缺陷控制

仪器信息网缺陷控制专题为您整合缺陷控制相关的最新文章,在缺陷控制专题,您不仅可以免费浏览缺陷控制的资讯, 同时您还可以浏览缺陷控制的相关资料、解决方案,参与社区缺陷控制话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

缺陷控制相关的耗材

  • 高低温环境试验箱控制器 TT-5166
    高低温环境试验箱控制器 TT-5166箱体结构台式恒温恒湿试验箱采用数控机床加工成型,造型美观大方、新颖并采 用无反作用把手,操作简便。箱体内胆采用进口高级不锈钢(SUS304)镜面板或304B氩弧焊制作而成,箱体外胆采用A3钢板喷塑。台式恒温恒湿试验箱采用微电脑温度湿度控制器,控温控湿精确可靠。大型观测视窗附照明灯保持箱内明亮,且采用双层玻璃,随时清晰的观测箱内状况。设有独立限温报警系统,超过限制温度即自动中断,保证实验安全运行不发生意外。箱体左侧配直径30mm、50mm、100mm的测试孔,可供外接测试电源线或信号线使用。(孔径任选订货时说明)台式恒温恒湿试验箱机器底部采用高品质可固定式PU活动轮高低温环境试验箱控制器 TT-51661.高低温湿热试验箱控制器采用全进口LED数显按键显示屏,英文界面(中国台湾台通TT-5166)或液晶触摸显示屏,中英文切换界面(中国台湾台通TT-5166),或进口日本“OYO”数显触摸按键温度湿度控制仪。温湿度控制可直接显示,摒弃原有温湿度相对照的缺陷。2.控制器可编程,记忆容量120组,每个程序zui大999段。3.资料及试验条件输入后,控制器具有锁定功能,避免人为触摸而改变温度值。4.控制器具有P.I.D自动演算的功能,可将温度湿度变化条件立即修正,使温度湿度控制更为精确稳定。5.可选配打印机。能打印记录设定参数和扫描出温度湿度变化曲线。4~200mA标准信号。6.电器控制主件采用进口“施耐德”及“梅兰日兰”元件,更好地控制温度湿度。7.具有RS-232通讯界面,可在电脑上设计程式,监视试验过程并执行自动开关机等功能。
  • 湿度控制传输线
    湿度控制传输线 ◇用于Tekmar 仪器◇增加对酮类、醇类及酯类的反应。◇ Silcosteel-去活化柱管,使惰性增强。◇适用于 U.S. EPA 方法 8260、524.2及 OLM4.1。◇ 连接简单,只需几分钟。湿度控制传输线说明包装量货号Tekmar 3000用湿度控制传输线单件21035Tekmar 3100用湿度控制传输线单件21109
  • 湿度控制传输线 用于Tekmar 仪器
    湿度控制传输线 用于Tekmar 仪器1、增加对酮类、醇类及酯类的反应。2、Silcosteel-去活化柱管,使惰性增强。3、适用于 U.S. EPA 方法 8260、524.2及 OLM4.1。4、连接简单,只需几分钟。说明 包装量 货号 Tekmar 3000用湿度控制传输线 单件 21035Tekmar 3100用湿度控制传输线 单件 21109

缺陷控制相关的仪器

  • 钢研纳克钢管视觉表面缺陷自动检测系统:由高速CCD相机系统、同步成像光源系统、存储及图形分析服务器系统、景深自动调节的检测平台系统及软件等组成,可实现二维+三维表面缺陷连续自动检测、分类评级和记录。可以快速且有效检测裂纹、凹坑、折叠、压痕、结疤等各类缺陷,能够适应于复杂的现代钢铁工业生产环境,能够完美替代目视检测,达到无人化生产的水平。 图1 钢管视觉表检系统 图2 CCD高速相机系统1.特点独特二维+三维成像技术:二维+三维集成成像,不仅能准确检测开口缺陷深度,而且深度很浅的细小缺陷也能有效检测。二维、三维结合技术解决了目前三维检测系统只能检出有一定深度缺陷、无法检测表面深度较浅但危害性较大的缺陷的问题。相机景深自动调整技术:能够对不同规格的工件进行自动调整,实现大景深变化背景下的高清成像。卷积神经网络缺陷算法:基于深度学习的表面缺陷检测算法,能够在复杂背景下有效地减少计算时间快速的采集缺陷特征,具有领先的缺陷检出率及分类准确率。2.主要功能在线缺陷实时检测:系统在线检测折叠、凹坑、裂纹等钢管外表面常见自然缺陷缺陷高速识别:快速分析获取缺陷数量、大小、位置(在长度、宽度方向上位置)、类型等信息,显示宽度缺陷模式缺陷分类统计:可按缺陷种类、长度、深度、位置、面积、等进行分类及合格率统计。实时图像拍照:实时过钢图像以及每根钢管记录的图像的“回放”功能,可进行多个终端显示图像回放。机器自学习:系统检出的缺陷和人工核对后,进行对应缺陷的样本训练,形成机器自学习,提高同类缺陷的识别准确率3.检测效果图3 图软件主界面图4 系统分析界面图5 缺陷样本自动标注常见缺陷 划伤 辊印 结疤 裂纹图6 检测到的常见表面缺陷目前该产品已在钢管生产线投入使用,解决了长期困扰客户的表面缺陷实时检测的难题。详情可咨询钢研纳克无损检测,电话: 手机:,E-mail:
    留言咨询
  • 【药瓶包装缺陷检测】基本说明  药瓶包装外观缺陷检测系统主要针对口服液玻璃药瓶、塑料瓶及塑料容器进行快速、可靠的检测,项目有飞边、污渍、缺料、瓶口圆度、杂质物、孔洞、薄壁区域检测等,医药包装的检测方法除人工检测外便是更智能化自动化视觉检测设备,引用机器视觉检测,不仅可以提高药品的检测效率和准确性,更为企业降低了人工成本。药瓶机器视觉缺陷检测在制药过程中主要运用药品的生产、包装、封盒/封口、贴标、喷码、装箱等。  【药瓶包装缺陷检测】产品功能  不良处理缺陷检测、异物缺陷检测、瓶体尺寸缺陷检测、瓶液位判断、瓶身轧盖外观检、测贴标缺陷检测  【药瓶包装缺陷检测】产品特点  1.操作简单:快速建模,向导设置,直观的用户界面  2.检测精度高:可针对不同区域设置不同的精度等X  3.误报率低:检测误报率低  4.检测速度:X快速度20000pcs/小时(检测不同的产品速度不同)  5.不良存档:检测到的缺陷及不良图片存档到制定文件夹,可供操作人员针对不良追溯。  【药瓶包装缺陷检测】适用范围  药瓶包装外观缺陷检测系统可应用于口服液玻璃瓶体、塑料瓶及塑料容器、饮料瓶等瓶体外观缺陷在线检测。  【药瓶包装缺陷检测】产品参数  检测速度:250瓶/分钟--500瓶/分钟(可调)  检测项目:(玻璃屑、金属屑、纤维、黑点、白点)、液位、轧盖、瓶盖表面印刷等  电 压:AC3~380V 50HZ  设备容量:14KW  工作台高度:980mm  适用范围:20ml~60ml口服液  【药瓶包装缺陷检测】企业介绍  杭州国辰机器人科技有限公司(浙江智能机器人省级重点企业研究院,简称“浙江智能机器人研究院”)成立于2015年7月,位于杭州钱塘江畔的萧山国家经济技术开发区内,是一家以机器人核心关键技术开发与应用、机器人自动化系统集成、机器人教育以及机器人多元化产业发展,并重点致力于智能服务机器人研发与产品化的企业实体。国辰服务机器人产品可应用于小区,门岗,酒店,景区,讲解,营业厅,厂房,仓库,机房,实验室等多种场景,可提供智能机器人,服务机器人,巡检机器人,喷涂机器人,迎宾机器人,管家机器人,酒店机器人,景区机器人,讲解机器人,仓库机器人,布匹缺陷视觉检测,agv叉车,无人搬运机器人,导游机器人以及营业厅机器人等多种智能服务机器人产品。
    留言咨询
  • 水下电磁探测仪,依托于水下机器人进行水下结构的检测,可检测水下构件内部结构缺陷,脱空情况,钢筋混凝土裸露情况。可以在桥梁日常养护工作中起到非常积极的作用本公司自主研发的Silurian 水下缺陷检测系统,已获得相关发明专利。系统以介电常数差异为物理基础,使用高频电磁波进行非破坏性探测,通过剖面扫描的方式获得水下结构物的扫描图像,该系统不仅可以用于地层岩溶、断层构造探测,还可应用于工程混凝建筑特别是水利水电大坝体裂缝、混凝土内钢结构隐患、隧道衬砌完整性等隐患排查。本系统可对坝体及其它混凝土建筑进行快速动态扫描,z高速度可达3m/s,高效识别毫米级裂缝及内部缺陷,作业效率较常规探测方式有极大提升,完美克服了结构物裂缝监测传统作业的高精度与检测效率的矛盾。是水下混凝土裂缝、缺陷检测的z优解决方案。应用场景:水坝各个位置的混凝土外部及内部缺陷桥梁水下混凝土缺陷满水涵洞内部缺陷系统特点:适合各类复杂水工结构体和各种不同姿态工作可对水工结构体内部破损及缺陷进行分析对隐伏破损具有很好的分辨能力受水环境影响小,灵敏度高
    留言咨询

缺陷控制相关的试剂

缺陷控制相关的方案

缺陷控制相关的论坛

  • 【原创大赛】酸奶常见的品质缺陷及生产控制方法

    【原创大赛】酸奶常见的品质缺陷及生产控制方法

    文/熊子灵(华测检测) 自从“三聚氰胺”事件发生之后,我国相关职能部门对乳制品行业进行了严格的食品安全及质量管控,乳制品行业因此成为我国食品行业中发展快、消费大、从业水平高的一个重要行业。酸奶,以其营养价值高、口味好、促消化、益于健康等特点,成为了乳制品中市场份额占比较高的产品。近年来,我国酸奶市场增长率领跑全球,每年保持着两位数的高速增长。在这样的环境下,消费者和生产企业对酸奶的品质缺陷都非常关注。 影响酸奶品质的因素包括原料奶或奶粉的质量及卫生情况、加工环节卫生情况、均质工艺、菌种质量和投放工艺、接种工艺、发酵工艺和后熟控制等。本文将对酸奶的主要品质缺陷的成因及控制措施进行探讨。[align=center][img=,393,325]http://ng1.17img.cn/bbsfiles/images/2017/08/201708111453_01_3051334_3.jpg[/img][/align][b] 缺陷一:乳清析出[/b] 造成酸奶乳清析出的因素包括:原料奶含抗生素;原料奶的卫生情况不达标;原料奶的蛋白质含量较低;均质效果不好;接种温度不符合要求;发酵温度过高或过低等等。这些都是导致酸奶粘度低、乳清析出的原因。例如,原料奶含有抗生素或被其他微生物污染(比如噬菌体污染),则会使酸奶中产粘乳酸球菌受到抑制,导致酸奶粘性不够;又如,均质效果不佳,均质后的乳中没有形成颗粒较小和均匀的脂肪球,导致了酸奶储存过程中脂肪分离,使乳清析出。 为了防止酸奶在发酵和生产过程中乳清析出,应该做好以下几点:第一,规范原料奶管控,严格控制原料奶入场检验和储存;第二,加强工艺过程管理,保证均质效果,定期检查均质机工作情况,将接种和发酵温度设为关键控制点等等。此外,还可以在酸奶中合理使用稳定剂,以保持酸奶的质构和口感的稳定。[b] 缺陷二:颗粒感强[/b] 酸奶中的颗粒感会造成口感不佳,它可能来自于以下几个因素:配料工艺不恰当;杀菌温度控制不佳;均质效果不佳;噬菌体污染等等。例如,若用奶粉做为原料,则配料时必须对奶粉进行水合,不适宜或不充分的水合会让酸奶成品中出现“粉感”或颗粒感;又如,杀菌温度过高,会导致蛋白质变性,从而产生沉淀,造成颗粒感。 为保证酸奶的口感顺滑、无颗粒感,应严格控制原料奶的入场检验和储存和工艺过程(如将均质、杀菌设为关键控制点等)。[b] 缺陷三:口感过酸[/b] 酸奶中的酸味来源于发酵所产生的乳酸。虽然酸奶特殊的酸味是该产品的特点,但过酸会对其口感产生反效果。酸奶过酸的原因可能有:配料工艺不恰当;菌种使用不恰当;贮存温度过高等等。例如,所使用的菌种添加过量,其结果会导致产酸过多,引起酸奶过酸;另外,不同的菌种的特性不同,不适宜的菌种也会造成了酸奶过酸。 为使酸奶达到最佳的口感和酸度,企业首先应严格筛选适宜生产的菌种,并严格控制菌种投放工艺步骤,必要时可设置为控制点。另外,可根据实际情况控制蔗糖的添加,根据不同菌种对蔗糖的利用程度来控制蔗糖的添加量,使酸奶达到最佳口感。 除以上三种品质缺陷以外,酸奶中还有可能出现的品质缺陷包括发酵时间过长、酸度欠缺、质构过粘或过硬等。但控制方法与上述控制措施类似,严格控制原辅料验收、工艺过程和贮存,将能有效地避免这些品质缺陷。

  • 绵阳高新区疾病预防控制中心人类免疫缺陷病毒抗体检测试剂采购项目

    [quote]项目概况绵阳高新区疾病预防控制中心人类免疫缺陷病毒抗体检测试剂采购项目 采购项目的潜在供应商应在绵阳高新区绵兴东路55号中沅广场世爵假日18楼获取采购文件,并于2023年08月14日 14点00分(北京时间)前提交响应文件。[/quote][font=inherit]一、项目基本情况[/font]项目编号:ZDSF(2023)0801号项目名称:绵阳高新区疾病预防控制中心人类免疫缺陷病毒抗体检测试剂采购项目采购方式:竞争性磋商预算金额:20.0000000 万元(人民币)最高限价(如有):20.0000000 万元(人民币)采购需求:详见采购需求附件合同履行期限:签订合同后5个工作日内交清货物。本项目( 不接受 )联合体投标。[font=inherit]二、申请人的资格要求:[/font]1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:无3.本项目的特定资格要求:(1)供应商须符合《医疗器械监督管理条例》要求,若供应商是制造厂家的须具有《医疗器械生产许可证》或有效备案凭证;若供应商为经销商或代理商的须具有《医疗器械经营许可证》或有效备案凭证。(仅限医疗器械适用)(2)投标产品须符合《医疗器械注册与备案管理办法》要求并提供产品的注册/备案证明材料。(仅限医疗器械适用)[font=inherit]三、获取采购文件[/font]时间:2023年08月04日 至 2023年08月10日,每天上午9:00至12:00,下午14:00至17:00。(北京时间,法定节假日除外)地点:绵阳高新区绵兴东路55号中沅广场世爵假日18楼方式:获取磋商文件时,经办人员当场提交以下资料:供应商为法人或者其他组织的,只需提供单位介绍信(原件)、经办人身份证明(查验原件收复印件);供应商为自然人的,只需提供本人身份证明。以上资料均盖单位鲜章。售价:¥300.0 元(人民币)[font=inherit]四、响应文件提交[/font]截止时间:2023年08月14日 14点00分(北京时间)地点:绵阳高新区绵兴东路55号中沅广场世爵假日18楼[font=inherit]五、开启[/font]时间:2023年08月14日 14点00分(北京时间)地点:绵阳高新区绵兴东路55号中沅广场世爵假日18楼[font=inherit]六、公告期限[/font]自本公告发布之日起3个工作日。[font=inherit]七、其他补充事宜[/font][font=inherit]八、凡对本次采购提出询问,请按以下方式联系。[/font]1.采购人信息名 称:绵阳高新区疾病预防控制中心地址:绵阳高新区石桥铺东路创意联邦6栋1单元302联系方式:赵金华 0816- 25306052.采购代理机构信息名 称:四川中达盛丰工程项目管理有限公司地 址:绵阳高新区绵兴东路55号中沅广场世爵假日18楼联系方式:蒋骐羽 0816-21997273.项目联系方式项目联系人:蒋骐羽电 话:  0816-2199727

缺陷控制相关的资料

缺陷控制相关的资讯

  • 中科院新疆理化所通过缺陷控制实现ppb级NO2高灵敏度检测
    p   随着工业的快速发展, a style=" color: rgb(255, 0, 0) text-decoration: underline " title=" " target=" _self" href=" http://www.instrument.com.cn/application/SampleFilter-S02004-T000-1-1-1.html" span style=" color: rgb(255, 0, 0) " strong 空气 /strong /span /a 污染问题日趋严重。NO sub 2 /sub 作为最主要的大气污染物之一,其在极低浓度下(ppb级)就能对人体产生较大的危害。因此,开发可快速、灵敏地检测ppb级NO sub 2 /sub 的气体传感器具有现实意义。以金属氧化物为敏感材料的NO sub 2 /sub 气敏元件具有制作工艺简单、成本低廉等优点。然而,灵敏度低的问题直接限制了金属氧化物在实际检测ppb级NO sub 2 /sub 中的应用。近年来,一系列理论及实验结果表明:金属氧化物半导体材料的表面缺陷能够提高其对NO sub 2 /sub 分子的吸附能力,同时也能够高效地促进电子从半导体的导带转移至NO sub 2 /sub 分子,从而有效地提高其检测灵敏度。因此,通过对材料表面缺陷的调控实现对NO sub 2 /sub 的超灵敏检测具有重要研究价值。 /p p   目前,已被广泛研究的表面缺陷类型为单电子氧空位缺陷(VO· ),然而另一种坐落于SnO sub 2 /sub 表面的缺陷—超氧复合自由基(Sn sup 4+ /sup -O sub 2 /sub sup -· /sup )却未被引起足够的重视。与VO· 缺陷中心相比,电子在Sn sup 4+ /sup -O sub 2 /sub sup -· /sup 上理论上更容易与NO sub 2 /sub 分子发生作用从而增强灵敏度,原因在于电子坐落于吸附的O sub 2 /sub 分子上,远离SnO sub 2 /sub 晶格对其的束缚。然而,这种具有特殊结构的缺陷与材料灵敏度的关系还未被研究过。 /p p   2015年,中国科学院新疆理化技术研究所环境科学与技术研究室窦新存团队为了在材料表面引入这种缺陷,设计并构建了热力学不稳定的制备条件,科研人员以极不稳定的SnCl sub 4 /sub 作为原料,利用冰浴控制反应温度以阻止其激烈的水解反应,再利用高温高压的水热环境瞬间打破前驱体溶液的亚稳态从而获得缺陷。基于该方法能够成功地将Sn sup 4+ /sup -O sub 2 /sub sup -· /sup 引入材料表面,利用这种材料制备的传感器对ppb浓度量级的NO sub 2 /sub 具有超灵敏的传感特性(对200 ppb的NO sub 2 /sub 响应高达35350倍)。与近年来相关文献报道相比,该材料是目前世界上最灵敏的NO sub 2 /sub 传感材料。 /p p   此外,科研人员通过实验首次证明了材料表面Sn sup 4+ /sup -O sub 2 /sub sup -· /sup 数量的微小改变就能引起材料敏感性能的巨大变化。基于这种材料的传感器具有长期稳定性,良好的重复性、选择性,以及在紫外光下迅速恢复等一系列优异的传感特性,可为传感器的工业化生产提供有力的保障。 /p p   相关研究成果以Communication形式发表在Small上,并被“Materials Views中国”作为亮点报道。该工作得到了国家自然科学基金、中科院“百人计划”、西部之光、新疆维吾尔自治区杰青等项目的资助。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201601/insimg/7500e494-4fee-4d9b-a981-c5eb0e702a07.jpg" title=" W020160125372253533812.jpg" / /p p style=" text-align: center " 通过控制SnO sub 2 /sub 表面缺陷控制NO sub 2 /sub 传感器灵敏度示意图 /p
  • 邀请函 | 第十一届中国出生缺陷防控论坛
    邀请函为进一步做好出生缺陷综合防治策略与措施的推广工作,提高我国出生缺陷防治水平,促进出生缺陷预防与控制领域学术交流和合作,2023年3月25~26日在江西省南昌市将举办“第十一届中国出生缺陷防控论坛”。本次论坛主题鲜明,内容丰富,直面出生缺陷防控领域国际和国内的难点和热点问题。PerkinElmer值第十一届中国出生缺陷防控论坛盛会之际,特邀请上海交通大学医学院附属新华医院、上海市儿科医学研究所儿童内分泌遗传科、上海市儿童罕见病诊治中心研究员/主任医师,博士生导师——张惠文教授,作为授课专家,于3月26日15:00在主会场做《新生儿溶酶体病串联质谱筛查进展》专题报告。我们期待您的参与!
  • 如何精准找出CIS影像晶片缺陷?透过量子效率光谱解析常见的4种制程缺陷!
    本文将为您介绍何谓量子效率光谱,以及CIS影像晶片常见的4种制程缺陷。SG-A_CMOS 商用级图像传感器测试仪相较于传统光学检测设备可以提供更精细的缺陷检测资讯,有助于使用者全面了解CIS影像晶片的性能表现。量子效率光谱是CIS影像晶片的关键参数之一,可以反映CIS影像晶片对不同波长下的感光能力,进而影响影像的成像质量。1. 什么是CIS影像晶片的量子效率光谱?CIS影像晶片的量子效率光谱是指在不同波长下,CIS晶片对光的响应效率。物理上,光子的能量与其波长成反比,因此,不同波长的光子对CIS影像晶片产生的响应效率也不同。量子效率光谱可以反映传感器在不同波长下的响应能力,帮助人们理解传感器的灵敏度和色彩还原能力等特性。通常,传感器的量子效率光谱会在可见光波段范围内呈现出不同的特征,如波峰和波谷,这些特征也直接影响着传感器的成像质量。2. Quantum Efficiency Spectrum 量子效率光谱可以解析CIS影像晶片内部的缺陷,常见的有下四种:BSI processing designOptical Crosstalk inspectionColor filter quality and performanceSi wafer THK condition in BSI processing3. 透过量子效率光谱解析常见的4种制程缺陷A. 什么是BSI制程?(1) BSI的运作方式BSI全名是Back-Side Illumination.是指"背照式"影像传感器的制造工艺,它相对于传统的"正面照射"(FSI, Front-Side Illumination)影像传感器,能够提高影像传感器的光学性能,特别是在各波长的感光效率的大幅提升。在BSI制程中,像素置于矽基板的背面,光通过矽基板进入感光像素,减少了前面的传输层和金属线路的干扰,提高了光的利用率和绕射效应,进而提高了影像传感器的解析度和灵敏度。(2) 传统的"正面照射"(FSI, Front-Side Illumination)图像传感器的工作方式FSI 是一种传统的图像传感器制程技术,光线透过透镜后,从图像传感器的正面照射到图像传感器的感光面,因此需要在感光面(黄色方框, Silicon)的上方放置一些电路和金属线,这些元件会遮挡一部分光线,降低图像传感器的光量利用率,影响图像的品质。相对地,BSI 技术是在感光面的背面,也就是基板反面制作出感光元件,让光线可以直接进入到感光面,这样就可以最大限度地提高光量利用率,提高图像的品质,并且不需要额外的电路和金属线的遮挡,因此也可以实现更高的像素密度和更快的图像读取速度。(3) 为什么BSI工艺重要?BSI工艺是重要的制造技术之一,可以大幅提升CIS图像传感器的感光度和量子效率,因此对于低光照环境下的图像采集有很大的帮助。BSI工艺还可以提高图像传感器的分辨率、动态范围和信噪比等性能,使得图像质量更加优良。由于现今图像应用日益广泛,对图像质量和性能要求也越来越高,因此BSI工艺在现代图像传感器的制造中扮演着重要的角色。目前,BSI 技术已成为图像传感器的主流工艺技术之一,被广泛应用于各种高阶图像产品中。(4) 量子效率光谱如何评估BSI工艺的好坏如前述,在CIS图像芯片的制造过程中,不同波长的光子对于图像芯片的感光能力有所不同。因此,量子效率光谱是一种可以检测图像芯片感光能力的方法。利用量子效率光谱,可以评估BSI工艺的好坏。Example-1如图,TSMC使用量子效率光谱分析了前照式FSI和背照式BSI两种工艺对RGB三原色的像素感光表现的差异。结果表明,BSI工艺可以大幅提高像素的感光度,将原本FSI的40%左右提高到将近60%的量子效率。上图 TSMC利用Wafer Level Quantum Efficiency Spectrum(量子效率光谱)分析1.75μm的前照式FSI与背照式BSI两种工艺对RGB三原色的像素在不同波长下的感光表现差异。由量子效率光谱的结果显示,BSI工艺可以大幅提升像素的感光度,将原本FSI的40%左右提高到将近60%的量子效率。(Reference: tsmc CIS)。量子效率光谱的分析可以帮助工程师判断不同工艺对感光能力的影响,并且确定BSI工艺的优势。(5) 利用量子效率光谱分析不同BSI工艺工艺对CIS图像芯片感光能力的影响Example-2 如上图。Omnivision 采用Wafer Level Quantum Efficiency Spectrum量子效率光谱分析采用TSMC 65nm工艺进行量产时,不同工艺工艺,对CIS图像芯片感光能力的影响。在1.4um像素尺寸使用BSI-1工艺与BSI-2的量子效率光谱比较下,可以显著的判断,BSI-2的量子效率较BSI-1有着将近10%的量子效率提升。代表着BSI-2的工艺可以让CIS图像芯片内部绝对感光能力可以提升10%((a)表)。此外,量子效率光谱是优化CIS图像芯片制造的重要工具。例如,在将BSI-2用于1.1um像素的工艺中,与1.4um像素的比较表明,在蓝光像素方面,BSI-2可以提供更高的感光效率,而在绿光和红光像素的感光能力方面,BSI-2的效果与1.4um像素相似。另外,Omnivision也利用量子效率光谱分析了TSMC 65nm工艺中不同BSI工艺工艺对CIS图像芯片感光能力的影响,发现BSI-2可以提高近10%的量子效率,从而使CIS图像芯片的感光能力提高10%。将BSI-2工艺用于1.1um像素的制造,并以量子效率光谱比较1.4um和1.1um像素。结果显示,使用BSI-2工艺的1.1um像素,在蓝色像素方面具有更高的感光效率,而在绿色和红色像素的感光能力方面与1.4um像素相近。这个结果显示,BSI-2工艺可以在保持像素尺寸的前提下提高CIS图像芯片的感光能力,进而提高图像质量。因此,利用量子效率光谱比较不同工艺工艺对CIS图像芯片的影响,可以为CIS制造优化提供重要参考。上图 Omnivision采用了Wafer Level Quantum Efficiency Spectrum量子效率光谱,以分析TSMC 65nm工艺在量产时,不同工艺工艺对CIS图像芯片感光能力的影响。通过这种光谱分析技术,Omnivision能够精确地判断不同工艺工艺所产生的量子效率差异,并进一步分析出如何优化CIS图像芯片的感光能力。因此,Wafer Level Quantum Efficiency Spectrum量子效率光谱分析是CIS工艺中一项重要的技术,可用于协助提高CIS图像芯片的质量和性能。(Reference: Omnivision BSI Technology.)B. Optical Crosstalk Inspection(1) 什么是Optical Crosstalk?CIS的optical cross-talk是指光线在图像芯片中行进时,由于折射、反射等原因,导致相邻像素之间的光相互干扰而产生的一种影响。(2) 为什么Optical Crosstalk的检测重要?在CIS图像芯片中,optical crosstalk是一个重要的问题,因为它会影响图像的品质和精度。optical crosstalk是由于像素之间的光学相互作用而产生的,导致相邻像素的光信号互相干扰,进而影响到像素之间的区别度和对比度。因此,降低optical cross-talk是提高CIS图像芯片品质的重要目标之一。(3) 如何利用QE光谱来检测CIS 的Crosstalk?量子效率(QE)光谱可用于检测CMOS图像传感器(CIS)的串音问题。通过测量CIS在不同波长下的QE,可以检测CIS中是否存在串音问题。当CIS中存在串音问题时,在某些波长下可能会观察到QE异常。在这种情况下,可以采取相应的措施来降低串音,例如优化CIS设计或改进工艺。缩小像素尺寸对于高分辨率成像和量子图像传感器是绝对必要的。如上图,TSMC利用45nm 先进CMOS工艺,来制作0.9um 像素用于堆叠式CIS。而optical crosstalk光学串扰对于SNR与成像品质有着显著的影响。因此,TSMC采用了一种像素工艺,来改善这种optical crosstalk光学串扰。结构如下图。结构(a)是控制像素。光的路径线为ML(Microlens)、CF (Color Filter)、PD(Photodiode, 感光层)。而在optical crosstalk影响的示意图,如绿色线的轨迹。光子由相邻的像素单元进入后,因为多层结构的折射,入射到中间的PD感光区,造成串扰讯号。TSMC设计结构(b) “深沟槽隔离(DTI)" 技术是为了在不牺牲并行暗性能的情况下抑制光学串扰。由(b)可以发现,DTI所形成的沟槽可以隔离原本会产生光学串扰的光子入射到中间的感光Photodiode区,抑制了串扰并提高了SNR。像素的横截面示意图 (a) 控制像素 (b)串扰改善像素。Wafer Level Quantum Efficiency Spectrum of two different structure CISs. 在该图中,展示了0.9um像素的量子效率光谱,其中虚线代表控制的0.9um像素(a),实线代表改进的0.9um像素(b)。由于栅格结构的光学孔径面积略微变小,因此光学串扰得到了极大的抑制。光学串扰抑制的直接证据,在量子效率光谱上得到体现。图中三个黄色箭头指出了R、G、B通道的串扰抑制证据。蓝光通道和红光通道反应略微下降,但是通过新开发的颜色滤光片材料,绿光通道的量子效率得到了提升。利用Wafer Level Quantum Efficiency Spectrum技术可以直接证明光学串扰的抑制现象。对于不同的CIS图像芯片,可以通过量子效率光谱测试来比较它们在不同波长下的量子效率响应,进而分辨optical crosstalk是否得到抑制。上图展示了0.9um像素的量子效率光谱,其中虚线代表控制的0.9um像素(a),实线代表改进的0.9um像素(b)。由于栅格结构的光学孔径面积略微变小,因此光学串扰得到了极大的抑制。光学串扰抑制的直接证据,在量子效率光谱上得到体现。图中三个黄色箭头指出了R、G、B通道的串扰抑制证据。C. Color filter quality inspection(1) 什么是CIS 的Color filter?CIS的Color filter是一种用于CIS图像芯片的光学滤光片。它被用于调整图像传感器中各个像素的光谱响应,以便使得CIS图像芯片可以感测和分离不同颜色的光,并将其转换为数字信号。Color filter通常包括红、绿、蓝三种基本的色彩滤光片。而对于各种不同filter排列而成的color filter array (CFA),可以参考下面的资料。最常见的CFA就是Bayer filter的排列,也就是每个单元会有一个B、一个R、与两个G的filter排列。Color filter在CIS图像芯片中扮演着非常重要的角色,其质量直接影响着图像的色彩再现效果。为了确保Color filter的性能符合设计要求,需要进行精确的光谱分析和质量检测。透过率光谱可以评估不同Color filter的光学性能 量子效率光谱可以检测Color filter与光电二极管的匹配程度。只有通过严格的质量检测,才能保证CIS芯片输出优质的图像。图 Color filter 如何组合在“Pixel"传感器中。一个像素单位会是由Micro Lens + CFA + Photodiode等三个主要部件构成。Color filter的主要作用是将入射的白光分解成不同的色光,并且选择性地遮挡某些色光,从而实现对不同波长光的选择性感光。(2) 为什么Color filter的检测重要?在CIS图像芯片中,每个像素上都会有一个color filter,用来选择性地感光RGB三种颜色的光线,从而实现对彩色图像的捕捉和处理。如果color filter的性能不好,会影响像素的感光度和光谱响应,进而影响图像的品质和精度。因此,优化color filter的性能对于提高CIS图像芯片的品质至关重要。Color filter 的检测是十分重要的,因为color filter 的品质和稳定性会直接影响到CIS 图像芯片的色彩精确度和对比度,进而影响整个图像的品质和清晰度。如果color filter 存在缺陷或不均匀的情况,就会导致图像中某些颜色的偏移、失真、色彩不均等问题。因此,对color filter 进行严格的检测,可以帮助制造商确保其性能和品质符合设计要求,从而提高CIS 图像芯片的生产效率和产品的可靠性。(3) 如何利用QE光谱来检测CIS 的Color filter quality?CIS的Color filter通常是由一种称为“有机色料"(organic dyes or pigments)的物质制成,这些有机色料能够选择性地吸收特定波长的光,以产生所需的颜色滤波效果。这些有机色料通常是透过涂布技术将它们沉积在玻璃或硅基板上形成彩色滤光片。量子效率(QE)光谱可以测量CIS在不同波长下的感光度,从而确定Color filter的品质和性能。正常情况下,Color filter应该能够适当地分离不同波长的光,并且在光学过程中产生较小的串扰。因此,如果在特定波长下的量子效率比预期值低,可能是由于Color filter的品质或性能问题引起的。通过对量子效率 (QE)光谱的分析,可以确定Color filter的性能是否符合设计要求,并提前进行相应的调整和优化。TSMC利用Wafer Level Quantum Efficiency Spectrum晶片级量子效率光谱技术,对不同的绿色滤光片材料进行检测,以评估其对CIS图像芯片的感光能力和光学串扰的影响。如上图,TSMC的CIS工艺流程利用Wafer Level Quantum Efficiency Spectrum的光谱技术,针对不同的绿色滤光片材料进行检测,以评估其对CIS图像芯片的感光能力和光学串扰的影响。晶圆级量子效率光谱显示了三种不同Color filter材料(Green_1, Green_2和Green_3)的特性。透过比较这三种材料,可以发现:(1) 主要绿色峰值位置偏移至550nm(2) 绿光和蓝光通道的optical crosstalk现象显著降低(3) 绿光和红光通道的optical crosstalk现象显著增加。通过对量子效率(QE)光谱的分析,可以确定Color filter的性能是否符合设计要求,并提前进行相应的调整和优化。以确保滤光片材料的特性符合设计要求,并且保证图像的品质和精度,提高CIS图像芯片的可靠性和稳定性。D. Si 晶圆厚度控制(1) 什么是Si 晶圆厚度控制?当我们在制造BSI CIS图像芯片时,需要使用一种称为"减薄(thin down)"的工艺来将晶圆变得更薄。这减薄后的晶圆厚度会直接影响CIS芯片的感光度,因此晶圆的厚度对图像芯片的感光性能和质量都有很大的影响。为了确保图像芯片能够正常工作,我们需要使用"Si 晶圆厚度控制"工艺来精确地控制晶圆的厚度。这样可以确保我们减薄出来的晶圆厚度能够符合设计要求,同时也可以提高图像芯片的产品良率。BSI的流程图。采用BSI工艺的CIS图像芯片,会有一道重要的工艺“减薄"(Thin down), 也就是将晶圆的厚度减少到一定的程度。(2) Si 晶圆厚度控制工艺监控中的量子效率检测非常重要在制造CIS芯片时,Si 晶圆厚度控制工艺的控制对于芯片的感光度有着直接的影响。这种影响可以透过量子效率光谱来观察,确保减薄后的CIS芯片拥有相当的光电转换量子效率。减薄后的晶圆会有一个最佳的厚度值,可以确保CIS芯片拥有最佳的光电转换量子效率。使用450nm、530nm和600nm三种波长,可以测试红色、绿色和蓝色通道的量子效率。实验结果显示了不同减薄厚度的CIS在蓝光、绿光、红光通道的量子效率值的变化。减薄厚度的偏差会对CIS的感光度产生直接的影响,进而影响量子效率的值。因此,量子效率的检测对于Si 晶圆厚度控制工艺的监控至关重要,以确保制造的CIS芯片具有稳定和一致的质量。下图显示了在不同减薄厚度下CIS图像芯片在蓝、绿、红三个光通道的量子效率值变化。蓝光通道的量子效率值是利用450nm波长测量的,当减薄后的厚度比标准厚度多0.3um时,其量子效率值会由52%下降至49% 当减薄后的厚度比标准厚度少0.3um时,蓝光通道的量子效率只略微低于52%。红光通道的量子效率值是利用600nm波长测量的,发现红光通道的表现在不同厚度下与蓝光通道相反,当减薄后的厚度比标准厚度少0.3um时,红光通道的量子效率显著地由44%下降至41%。在较厚的条件(+0.3um)下,红光通道的量子效率并没有显著的变化。绿光通道的量子效率值是以530nm波长测量的,在三种厚度条件下(STD THK ± 0.3um),绿光通道的量子效率没有显著的变化。利用不同的Si晶圆厚度(THK)对CIS图像芯片的量子效率进行测试,测试波长分别为600nm、530nm和450nm,并且针对红色、绿色和蓝色通道的量子效率进行评估。结果显示,在绿光通道方面,Si晶圆厚度的变化在±0.3um范围内,530nm波段的量子效率并未有明显变化。但是,在红光通道方面,随着Si晶圆厚度的下降,量子效率会有显著的下降。而在蓝光通道450nm的情况下,量子效率会随着Si晶圆厚度的下降而有显著的下降。这些结果表明,Si晶圆厚度对于CIS图像芯片的量子效率有重要的影响,且不同通道的影响程度不同。因此,在制造CIS图像芯片时需要精确地控制Si晶圆厚度,以确保产品的质量和性能。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制