脑钠尿肽(BNP)抗原、生物素化的人脑钠素/脑钠尿肽(BNP)抗体、HRP标记的亲和素,经过彻底洗涤后用底物TMB显色。TMB在过氧化物酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅和样品中的人脑钠素/脑钠尿肽(BNP)呈正相关。 使用酶标仪在450nm波长下测定吸光度(OD值),计算样品浓度。
  • 人脑啡肽(ENK)检测试剂盒
    人脑啡肽(ENK)检测试剂盒人脑啡肽(ENK)检测试剂盒使用说明书本试剂盒仅供研究使用。检测范围: 规格:96T/48T使用目的:本试剂盒用于测定人血清,血浆及相关液体样本中人脑啡肽(ENK)含量。实 验 原 理 本试剂盒应用双抗体夹心酶标免疫分析法测定标本中人脑啡肽(ENK)水平。用纯化的抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入人脑啡肽(ENK)抗原、生物素化的人脑啡肽(ENK)抗体、HRP标记的亲和素,经过彻底洗涤后用底物TMB显色。TMB在过氧化物酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅和样品中的人脑啡肽(ENK)呈正相关。 使用酶标仪在450nm波长下测定吸光度(OD值),计算样品浓度。
  • 人脑肠肽(BGP/Gehrelin)检测试剂盒
    人脑肠肽(BGP/Gehrelin)检测试剂盒人脑肠肽(BGP/Gehrelin)检测试剂盒使用说明书本试剂盒仅供研究使用。检测范围: 规格:96T/48T使用目的:本试剂盒用于测定人血清,血浆及相关液体样本中人脑肠肽(BGP/Gehrelin)含量。实 验 原 理 本试剂盒应用双抗体夹心酶标免疫分析法测定标本中人脑肠肽(BGP/Gehrelin)水平。用纯化的抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入人脑肠肽(BGP/Gehrelin)抗原、生物素化的人脑肠肽(BGP/Gehrelin)抗体、HRP标记的亲和素,经过彻底洗涤后用底物TMB显色。TMB在过氧化物酶的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅和样品中的人脑肠肽(BGP/Gehrelin)呈正相关。 使用酶标仪在450nm波长下测定吸光度(OD值),计算样品浓度。

人脑钠肽相关的论坛

  • 【转帖】人脑负责社交部分三四十岁才成熟

    人脑负责社交部分三四十岁才成熟 英国研究发现,人脑负责社会行为的部分要到三、四十岁以后才会成熟。伦敦大学神经学教授詹莎拉说,以往大家都以为负责社交活动的前额叶皮质在小时候就发展完成了。不过,根据他的研究,人脑的这个部分从胎儿时期就开始发展。多数人要到三、四十岁才会成熟。所以不少人都已经为人父母了还会有些孩子的举动。伦敦大学神经学教授詹莎拉在英国神经圣诞座谈会上透漏这个观点。

  • 美国NIH披露脑计划细节:绘制人脑复杂神经回路

    来源:中国科学报作者:段 歆涔字体大小: http://img.dxycdn.com/cms/upload/userfiles/image/2014/01/02/263371581_small.jpg针对BRAIN项目的NIH拨款申请将于2014年3月到期。图片来源:Wikimedia Commons在近一年的会议商讨和公开辩论后,美国国立卫生研究院(NIH)日前宣布了分配《使用先进革新型神经技术的人脑研究(BRAIN)倡议》资金的方案,这笔1.1亿美元的拨款旨在启动新技术的研发,绘制出人脑庞大而复杂的神经回路。简而言之,BRAIN计划着眼于一些宏观的理念,诸如研究大脑的所有 细胞,尽管目前可供完成该目标的数据少之又少。根据9月科学顾问委员会的报告,NIH呼吁六个“高优先级”研究领域提出拨款申请。美国国家神经疾病和中风研究所主任Story Landis说,NIH承诺在未来三年里每年向这些领域投入4000万美元。“我们希望这项额外的资金能成为现实。但很显然,这取决于我们的预算有多 少。”资金汇聚的六大领域主要包括,对理解神经元如何共同产生大脑行为有基本作用的新技术和方法的测试与发展。例如,将不同类型的脑细胞进行分类,并弄清它们如何在特定的神经回路中发挥作用。NIH将焦点放在创新上,这意味着大多数资金申请人不需要为自己的建议书提供初始数据,这和以往的常规方法有很大不同。Landis说,以往的方式吓跑了很多科学家和评审员,新方式为真正有创新性的想法提供了更大的空间和希望。NIH还公布了所有针对BRAIN计划申请资金的要求,它们包括:针对大脑不同类型的细胞开创性的分类方法,目标是在大脑中创造一个囊括所有细胞的 “汇总”;发展遗传性和非遗传性工具分析更敏感、精确、细致的大脑回路;发展能记录和控制大脑中大量神经元的新技术;将现有记录和控制神经元的技术应用到 更大规模的层面;成立跨学科团队研究神经回路活动如何在特定的行为或神经系统中发挥作用;成立包括成像科学家、工程师、材料科学家、纳米技术专家和计算机 科学家在内的团队以研发针对人脑的新一代非侵入性成像技术。

  • 【转帖】冲击波对人脑的效应

    冲击波对人脑的效应 一份报告说,美国军方的先进战斗头盔(ACH)可能几乎无法保护士兵免受冲击引发的脑伤害。Raul Radovitzky及其同事使用一种精密的三维计算机模型研究爆炸激波如何穿过人头的颅骨、脑脊液以及柔软的脑组织。这组科学家发现,把空气压缩到正常的海平面压力的10倍的一次前方爆炸把能量通过面部、颅骨和软组织传入未受保护的头。这些模拟证明了美国军方的先进战斗头盔(ACH)在某种程度上延迟了这种冲击波到达头部,但是只能稍微减轻对脑的压力,因为大多数能量径直穿过面部。这些发现与此前的研究相矛盾,此前的研究提出这些头盔可能让冲击能量聚焦,并让先进战斗头盔(ACH)的佩戴者的脑伤害加剧。冲击引发的外伤性脑伤害是在伊拉克和阿富汗的士兵遭受的最常见的伤害。这组作者建议说,配有优化的面罩的保护性头盔可能在未来更好地保护士兵免受冲击引起的外伤性脑伤害。

人脑钠肽相关的资料

人脑钠肽相关的资讯

  • 转化医学系列网络讲座预告|仿生纳米药物用于人脑胶质瘤的治疗
    时间2019年12月26日 下午14:00-15:00题目仿生纳米药物用于人脑胶质瘤的治疗主讲人刘艳杰 博士(河南大学)讲座形式网络讲座,手机或PC即可参与(会议链接和如下报名链接相同)内容简介由于血脑屏障(blood brain barrier, BBB)的存在,使得人脑胶质瘤成为癌症治疗中最棘手的肿瘤之一。BBB,其为脑部的自我平衡防御机制,它在保证中枢神经系统免受外来物质侵扰的同时,也阻碍了治疗药物通过非入侵性给药进入脑内。因此,发掘研究能协助纳米药物突破BBB的药物或靶向分子是治疗脑部疾病的当务之急。基于以上背景,讲者所在实验室设计了细胞膜伪装的肿瘤微环境响应的仿生纳米药物用于脑胶质瘤的靶向治疗。该智能仿生纳米药物合理解决了目前纳米药物面临的体内循环时间短、难以跨越BBB、被肿瘤细胞摄取量低和药物在病灶处释放缓慢等诸多关键问题,最终可望成功实现人脑胶质瘤安全高效的治疗。即刻报名扫描下方二维码,报名吧!主讲人简介刘艳杰 博士生物医学工程专业在读博士,现在河南大学从事仿生纳米药物用于人脑胶质瘤的治疗的研究。在Advanced materials,Biomaterials等杂志上发表论文2篇,申请国内专利2项。
  • 媲美人脑能效的类脑突触原型器件问世
    8日,记者从中国科学技术大学获悉,该校李晓光教授团队在前期研究基础上,基于对铁电畴形态和翻转动力学的设计,在铁电量子隧道结中实现了亚纳秒电脉冲下电导态可非易失连续调控的类脑突触器件,可用于构建人工神经网络类脑计算系统。研究成果日前表于《自然通讯》杂志上。  以神经网络为代表的类脑人工智能技术正深刻影响人类社会。但目前运行神经网络计算的硬件系统依然基于传统硅基运算器与存储器,能效远低于人脑。研发具有神经形态模拟功能的类脑器件,如神经网络硬件系统的核心器件——电子突触,是进一步推进人工智能发展的重要途径之一。为执行复杂的人工智能任务,神经网络硬件系统对电子突触器件提出了诸多苛刻要求,然而,已报道的类脑突触器件无法全面满足相关的指标要求。  李晓光教授团队制备了高质量的铁电隧道结,通过PZT(压电陶瓷驱动器)超薄厚度和取向的设计,获得了更小的铁电畴和更连续的翻转动力学行为,更丰富的铁电多畴亚稳态利于类脑突触器件中多态的可控调节。该器件表现出优异的综合性能:其8比特线性电导调控和高耐久性,满足类脑突触器件的核心性能指标要求。基于该器件性能仿真构建的神经网络具有高图像识别率,即使在图片中引入椒盐噪声或高斯噪声,其识别图片的准确率仍然大于85%。此外,该器件具有亚纳秒超快操作速度,而且其能耗低至飞焦级。研究人员经过推算表明,该铁电隧道结构建的神经网络计算系统,有可能实现相当于人脑的优秀能效,而人脑神经元突触单次脉冲能耗约10飞焦。人脑突触响应速度约亚毫秒,其响应速度也比人脑突触快6个量级,堪称媲美人脑突触的能效表现。  这一研究成果展现了铁电隧道结在构建未来高性能类脑人工智能计算硬件系统方面的重要潜力。
  • 【学术前沿】随机光学重建显微镜 STORM 揭示了人脑中病理聚集体的纳米级组织
    【学术前沿】随机光学重建显微镜 STORM 揭示了人脑中病理聚集体的纳米级组织(文末预约试拍)01—研究介绍脑组织样本的组织学分析给我们提供了有关导致常见神经退行性疾病的病理过程的宝贵信息。在这种情况下,开发新的高分辨率成像方法是神经科学当前面临的挑战。为此,我们使用了一种被称为随机光学重建显微镜 (STORM) 的超分辨率成像技术来分析人脑切片。作者将 STORM 细胞成像方案与神经病理学技术相结合,对患有神经退行性疾病的患者和对照受试者的脑样本进行了成像。02—研究结果(节选)作者在新皮质、白质和脑干样本中执行了 2D、3D 和双色STORM成像 。STORM 被证明在可视化致密蛋白质包涵体的组织方面特别有效,作者对阿尔茨海默病、帕金森病、路易体痴呆和额颞叶变性患者的中枢神经系统内的病理聚集体进行了 图1、使用 STORM 对人脑样本进行超分辨率成像。(A) 用于 STORM 成像的光学设置示意图。I.B.,入射光束;E.F,渐逝场;R.B.,反射光束。(B) STORM 采集人脑切片中的皮层轴突,对神经丝 (NF) 进行免疫染色:首先采集传统的宽视场荧光显微镜图像。(B1),然后强烈增加激发功率以诱导荧光团闪烁,并获得数千帧记录(B2-B5)。以亚像素精度(B6-B9)在每帧的基础上检测到激活的荧光分子的定位。然后使用来自所有帧的累积定位来重建超分辨率图像(B10)。IF,成像帧。(C) 使用常规宽视场荧光显微镜、STORM 和透射电子显微镜 (TEM) 获得的纵向和横向切片前额叶皮层轴突的代表性图像。(D 和 E)使用常规荧光显微镜、STORM 和 TEM 在人脑中测量的轴突直径(纵向切片)和面积(横向切片)。误差线表示具有标准偏差的平均值。*P 2、AD 患者脑样本中老年斑和神经原纤维缠结的STORM图像图2、AD患者大脑样本中老年斑和神经原纤维缠结的STORM图像。(A1) AD 患者新皮质中老年斑的代表性图像(Ab 的免疫组织化学检测)。(A2) 同一患者的新皮质切片中整个老年斑块的常规荧光显微镜图像对 Ab 进行免疫染色。(A3) 同一区域的风暴图像。插图(1 和 2)显示了聚合 Ab 分支的分布和大小的特写细节。(A4) 老年斑中 Ab 纤维(黑色箭头)的比较 TEM 图像。(B1) AD 患者新皮质中神经原纤维缠结的代表性图像(p.Tau 的免疫组织化学检测)。(B2) 在同一患者的新皮质切片中,整个退化神经元的胞体内神经原纤维缠结的常规荧光显微镜图像被 Ab 沉积包围。(B3) 通过结合传统荧光显微镜 (Ab) 和 STORM (p.Tau) 对同一神经元进行成像。插图(3 和 4)显示了胞体中 p.Tau 聚集体的蜂窝结构和轴突中的丝状组织的特写细节。(B4) 神经原纤维缠结中 Tau 丝(白色箭头)的比较 TEM 图像。03—研究总结本文中,作者结合了超分辨率显微镜和神经病理学技术来分析人脑切片。迄今为止,组织中纳米结构的成像主要依赖于透射电子显微镜,这是一项耗时的技术,需要超薄组织切片 (50-70 nm) 进行严格的样品制备,并限制了免疫靶向多样性和3D采集。相反,STORM在样品制备,广阔的观察领域,多分子标记和3D采集方面具有光学荧光显微镜的优势,而图像采集和重建仅需几分钟。人脑样本的 STORM 成像进一步打开了全面了解常见神经系统疾病的大门。这种技术的便利性应该会直接扩展其在人脑超分辨率成像方面的应用,为当前神经科学面临的挑战提供更好解决方案。04—超高分辨率显微成像系统 iSTORM前文中提及的随机光学重构显微镜(STORM)技术,目前已成功实现商用,有需要STORM技术进行实验研究的专家老师们,请文末填写问卷,即可预约获得 iSTORM 超高分辨率显微成像系统试拍服务哦~超高分辨率显微成像系统 iSTORM,成功实现了光学显微镜对衍射极限的突破,使得在 20 nm的分辨率尺度上从事生物大分子的单分子定位与计数、亚细胞及超分子结构解析、生物大分子生物动力学等的研究成为现实,从而给生命科学、医学等领域带来重大性突破。图3、超高分辨率显微成像系统iSTORM。超高分辨率显微成像系统 iSTORM 具有 20 nm超高分辨率、3通道同时成像、3D同步拍摄、实时重构、2小时新手掌握等特点,已实现活细胞单分子定位与计数,并提供荧光染料选择、样本制备、成像服务与实验方案整体解决方案,以纳米级观测精度、高稳定性、广泛环境适用、快速成像、简易操作等优异特性,获得了超过50家科研小组和100多位科研人员的高度认可。参考文献:P. Codron, F. Letournel, S. Marty, L. Renaud, A. Bodin, M. Duchesne, C. Verny, G. Lenaers, C. Duyckaerts, J.-P. Julien, J. Cassereau and A. Chevrollier (2021) Neuropathology and Applied Neurobiology 47, 127–142 STochastic Optical Reconstruction Microscopy (STORM) reveals the nanoscale organization of pathological aggregates in human brain
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制