颅内侧壁动脉瘤

仪器信息网颅内侧壁动脉瘤专题为您整合颅内侧壁动脉瘤相关的最新文章,在颅内侧壁动脉瘤专题,您不仅可以免费浏览颅内侧壁动脉瘤的资讯, 同时您还可以浏览颅内侧壁动脉瘤的相关资料、解决方案,参与社区颅内侧壁动脉瘤话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

颅内侧壁动脉瘤相关的耗材

  • 欧姆龙动脉硬化仪检测袖带
    欧姆龙动脉硬化检测仪袖带,一套分为左右上肢和左右下肢,具体详情请来电咨询。
  • 超大组织石蜡包埋盒及底模
    超大组织石蜡包埋盒及底模Supa Mega tissue processing cassettes 适于前列腺、大脑、胸组织、眼睛等大组织块的石蜡包埋,常见于科研实验室、毒理实验室。一般配套使用的底模SupaMega Stainless Steel Base Molds,不锈钢材质,阶梯形状侧壁,保证了包埋较大样本时石蜡不会外流,同时也适合标准尺寸的包埋样本。超大组织石蜡包埋盒尺寸:- Inside: 64mm x 48mm x 13mm - Outside: 75mm x 52mm x 18mm货号产品描述规格70065-W超大组织石蜡包埋盒- White100/包70065-G超大组织石蜡包埋盒- green100/包70065-B超大组织石蜡包埋盒- blue100/包70065-P超大组织石蜡包埋盒- pink100/包70065-Y超大组织石蜡包埋盒- yellow100/包62354-36超大不锈钢底模 36x36x10mm5/包62354-60超大不锈钢底模 60x45x15mm5/包
  • 两通 4mm/6mm/M8内侧 6.1820.070
    两通 4 mm / 6 mm / M8 内侧订货号: 6.1820.070用于延长自动化系统内的抽吸管。将 M8 抽吸管直接连接在 PTFE(聚四氟乙烯)管 6.1812.000 上。材料:PTFE

颅内侧壁动脉瘤相关的仪器

  • FEMTO Pulse全自动脉冲场毛细管电泳仪为研究人员提供了一套强大而有效的脉冲场毛细管电泳系统。对核酸弥散物可实现高出10倍的敏感性检测,对核酸片段实现高达100倍的敏感性检测。FEMTO Pulse全自动脉冲场毛细管电泳仪的特点:- 对200bp以内的片段进行快速、准确的定量、定性,以及片段大小分析 - 检测浓度低到5 fg/μL的DNA片段(孔浓度) - 只需大约1小时运行时间,轻松替换过夜PFGE而不会牺牲分离的分辨率或定量的分辨率 - 为下游的应用保留样本 - 分离并定量单个细胞的基因组DNA或总RNA 产品货号:M5330AA- 可选毛细管阵列:m5330aa##001配套试剂盒:- 定量试剂盒具体试剂盒种类请咨询销售代表
    留言咨询
  • WEK53-05腹部模体,WEK53-05动脉瘤腹部模体,WEK53-05 CT血管造影模型详细介绍:WEK53-05腹部模体,WEK53-05动脉瘤腹部模体,WEK53-05 CT血管造影模型模拟了动脉期的造影剂增强腹部。它覆盖第一腰椎至第四骶椎。它有一个肾下腹主动脉瘤。该模型可用于 CT(包括 CBCT)以评估和优化成像性能和后处理应用,包括支持 AI 的应用。它也适用于培训目的。该模型提供了对软组织和骨组织的详细而逼真的模拟。空隙中填充着约-160 胡的纤维素-聚合物复合材料。WEK53-05腹部模体,WEK53-05动脉瘤腹部模体,WEK53-05 CT血管造影模型规格:大小: 约 224 x 190 x 152 mm 重量: 约 4400 g 基材: 纤维素-聚合物复合材料 最佳管电压: 120 kVp – 可根据要求进行调整 WEK53-05腹部模体,WEK53-05动脉瘤腹部模体诊断特征真实模拟脉管系统、骨骼和软组织,包括肝脏、胰腺、脾脏、肾上腺、肾脏、胃、小肠和结肠。肝硬化,胆囊切除术,下腔静脉滤器,肾囊肿,肾结石,淋巴结。 WEK53-05腹部模体,WEK53-05动脉瘤腹部模体成像效果图:SAG:WEK53-05动脉瘤腹部模体,WEK53-05腹部模体,动脉瘤腹部模体,CT血管造影模型,WEK53-05腹部模型
    留言咨询
  • DSA模拟动脉血管检测模体1、模拟动脉血管最小分辨尺寸及运动伪影检测模块造形剂浓度:150mg/mL1300mg/mL各一块,三个模拟血管,宽度和厚度分别为1.0、2.0和4.0mm,每个管上都有模拟动脉狭窄和动脉瘤,宽度分别为单个动脉宽度的1/4、1/2和3/4,模块尺寸为300*150*25.4mm。2、低对比度碘线对试验插件模块中有3组填充碘造影剂测试线条组,每组线条由4条直径不同线条组成,直径分别为0.5、1.0、2.0 4.0mm。3组线条组碘造影剂浓度分别别为2.5、5.0和10.0mg/cc。模块尺寸为200*150*25.4mm。3、图像线性测试插件测试板上环形分布有六个19mm的测试区,有不同的碘厚度和三碘浓度,分别为20.0、10.0、4.0、1.0、0.5mg/cm3,尺寸为200*150*25.4mm,如图所示。4、骨骼模拟试验块含有三种模拟骨骼的PTFE条,宽度为:25mm,厚度分别为5、10、15mm厚。尺寸为200*200*25.4mm。5、空白插入件均匀材质的有机玻璃模块,尺寸为200*150*25.4mm。6、阶梯楔形试验块6个阶梯块(个个25,4mm高)形成一个模块。上面3个和下3个“折叠"时,可以变成一个200*200*76.5mm 大小的模块。7、高对比度分辨试验插件配合线对卡使用,在测试板上开有线对卡放置的凹槽,可支持线对卡水平、垂直及45虚旋转摆位,线对卡尺寸:50*50mm。模块尺寸为200*150*25.4mm。8、槽块(模体基座)模体具有一个开口,可用于固定和定位其它模块,用来放置不同的模块以实现不同参数测量。模块外尺寸:200*200*76.5mm,槽尺寸:200*150*25.4mm9、配板 铝制成,布满3.2mm大小的孔洞,尺寸:200*200*1.5mm
    留言咨询

颅内侧壁动脉瘤相关的试剂

颅内侧壁动脉瘤相关的方案

颅内侧壁动脉瘤相关的论坛

  • 血管内治疗颅内远端动脉瘤疗效评价

    【序号】:3【作者】:胡振坤马亚伟徐睿【题名】:血管内治疗颅内远端动脉瘤疗效评价【期刊】:临床神经外科杂志. 【年、卷、期、起止页码】:2021,18(04)【全文链接】:有敏感词,删了链接

  • 二硫化碳!

    第一部分 中文名称: 二硫化碳 英文名称: carbon disulfideCAS No.: 75-15-0 分子式: CS2 分子量: 76.14 第二部分:成分/组成信息第三部分:危险性概述健康危害: 二硫化碳是损害神经和血管的毒物。急性中毒:轻度中毒有头晕、头痛、眼及鼻粘膜刺激症状;中度中毒尚有酒醉表现;重度中毒可呈短时间的兴奋状态,继之出现谵妄、昏迷、意识丧失,伴有强直性及阵挛性抽搐。可因呼吸中枢麻痹而死亡。严重中毒后可遗留神衰综合征,中枢和周围神经永久性损害。慢性中毒:表现有神经衰弱综合征,植物神经功能紊乱,多发性周围神经病,中毒性脑病。眼底检查:视网膜微动脉瘤,动脉硬化,视神经萎缩。燃爆危险: 本品极度易燃,具刺激性。

  • 得了动脉硬化怎么办

    动脉硬化这种疾病对很多中老年人的生活都有很大影响,这种疾病用药物也只是可以控制,而不能根治,有些朋友想知道这种疾病通过喝茶是不是可以得到控制和缓解,那么今天我们就来和大家看看得了动脉硬化喝什么茶比较好?[img]https://ng1.17img.cn/bbsfiles/images/2024/06/202406130941212554_4_1642069_3.png[/img]

颅内侧壁动脉瘤相关的资料

颅内侧壁动脉瘤相关的资讯

  • 我国科学家发现新型主动脉瘤和夹层生物标志物及治疗靶点
    主动脉夹层是一种高致死率的心血管疾病,其发病率为1.3-8%,目前尚无能够有效预防其发生发展的药物。因此,研究人员一直在努力探索相关标志物和潜在治疗靶点。  近日,北京大学和武汉同济医院的研究团队在《European Heart Journal》杂志发表了题为“Untargeted metabolomics identifies succinate as a biomarker and therapeutic target in aortic aneurysm and dissection”的文章,通过代谢组学分析发现主动脉瘤和夹层(Aortic aneurysm and dissection,AAD)患者血浆中琥珀酸水平明显升高,大规模人群验证结合临床资料分析,证明琥珀酸可以作为诊断AAD的新型生物标志物。细胞层面研究、动物模型试验以及基因敲除试验进一步证实血浆中高浓度琥珀酸加重小鼠AAD的进展,抑制巨噬细胞内琥珀酸生成通路,降低琥珀酸水平,可以降低ADD发病率、减轻AAD进展、缓解血管扩张、降低血管炎症等。  该研究首次揭示了琥珀酸可以作为AAD诊断的新型生物标志物及治疗靶点。  论文链接:  https://academic.oup.com/eurheartj/advance-article/doi/10.1093/eurheartj/ehab605/6371855#  注:此研究成果摘自《European Heart Journal》杂志,文章内容不代表本网站观点和立场,仅供参考。
  • 胸主动脉支架系统获批上市,共160款国产创新医疗器械获批
    近日,国家药品监督管理局经审查,批准了杭州唯强医疗科技有限公司生产的创新产品“胸主动脉支架系统”注册。该产品由近端胸主动脉覆膜支架系统和远端胸主动脉裸支架系统组成。近端胸主动脉覆膜支架系统封堵B型夹层近端破口,促使假腔内血栓化;远端胸主动脉裸支架系统扩张降主动脉远端真腔,促进主动脉真腔重塑。其中支架的结构设计使其具有良好的柔顺性及一定的径向和轴向支撑力。胸主动脉覆膜支架和胸主动脉裸支架分别预装在对应的输送器中,输送器的设计可保证释放过程的稳定性及支架精准定位。主动脉夹层起病急,进展快,病死率高,支架类产品已成为腔内介入治疗该类疾病的主要手段。该产品适用于治疗Stanford B型夹层,支架近端锚定区长度≥15mm,且病变符合以下条件之一:1.存在远端破口,有处理远端病变的必要性;2.夹层累及范围较广,且存在远端真腔塌陷;3.夹层伴远端灌注不良。该产品的上市将为患者带来新的治疗选择。药品监督管理部门将加强该产品上市后监管,保护患者用械安全。国家药监局已批准的创新医疗器械全名单:国家药监局已批准的创新医疗器械序号产品名称生产企业注册证号1基因测序仪深圳华因康基因科技有限公司国械注准201434021712恒温扩增微流控芯片核酸分析仪博奥生物集团有限公司国械注准201534005803双通道植入式脑深部电刺激脉冲发生器套件苏州景昱医疗器械有限公司国械注准201532109704植入式脑深部电刺激电极导线套件苏州景昱医疗器械有限公司国械注准201532109715植入式脑深部电刺激延伸导线套件苏州景昱医疗器械有限公司国械注准201532109726MTHFR C677T 基因检测试剂盒(PCR-金磁微粒层析法)西安金磁纳米生物技术有限公司国械注准201534011487脱细胞角膜基质深圳艾尼尔角膜工程有限公司国械注准201534605818Septin9基因甲基化检测试剂盒(PCR荧光探针法)博尔诚(北京)科技有限公司国械注准201534014819乳腺X射线数字化体层摄影设备科宁(天津)医疗设备有限公司国械注准2015330205210运动神经元存活基因1(SMN1)外显子缺失检测试剂盒(荧光定量PCR法)上海五色石医学研究有限公司国械注准2015340229311三维心脏电生理标测系统上海微创电生理医疗科技有限公司国械注准2016377038712呼吸道病原菌核酸检测试剂盒(恒温扩增芯片法)博奥生物集团有限公司国械注准2016340032713脱细胞角膜植片广州优得清生物科技有限公司国械注准2016346057314植入式迷走神经刺激脉冲发生器套件北京品驰医疗设备有限公司国械注准2016321098915植入式迷走神经刺激电极导线套件北京品驰医疗设备有限公司国械注准2016321099016药物洗脱外周球囊扩张导管北京先瑞达医疗科技有限公司国械注准2016377102017冷盐水灌注射频消融导管上海微创电生理医疗科技有限公司国械注准2016377104018胸骨板常州华森医疗器械有限公司国械注准2016346158219正电子发射及X射线计算机断层成像装置明峰医疗系统股份有限公司国械注准2016333215620人工晶状体爱博诺德(北京)医疗科技有限公司国械注准2016322174721骨科手术导航定位系统北京天智航医疗科技股份有限公司国械注准2016354228022低温冷冻消融手术系统海杰亚(北京)医疗器械有限公司国械注准2017358308823一次性使用无菌冷冻消融针海杰亚(北京)医疗器械有限公司国械注准2017358308924可变角双探头单光子发射计算机断层成像设备北京永新医疗设备有限公司国械注准2017333068125全降解鼻窦药物支架系统浦易(上海)生物科技有限公司国械注准2017346067926经皮介入人工心脏瓣膜系统杭州启明医疗器械有限公司国械注准2017346068027介入人工生物心脏瓣膜苏州杰成医疗科技有限公司国械注准2017346069828一次性可吸收钉皮内吻合器北京颐合恒瑞医疗科技有限公司国械注准2017365087429左心耳封堵器系统先健科技(深圳)有限公司国械注准2017377088130分支型主动脉覆膜支架及输送系统上海微创医疗器械(集团)有限公司国械注准2017346324131折叠式人工玻璃体球囊广州卫视博生物科技有限公司国械注准2017322329632腹主动脉覆膜支架系统北京华脉泰科医疗器械有限公司国械注准2017346143433植入式心脏起搏器先健科技(深圳)有限公司国械注准2017321157034人类EGFR基因突变检测试剂盒(多重荧光PCR法)厦门艾德生物医药科技股份有限公司国械注准2018340001435可吸收硬脑膜封合医用胶 山东赛克赛斯药业科技有限公司国械注准2018365003136血管重建装置微创神通医疗科技(上海)有限公司国械注准2018377010237miR-92a检测试剂盒(荧光RT-PCR法)深圳市晋百慧生物有限公司国械注准2018340010838丙型肝炎病毒核酸测定试剂盒(PCR-荧光探针法)北京纳捷诊断试剂有限公司国械注准2018340015739脑血栓取出装置江苏尼科医疗器械有限公司国械注准2018377018640定量血流分数测量系统博动医学影像科技(上海)有限公司国械注准2018321028241人EGFR/ALK/BRAF/KRAS基因突变联合检测试剂盒(可逆末端终止测序法)广州燃石医学检验所有限公司国械注准2018340028642全自动化学发光免疫分析仪北京联众泰克科技有限公司国械注准2018322029343人EGFR、KRAS、BRAF、PIK3CA、ALK、ROS1基因突变检测试剂盒(半导体测序法)天津诺禾致源生物信息科技有限公司国械注准2018340029444复合疝修补补片上海松力生物技术有限公司国械注准2018313029245正电子发射断层扫描及磁共振成像系统上海联影医疗科技有限公司国械注准2018306033746EGFR/ALK/ROS1/BRAF/KRAS/HER2基因突变检测试剂盒(可逆末端终止测序法)南京世和医疗器械有限公司国械注准2018340040847植入式骶神经刺激电极导线套件北京品驰医疗设备有限公司国械注准2018312040948植入式骶神经刺激器套件北京品驰医疗设备有限公司国械注准2018312041049人类SDC2基因甲基化检测试剂盒(荧光PCR法)广州市康立明生物科技有限责任公司国械注准2018340050650人类10基因突变联合检测试剂盒(可逆末端终止测序法)厦门艾德生物医药科技股份有限公司国械注准2018340050751医用电子直线加速器广东中能加速器科技有限公司国械注准2018305052052瓣膜成形环金仕生物科技(常熟)有限公司国械注准2018313053453神经外科手术导航定位系统华科精准(北京)医疗科技有限公司国械注准2018301059854医用直线加速器系统上海联影医疗科技有限公司国械注准2018305059955多孔钽骨填充材料重庆润泽医药有限公司国械注准2019313000156生物可吸收冠状动脉雷帕霉素洗脱支架系统乐普(北京)医疗器械股份有限公司国械注准2019313009357病人监护仪深圳迈瑞生物医疗电子股份有限公司国械注准2019307015458腹主动脉覆膜支架及输送系统微创心脉医疗科技(上海)有限公司国械注准2019313018259左心耳闭合系统北京迈迪顶峰医疗科技有限公司国械注准2019313027860左心耳封堵器系统上海普实医疗器械科技有限公司国械注准2019313027961调强放射治疗计划系统软件中科超精(安徽)科技有限公司国械注准2019321028162数字乳腺X射线摄影系统上海联影医疗科技有限公司国械注准2019306028063正电子发射及X射线计算机断层成像扫描系统湖北锐世数字医学影像科技有限公司国械注准2019306036464经导管植入式无导线起搏系统Micra Transcatheter Leadless Pacemaker system美敦力公司Medtronic Inc.国械注进2019312029765经导管主动脉瓣膜系统上海微创心通医疗科技有限公司国械注准2019313049466一次性使用血管内成像导管南京沃福曼医疗科技有限公司国械注准2019306060167无创血糖仪博邦芳舟医疗科技(北京)有限公司国械注准2019307060268植入式左心室辅助系统重庆永仁心医疗器械有限公司国械注准2019312060369脱细胞角膜植片青岛中皓生物工程有限公司国械注准2019316067970冠状动脉造影血流储备分数测量系统苏州润迈德医疗科技有限公司国械注准2019307096971一次性使用有创压力传感器苏州润迈德医疗科技有限公司国械注准2019307097072正电子发射及X射线计算机断层成像扫描系统上海联影医疗科技有限公司国械注准2019306099873核酸扩增检测分析仪杭州优思达生物技术有限公司国械注准2019306102674穿刺手术导航设备医达极星医疗科技(苏州)有限公司国械注准2020301003475冠脉血流储备分数计算软件北京昆仑医云科技有限公司国械注准2020321003576人EGFR/KRAS/BRAF/HER2/ALK/ROS1基因突变检测试剂盒(半导体测序法)厦门飞朔生物技术有限公司国械注准2020340009477胚胎植入前染色体非整倍体检测试剂盒(半导体测序法)苏州贝康医疗器械有限公司国械注准2020340018178生物可吸收冠脉雷帕霉素洗脱支架系统山东华安生物科技有限公司国械注准2020313019779药物球囊扩张导管上海微创心脉医疗科技股份有限公司国械注准2020313044580心血管光学相干断层成像设备及附件深圳市中科微光医疗器械技术有限公司国械注准2020306044681RNF180/Septin9基因甲基化检测试剂盒(PCR荧光探针法)博尔诚(北京)科技有限公司国械注准2020340044782等离子手术设备湖南菁益医疗科技有限公司国械注准2020301047483肿瘤电场治疗仪NovoCure Ltd.国械注进2020309026984经导管主动脉瓣膜系统Edwards Lifesciences LLC国械注进2020313029185经导管二尖瓣夹及可操控导引导管Abbott Vascular国械注进2020313032586糖尿病视网膜病变分析软件上海鹰瞳医疗科技有限公司国械注准2020321068687糖尿病视网膜病变眼底图像辅助诊断软件深圳硅基智能科技有限公司国械注准2020321068788髋关节镀膜球头中奥汇成科技股份有限公司国械注准2020313070789取栓支架珠海通桥医疗科技有限公司国械注准2020303072890血流储备分数测量设备深圳北芯生命科技有限公司国械注准2020307077491压力微导管深圳北芯生命科技有限公司国械注准2020307077592氢氧气雾化机上海潓美医疗科技有限公司国械注准2020308006693记忆合金钉脚固定器兰州西脉记忆合金股份有限公司国械注准2020313082394冠脉CT造影图像血管狭窄辅助分诊软件语坤(北京)网络科技有限公司国械注准2020321084495KRAS基因突变及BMP3/NDRG4基因甲基化和便隐血联合检测试剂盒(PCR荧光探针法-胶体金法)杭州诺辉健康科技有限公司国械注准2020340084596药物洗脱PTA球囊扩张导管浙江归创医疗器械有限公司国械注准2020303085797周围神经修复移植物江苏益通生物科技有限公司国械注准2020313089898肺结节CT影像辅助检测软件杭州深睿博联科技有限公司国械注准2020321092099椎动脉雷帕霉素靶向洗脱支架系统微创神通医疗科技(上海)有限公司国械注准20203130971100髂动脉分叉支架系统先健科技(深圳)有限公司国械注准20213130022101锚定球囊扩张导管湖南埃普特医疗器械有限公司国械注准20213030023102一次性使用血管内成像导管苏州阿格斯医疗技术有限公司国械注准20213060169103 一次性使用电子输尿管肾盂内窥镜北京北方腾达科技发展有限公司国械注准20213060175104幽门螺杆菌23S rRNA基因突变检测试剂盒(PCR-荧光探针法)上海芯超生物科技有限公司国械注准20213400227105冠状动脉CT血流储备分数计算软件深圳睿心智能医疗科技有限公司国械注准20213210270106经导管主动脉瓣系统沛嘉医疗科技(苏州)有限公司国械注准20213130275107临时起搏器深圳市先健心康医疗电子有限公司国械注准20213120299108紫杉醇洗脱PTCA球囊扩张导管浙江巴泰医疗科技有限公司国械注准20213030297109周围神经套接管北京汇福康医疗技术股份有限公司国械注准20213130298110三维电子腹腔内窥镜微创(上海)医疗机器人有限公司国械注准20213060384111经导管主动脉瓣系统沛嘉医疗科技(苏州)有限公司国械注准20213130464112自膨式动脉瘤瘤内栓塞系统Sequent Medical Inc.国械注进20213130233113陡脉冲治疗仪天津市鹰泰利安康医疗科技有限责任公司国械注准20213090497114冠状动脉CT血流储备分数计算软件北京心世纪医疗科技有限公司国械注准20213210574115颅内药物洗脱支架系统赛诺医疗科学技术股份有限公司国械注准20213130575 116腔静脉滤器科塞尔医疗科技(苏州)有限公司国械注准20213130594117单髁膝关节假体北京市春立正达医疗器械股份有限公司国械注准20213130600118内窥镜用超声诊断设备深圳英美达医疗技术有限公司国械注准20213060608119机械解脱弹簧圈上海沃比医疗科技有限公司国械注准20213130649120经导管主动脉瓣膜及可回收输送系统上海微创心通医疗科技有限公司国械注准20213130655121口腔种植手术导航定位设备雅客智慧(北京)科技有限公司国械注准20213010713122一次性使用清创水动力刀头惠州海卓科赛医疗有限公司国械注准20213010779123水动力治疗设备惠州海卓科赛医疗有限公司国械注准20213010780124医用电子直线加速器苏州雷泰医疗科技有限公司国械注准20213050789125球囊扩张血管内覆膜支架系统W.L. Gore & Associates, Inc.国械注进20213130411126腹腔内窥镜手术设备山东威高手术机器人有限公司国械注准20213010848127胚胎植入前染色体非整倍体检测试剂盒(可逆末端终止测序法)北京中仪康卫医疗器械有限公司国械注准20213400868128持续葡萄糖监测系统深圳硅基传感科技有限公司国械注准20213070871129持续葡萄糖监测系统微泰医疗器械(杭州)股份有限公司国械注准20213070872130生物疝修补补片卓阮医疗科技(苏州)有限公司国械注准20213130873131植入式左心室辅助系统苏州同心医疗器械有限公司国械注准20213120987132人工角膜北京米赫医疗器械有限责任公司国械注准20213161017133分支型术中支架系统上海微创心脉医疗科技(集团)股份有限公司国械注准20213131059134经导管主动脉瓣膜系统MEDTRONIC INC.国械注进20213130538135植入式可充电脊髓神经刺激器北京品驰医疗设备有限公司国械注准20223120019136植入式脊髓神经刺激器北京品驰医疗设备有限公司国械注准20223120020137植入式脊髓神经刺激电极北京品驰医疗设备有限公司国械注准20223120021138植入式脊髓神经刺激延伸导线北京品驰医疗设备有限公司国械注准20223120022139植入式脊髓神经刺激电极北京品驰医疗设备有限公司国械注准20223120023140神经外科手术导航定位系统华科精准(北京)医疗科技有限公司国械注准20223010024141直管型胸主动脉覆膜支架系统上海微创心脉医疗科技(集团)股份有限公司国械注准20223130009142植入式脑深部电刺激延伸导线套件北京品驰医疗设备有限公司国械注准20223120084143双通道可充电植入式脑深部电刺激脉冲发生器套件北京品驰医疗设备有限公司国械注准20223120085144植入式脑深部电刺激电极导线套件北京品驰医疗设备有限公司国械注准20223120086145双通道植入式脑深部电刺激脉冲发生器套件北京品驰医疗设备有限公司国械注准20223120087146腹腔内窥镜手术系统上海微创医疗机器人(集团)股份有限公司国械注准20223010108147消化道振动胶囊系统上海安翰医疗技术有限公司国械注准20223090282148移动式头颈磁共振成像系统佛山瑞加图医疗科技有限公司国械注准20223060289149颅内出血CT影像辅助分诊软件上海联影智能医疗科技有限公司国械注准20223210309150磁共振成像系统鑫高益医疗设备股份有限公司国械注准20223060431151髋关节置换手术导航定位系统杭州键嘉机器人有限公司国械注准20223010462152膝关节置换手术导航定位系统苏州微创畅行机器人有限公司国械注准20223010509153脊髓神经刺激测试电极北京品驰医疗设备有限公司国械注准20223120511154膝关节置换手术导航定位系统骨圣元化机器人(深圳)有限公司国械注准20223010510155髂静脉支架系统 苏州天鸿盛捷医疗器械有限公司国械注准20223130512156经导管植入式无导线起搏系统Medtronic Inc.美敦力公司国械注进20223120231157血管内成像设备全景恒升(北京)科学技术有限公司国械注准20223060642158一次性使用血管内成像导管全景恒升(北京)科学技术有限公司国械注准20223060641159患者程控充电器北京品驰医疗设备有限公司国械注准20223120676160胸主动脉支架系统杭州唯强医疗科技有限公司国械注准20223130685国家药监局已批准的创新医疗器械.docx
  • 【知识科普】心血管生物力学与力学生物学2022年研究进展
    心血管系统是脊椎动物胚胎发育的第一个功能器官系统,其主要功能是运输、控制和维持全身的血流。由于不断暴露在来源于血流量和压力的多种机械力下,心血管系统是最容易受到机械力学刺激的系统之一。在这种情况下,心血管系统中的细胞由于心脏跳动产生的脉动变化以及血流产生的剪切应力等永久地受到力学刺激。一方面,流体剪切应力、血管壁机械牵张力、细胞与细胞之间的胞间力等外力组成了心血管系统的力学刺激。另一方面,心血管细胞力学描述了心血管的细胞或组织弹性的动力学。 心肌组织是由心肌细胞、心脏成纤维细胞、细胞外基质、血管等组成的复杂和高度层次化的组织,其组织结构与心脏的宏观力学和形态特性密切相关。随着心脏从单腔结构演变为多室结构,心脏瓣膜开始控制心脏周期中的单向血流。在此期间,心室肌细胞以纤维的形式排列,在心脏壁内形成复杂的层流模式,赋予了心脏包括各向异性、黏弹性在内的多种力学性能。此外,细胞外基质维持了心脏完整性并支持其功能。心脏间质外基质主要由成纤维细胞样细胞产生和维持,为心肌提供了必要的结构支持,保留了心室的力学特性。血流和基质成分的改变都将在一定程度上影响整个心脏的结构和功能。血管在组织结构较高,特别是大组织和器官结构的产生中发挥着重要作用。所有组织生长需要建立足够的血管结构。血管主要由血管内皮细胞(endothelial cells,ECs)和周围的平滑肌细胞(smooth muscle cells,SMCs)或周细胞组成。这些特殊组分维持了血管的黏弹性、各向异性等力学特性。EC排列在血管的内表面,其在循环和周围组织之间提供选择性结构屏障,调节血管通透性和血流。血管内皮功能可以通过血流速率、血管直径或动脉力学特性变化来评估,这些特性与血管收缩和舒张活动有关。此外,SMCs是构成血管壁组织和维持血管张力的主要细胞成分。血管SMCs在组织发育过程中,不断暴露于脉动牵张力等力学刺激中,这种力学作用至少在一定程度上促进了血管组织成分的发育。心血管结构或可替代性的改变可以对心脏功能、血管收缩和扩张能力产生重要影响。特别是在病理情况下,了解心血管结构和力学特性的变化是阐明心血管疾病发生的必要条件,因为这些特性是正常心血管功能的关键决定因素。2022年,关于心血管的生物力学与力学生物学研究主要集中在心血管组分、结构和功能方面。在生理或病理条件下,对心脏和血管壁的生物力学特性、血管内的血流动力学参数、以及响应力学刺激后的生物学改变进行了广泛研究。此外,在微流体技术、纳米技术和生物成像技术等新技术的应用以及心血管生物力学建模领域也取得了进步。然而,机体自身存在的复杂力学环境导致体内心血管力学生物学相关的研究较少。因此,体内环境中不同力学条件下心血管损伤修复的力学生物学研究是未来重要的研究方向。1 心血管生物力学研究1.1 心脏结构和功能的生物力学特征心脏具有复杂的三维结构,在整体器官水平上的功能来自于细胞亚结构到整个器官的内在结构-功能的协调作用。然而,对人体心脏结构中细胞生物力学特征的研究还处于早期阶段。在最近的报道中,Chen等[1]通过空间维度剖析了心肌细胞的异质性,并明确了心肌细胞和血管细胞的空间和功能分区。该项研究表明心房或心室内存在明显的空间异质性,为心脏不同分区的功能异质性提供了理论基础。心脏的基本功能是收缩功能,由此产生的收缩力是心脏独特的力学特性。心脏收缩是一种复杂的生物力学过程,需要心肌细胞的收缩和松弛协同作用,产生足够的收缩力,将血液推向体循环和肺循环。以往研究更多的关注心脏的形态结构、心室大小和室壁厚度等因素对心脏收缩功能的影响,而缺乏对心脏收缩功能的直接表征。Salgado-Almario等[2]构建了一种新的斑马鱼品系,可用于斑马鱼心脏收缩期和舒张期钙水平的成像。该研究通过将Ca2+水平和心脏收缩功能关联起来,可实现对收缩功能的表征,有利于心力衰竭和心律失常等疾病病理生理学机制的阐明。此外,在心脏周期中,心脏收缩或舒张引起的血液流动与发育中的心脏壁不断地相互作用,从而调节心脏发育的生物力学环境。因此,确定整个心脏壁的力学特性是十分重要的。Liu等[3]在健康的成年绵羊模型中研究了左心室和右心室的生物力学差异,观察到右心室在纵向上比左心室顺应性强,在周向上比左心室硬,这表明不同心室的力学特性对舒张期血液充盈的影响不同。未来的研究应该根据不同室壁的生物力学原理开发对应的特异性治疗方法。值得注意的是,心脏瓣膜是控制心脏血流的重要组成部分,其力学特征对心脏功能和心脏瓣膜疾病的发展都有重要影响。瓣膜的生物力学特征包括瓣膜的弹性和变形能力等。这些特征可以影响瓣膜的开合和阻力,进而影响心脏血液流动和血液循环。因此,揭示心脏瓣膜的生物力学特性具有重要意义。软组织的力学性能是由其复杂、不均匀的组成和结构所驱动的。在一项二尖瓣小叶组织研究中,Lin等[4]开发了一种具有高空间分辨率的无损测量技术,证明了厚度变化可引起二尖瓣异质性的存在。此外,Klyshnikov等[5]利用数值模拟方法分析了主动脉瓣瓣膜移动性对瓣膜瓣叶装置的应力-应变状态和几何形状的影响,从应力-应变状态分布的角度出发,该研究的仿真方法可以优化心脏瓣膜假体的小叶装置几何形状。由此可见,心脏结构和功能的生物力学特征是多方面因素的综合反映,评估和解析心脏的结构和形状有利于对心脏功能作用的阐明。1.2 血管结构和功能的生物力学特征血管包括心脏的血管和周围的血管系统,这些血管的生物力学特征对心脏功能有重要影响。血管结构取决于血管的类型,其功能可分为血流动力学功能和血管功能两部分。血管的弹性和柔韧性可以影响血管的阻力和血液流动速度,从而影响心脏负荷和排血量。此外,血管的厚度和硬度也会影响血压和血液流动的速度。从生物力学和力学生物学角度去解析血管的结构和功能是目前研究的重要方向。在心血管疾病相关药物的开发中,需要精确定位和分离冠状动脉以测量其动态血管张力变化。然而,如何记录离体血管的动态生物力学特性一直困扰着人们。Guo等[6]建立了一种冠状动脉环张力测量的标准化和程序化方案,通过多重肌电图系统监测冠状动脉环沿血管直径的收缩和扩张功能,确保了生理、病理和药物干预后血管张力记录的真实性。ECs和SMCs是血管结构和功能完整性所必需的主要细胞类型。ECs可调节血管张力和血管通透性,而SMCs负责维持正常的血管张力和结构的完整性。ECs可以分泌多种生物活性物质,如一氧化氮、血管紧张素等,对血管张力和血流动力学产生调节作用。ECs还能响应外部力学刺激,如流体剪切应力和压力变化等,从而改变ECs的形态和功能,影响血管壁的生物力学特征。SMCs可以收缩和松弛,调节血管的管径和血管阻力。除细胞因素外,血管的力学性质还受到血管壁中胶原和弹性蛋白的性质、空间排列等因素的影响。这是因为SMCs是高度可塑性的,它能响应细胞外基质(extracellular matrix,ECM)固有的力学信号。最近的一项研究显示,现有的微血管网络在力学刺激的加入或退出时表现出明显的重塑,并且排列程度出现相应的增加或减少。在这个过程中,纵向张力可导致纤维蛋白原纤维的纵向排列[7]。正是这些细胞和细胞外组分赋予了血管的黏弹性、各向异性等力学特性。总体而言,血管的结构和功能是复杂而多样的,涉及到多种生物力学特性的相互作用。研究血管的生物力学特征可以帮助人们更好地理解血管疾病的发生和发展,为疾病的治疗和预防提供科学依据。1.3 心血管疾病与生物力学关系的研究进展心血管疾病是一类常见的疾病,包括动脉粥样硬化、动脉瘤、心肌梗死等。这些疾病的发生和发展与心血管系统的生物力学特性密切相关。在心血管生物力学与力学生物学领域,近年来对心血管疾病与生物力学关系的研究取得了许多进展。1.3.1动脉粥样硬化的生物力学特征研究动脉粥样硬化是一种常见的动脉疾病,其特征为动脉壁上的脂质沉积和炎症反应,导致血管壁逐渐增厚和失去弹性。动脉粥样硬化的发生和发展是一个复杂的过程,涉及多个生物力学因素的相互作用。在动脉粥样硬化中,SMCs从收缩表型转变为合成表型,而影响SMCs表型变化的因素尚未完全阐明。Swiatlowska等[8]发现基质硬度(stiffness)和血流动力学压力(pressure)变化对SMCs表型具有重要影响。在动脉粥样硬化发展过程中,在高血压压力与基质顺应性(matrix compliance)共同的作用下,才会导致SMCs完整的表型转换[8]。提高对冠状动脉微结构力学的认识是开发动脉粥样硬化治疗工具和外科手术的基础。虽然对冠状动脉的被动双轴特性已有广泛的研究,但其区域差异以及组织微观结构与力学之间的关系尚未得到充分的表征。Pineda-Castillo等[9]利用双轴测试、偏振光成像和前室间动脉共聚焦显微镜来描述了猪前室间动脉近端、内侧和远端区域的被动双轴力学特性和微结构特性,为冠状动脉旁路移植术中吻合部位的选择和组织工程化血管移植物的设计提供指导。动脉粥样硬化斑块的破裂是引起患者死亡的主要原因;但目前尚不清楚这种异质的、高度胶原化的斑块组织的破裂机制,以及破裂发生与组织的纤维结构之间的关系。为了研究斑块的非均质结构和力学性质,Crielaard等[10]研制了力学成像管道(见图1)。通过多光子显微镜和数字图像相关分析,这条实验管道能够关联局部主要角度和胶原纤维取向的分散度、断裂行为和纤维斑块组织的应变情况。这为研究人员更好地了解、预测和预防动脉粥样硬化斑块破裂提供了帮助。图1 在拉伸测试过程中斑块组织样本中的破裂起始和扩展[10]除SMCs以外,最近的一项研究揭示了动脉粥样硬化中ECs表面力学性质的变化。Achner等通过基于原子力显微镜的纳米压痕技术发现内皮/皮层僵硬度的增加[11]。事实上,内皮功能障碍在血管硬化中的作用一直是一个重要的研究方向。ECs的可塑性在动脉粥样硬化的进展中起关键作用,暴露于扰动、振荡剪切应力区域的内皮细胞功能障碍是动脉粥样硬化的重要驱动因素[12]。由此可见,未来的研究如能进一步明确ECs和SMCs对血管硬化相关心血管疾病的贡献,则可能为恢复动脉粥样硬化中的血管内皮和平滑肌功能提供重要的靶点。1.3.2动脉瘤的生物力学特征研究主动脉SMCs在维持主动脉机械动态平衡方面起着至关重要的作用。动脉瘤主动脉的SMCs表型受到力学因素的影响,但是主动脉瘤中SMCs的骨架硬度的改变情况缺乏相关的数据。Petit等[13]以附着在不同基质硬度上的动脉瘤或健康SMCs为对象,通过原子力显微镜纳米压痕技术研究了细胞骨架硬度的区域差异性。该研究结果表明,动脉瘤SMCs和正常SMCs的平均硬度分布分别为16、12 kPa;然而,由于原子力显微镜纳米压痕硬度检测值的大量分散,两者之间的差异没有统计学意义。在腹主动脉瘤中,Qian等[14]采用基于超声波镊(ultrasonic tweezer)的微力学系统探究了SMCs的力学特性(见图2)。结果发现,动脉瘤病理发展中细胞骨架的变化改变了SMCs的细胞膜张力,从而调节了它们的力学特性。图2 基于超声波镊的微力学系统检测腹主动脉瘤中SMC的力学特性[14]a使用超声波激发微泡通过整合素结合到PDMS微柱阵列上的SMCs膜上的微力学系统示意图;b基于微柱的力学感受器和单细胞的超声波镊系统示意图二尖瓣主动脉瓣经常与升胸主动脉瘤相关,但目前尚不清楚瓣尖融合模式对生物力学和升胸主动脉瘤微观结构的影响。Xu等[15]通过双向拉伸试验对具有左右瓣尖融合以及右冠窦和无冠窦瓣尖融合的升胸主动脉瘤的力学行为进行了表征。此外,将材料模型与双轴实验数据进行拟合,得到模型参数,并使用组织学和质量分数分析来研究升胸主动脉瘤组织中弹性蛋白和胶原的基本微观结构和干重百分比。其结果发现,两种瓣尖融合模式对双轴加载表现出非线性和各向异性的力学响应;在弹性性能方面,左右瓣尖融合的弹性性能劣化得更严重。由此可见,心血管结构自身生物力学特性的改变可能对动脉瘤的进展有很大影响。然而,主动脉血流动力学对升主动脉瘤动脉壁特性的影响尚不清楚。在最近的一项研究中,McClarty等[16]探究了升主动脉瘤血流动力学与主动脉壁生物力学特性的关系。其结果发现,血管壁的剪切应力与动脉壁黏弹性滞后和分层强度的局部退化有关,血流动力学指标可以提供对主动脉壁完整性的深入了解。因此,从血管自身结构特性以及血流动力学两方面探究动脉瘤的形成机制具有重要意义。1.3.3 心肌梗死的生物力学特性研究心肌梗死是心肌细胞死亡的结果,通常是由于冠状动脉阻塞引起的。心肌梗死可导致心力衰竭并降低射血分数。生物力学研究发现,冠状动脉阻塞会导致心肌的缺血和再灌注损伤,这些过程涉及血流动力学和细胞力学等因素。在体循环过程中,心肌梗死后的血流动力学改变如何参与并诱导心力衰竭的病理进展尚未完全阐明。Wang等[17]采用冠状动脉结扎术建立了Wistar雄性大鼠心肌梗死模型。术后3、6周分别对左心室和外周动脉进行生理和血流动力学检测,计算左心室肌纤维应力,并进行外周血流动力学分析。结果表明,心肌梗死明显损害心功能和外周血流动力学,并改变相应的心壁和外周动脉壁的组织学特性,且随时间延长而恶化。综上所述,心功能障碍和血流动力学损害的相互作用加速了心梗引起的心衰的进展。急性心肌梗死后,左室游离壁发生重塑,包括细胞和细胞外成分的结构和性质的变化,使整个左室游离壁具有不同的模式。心脏的正常功能受到左心室的被动和主动生物力学行为的影响,进行性的心肌结构重构会对左心室的舒缩功能产生不利影响。在这个过程中,左心室游离壁形成纤维性瘢痕。尽管在心肌梗死背景下对左室游离壁被动重构的认识取得了重要进展,但左室游离壁主动属性的异质性重构及其与器官水平左心功能的关系仍未得到充分研究。Mendiola等[18]开发了心肌梗死的高保真有限元啮齿动物计算心脏模型,并通过仿真实验预测梗死区的胶原纤维跨膜方向对心脏功能的影响(见图3)。结果发现,收缩末期梗死区减少的及潜在的周向应变可用于推断梗死区的时变特性信息。这表明对局部被动和主动重构模式的详细描述可以补充和加强传统的左室解剖和功能测量。图3 代表性的啮齿动物心脏计算模型在心肌梗死后不同时间点的短轴和长轴截面显示收缩末期的周向、纵向和径向应变[18]上述研究表明,心脏疾病的发生和发展与心脏结构和功能的生物力学特征密切相关。任何影响心脏收缩和舒张过程的因素,都可能调控心脏的泵血功能和心脏负荷。这些因素可以影响心脏收缩的能力、心肌细胞的代谢和血流动力学参数,从而影响心脏的整体功能和疾病的进展。总之,通过深入研究这些生物力学特征,可以为心血管疾病的诊断和治疗提供重要的理论和实践基础。2 力学生物学在心血管细胞水平上的研究进展2.1 ECs水平上的研究进展细胞的凋亡、通讯和增殖异常等表型变化是心血管疾病的一个重要机制。通过力学生物学的方法,研究人员可以模拟不同的细胞应力环境,探索细胞生长和凋亡的调控机制,并研究细胞在受外界力学刺激作用下的反应。由于ECs直接暴露于血流中,因此ECs表型变化的力学生物学机制一直是心血管领域的研究热点之一。紊乱扰动的血流改变了ECs的形态和细胞骨架,调节了它们的细胞内生化信号和基因表达,从而导致血管ECs表型和功能的改变。在颈动脉结扎产生的动脉粥样硬化模型中,Quan等[24]研究发现,在人和小鼠动脉和ECs的振荡剪切应力暴露区,内皮MST1的磷酸化被明显抑制。该研究揭示,抑制MST1-Cx43轴是振荡剪切应力诱导的内皮功能障碍和动脉粥样硬化的一个基本驱动因素,为治疗动脉粥样硬化提供了一个新的治疗目标。另外一项研究从表观修饰角度探究了剪切应力对ECs功能的影响[20]。Qu等[20]研究显示,层流切应力通过增加内皮细胞CX40的表达而诱导TET1s的表达,从而保护血管内皮屏障,而TET1s过表达则可能是治疗振荡剪切应力诱导的动脉粥样硬化的关键步骤。另一方面,病理性基质硬度可使ECs 获得间充质特征[21]。动脉生成(arteriogenesis)在维持足够的组织血供方面起着关键作用,并且与动脉闭塞性疾病的良好预后相关,但涉及动脉生成的因素尚不完全清楚。Zhang等[22]研究发现,在动脉阻塞性疾病中,KANK4将 VEGFR2偶联到 TALIN-1,从而导致VEGFR2活化和EC增殖的增加。除参与疾病病理进展以外,作用于ECs的化学和力学信号可协同地调节血管生成;然而血管生成的力学生物学机制尚不清楚。在伤口血管生成过程中,Yuge等[23]发现血流驱动的腔内压力负荷抑制了血流上游部位受损血管的伸长,而下游受损血管则主动伸长。分子生物学机制研究发现,F-BAR 蛋白的 TOCA 家族是ECs迁移和力敏感细胞拉伸调节伤口血管生成所需的关键肌动蛋白调节蛋白。上述研究表明,由生物力学所触发的细胞信号转导对血管功能的调节具有重要作用。2.2 SMCs水平上的研究进展最近的一项研究发现,内皮祖细胞(endothelial progenitor cells, EPCs)参与血管修复并调节SMCs的特性,与EPCs对损伤后新内膜的形成有关。通过建立损伤和脂质诱导的动脉粥样硬化模型,Mause等发现EPCs与SMCs在CXCL12-CXCR4轴的作用下共同参与血管表型的调控和血管平衡的维持[24]。冠状动脉旁路移植术通过在阻塞的动脉周围建立血管通路来恢复心脏的正常血流。既往的研究已经证明力学刺激在静脉移植术后的新生内膜增生中起着关键作用;然而,在该过程中关于机械力调控SMCs表型变化的研究相对较少。Tang[25]等将单轴循环拉伸(15%,1Hz),以及单轴循环拉伸(5%,1 Hz)或静态条件应用于培养的SMCs,以探究由拉伸力引起SMC表型变化的力学生物学机制。结合代谢组学分析、RNA测序以及等离子体共振分析等技术方法,作者发现MFN2过表达或药物抑制PFK1能够抑制15%牵张诱导的SMCs增殖、迁移并减轻移植静脉的新生内膜增生。另外,SMCs可以响应细胞外基质(extracellular matrix, ECM)固有的力学信号而呈现出高度的可塑性。Wang等[26]探究了聚丙烯酰胺底物上由可变弹性模量所致SMCs表型变化的力学生物学机制。该研究发现,基质硬度通过DDR1-DNMT1力学信号转导轴加剧了SMCs的促炎症反应(见图4),这对于工程人造血管移植物和血管网络的优化具有潜在的意义。图4 DDR1-DNMT1机械转导轴调控SMCs促炎症表型转换示意图[26]Liu等[27]使用不规则排列与周向排列的血管移植物来控制三维生长中的细胞几何形状,证明了DNMT1与细胞几何形状、血管收缩性密切相关。自噬是一种维持细胞稳态的适应机制,其失调与多种心血管疾病有关。静脉移植术后,血流动力学因素在新生内膜增生中起关键作用,但其机制尚不清楚。2022年的一项研究探索了动脉循环拉伸对静脉SMCs自噬的影响及其在静脉移植后新内膜形成中的作用。Chen等[28]在静脉SMCs上加载 FX5000拉伸系统的(10%,1.25 Hz )循环拉伸,结果显示这样的力学参数加载在体外阻断了细胞自噬流,调节了内膜增生,而该过程是由p62/nrf2/slc7a11信号通路介导。2.3心血管其他细胞水平上的研究进展心血管环境的硬度在衰老和疾病过程中发生变化,并导致疾病的发生和发展。心脏成纤维细胞和心肌细胞是心血管系统中的重要细胞,它们也在心脏病和心血管疾病中扮演重要角色。研究表明,心脏成纤维细胞能够感知力学环境的变化,从而分泌细胞因子参与心脏损伤或修复。Ebrahimighaei等发现YAP 介导的 RUNX2激活对心脏成纤维细胞具有促增殖作用,以响应增加的 ECM 硬度变化[29]。在另一项YAP的相关研究中发现,YAP 协同 TGFβ1信号促进人心肌纤维化三维模型中肌成纤维细胞活化和基质硬化[30]。然而,在生理硬度的工程化心脏基质中,Ploeg等[31]研究显示,培养的成纤维细胞降低了肌成纤维细胞标志物基因表达,而成纤维细胞对拉伸或 TGFβ1的反应维持不变,表明这种新型心脏基质结构为研究心脏成纤维细胞功能和肌成纤维细胞分化提供了良好的生理模型。在心肌细胞中,纤维连接蛋白的存在与纤维化区域增强的硬度相结合,将强烈影响心肌细胞的行为,并影响疾病的进展[32]。Lin等[33]使用选择性HDAC6抑制剂处理的成年小鼠心室肌细胞表现出增加的肌原纤维硬度。而HDAC6在心肌细胞中的过度表达导致肌原纤维僵硬度降低,表明靶向 HDAC6可操纵心脏的弹性特性以治疗基质硬度改变相关的心脏疾病。有趣的是,Pioner等[34]评估了刚度调节心肌细胞功能的另一种机制,即在缺乏肌营养不良蛋白的 hiPSC-CM 中,较硬的底物不能改变动作电位和钙瞬变。这些发现强调了肌营养不良蛋白缺陷型心肌细胞不能调节其钙稳态以响应细胞外间质硬度的增加。此外,细胞牵引力对于功能性心肌细胞的分化和发育很重要。鉴于刚度感应机制是由整合素相关蛋白受体所介导,Rashid等[35]通过DNA 张力探针发现,心肌细胞成熟与整合素传递的牵张力有关。综上所述,心血管中的不同类型细胞通过各种信号通路感知了周围的力学环境变化,从而介导心血管的病理生理过程。阐明细胞的力学生物学机制,有利于揭示生物力学作用下的表型改变。3 研究方法与技术方面的进展心血管生物力学和力学生物学的研究方法不断发展,主要包括计算模拟在体内实验或体外实验中的应用进展。体内实验是研究者通过对动物模型或人体进行实验,获取心血管系统的生物力学特性和疾病机制的信息。这种方法可以直接观察心血管系统的生理和病理变化,并且具有较高的生物学可靠性。体内实验的缺点在于它可能有一定的伦理问题,而且成本高昂。体外实验是指利用细胞、组织或器官进行实验,以研究心血管系统的生物力学特性和疾病机制。这种方法可以更加精细地研究心血管系统的某些方面,例如力学信号感受及转导、血管内皮功能等。此外,由于其可重复性较强,体外实验成为了心血管生物力学研究中重要的一环。总体而言,涉及体内和体外实验的模拟相关研究技术和方法的创新都是为了了解组织结构、健康状况和力学性能之间的相关性。本文从组织和器官两个角度总结2022年心血管生物力学与力学生物学相关的研究方法与技术进展。在心血管组织的力学特性研究中,利用生物力学等方法,可以研究心血管组织的力学特性,包括组织的弹性模量、硬度、黏性等参数。这对于改进材料模型和开发组织工程支架至关重要。由于基于结构的材料模型缺乏实验获得的结构参数,Pukaluk等[36]对人腹主动脉的内层进行了等双轴加载和多光子显微镜观察。结果发现,胶原纤维和弹性蛋白纤维的波浪度参数都显示出作为组织强度指标的潜力(见图5)。这些数据解决了目前材料模型中的不足,并在主动脉中膜建立了多尺度机制。图5 在所有测试样品的双轴拉伸期间,每个拉伸步骤的胶原蛋白(绿色)和弹性纤维方向(红色)的归一化相对强度[36]动脉粥样硬化治疗的标准方法是通过搭桥手术进行血管置换;然而,自体血管来源并不总是可行的。因此,组织工程血管正在成为一种潜在的替代来源,基于细胞治疗和/或促血管生成的组织工程策略可以在一定程度上改善心脏功能。但缺乏能够承受持续变形性和适应性机械力学特性的适当心肌组织材料,严重影响了心肌壁完整性、心脏的收缩-舒张周期和再生能力。最近,Bosch-Rué等[37]通过同轴挤压方法在内层和外层使用高浓度的胶原蛋白来开发组织工程血管样结构,目的是将ECs和SMCs分别包裹在两个不同的层面中。其结果显示,两种细胞均显示出良好的活性;而20 mg/mL的胶原组织工程血管具有足够的力学特性,能够承受相当于动脉剪切应力的生理流速[37]。为了支持心肌壁结构的机械性能,调控心肌功能的电传导特性并维持心脏功能的完整性,Zheng等[38]基于改性透明质酸、明胶和Fe3+,通过离子相互作用和化学共价性,开发了一种具有良好处理性能的单一“一体式”原位双交联型导电水凝胶。该水凝胶不仅提供了自我修复和适应心肌收缩-舒张周期的机械性能,而且同时向纤维岛和正常组织传输电信号(见图6)。更为重要的是,该双交联导电水凝胶介导的协同肽和细胞疗法使受损心肌的结构和功能得到部分恢复和再生,从而显示出巨大的临床转化潜力。图6 具有多功能性的双交联导电水凝胶用于心肌修复示意图[38]再生疗法是治疗严重受损心肌的一种新的策略;而功能性心肌细胞的保有率是获得良好治疗效果的关键。因此,构建和移植一个类似于人类心肌的工程化成熟的三维心脏组织是至关重要的。Nakazato等[39]构建了一个旋转壁血管生物反应器,用于生长大量的功能性心脏构筑物,以恢复受损大鼠心脏的功能。具体而言,研究人员将诱导的人多能干细胞来源的心肌细胞种植在聚乳酸-羟基乙酸共聚物纤维片上,以构建三维心脏组织,并在旋转壁血管生物反应器中培养,随后将组织移植到心肌梗死裸鼠模型中,然后进行心功能评价。其结果显示,生物反应器处理组的细胞存活率、收缩特性和电学特性显著改善,并可见成熟的心肌细胞。移植后4周,处理组的组织存活率和左心室射血分数显著改善。由此可见,生物反应器中的动态培养可以为心肌的性能提供良好的培养环境,为治疗心肌细胞损失所致的心力衰竭提供了一种功能性心肌生成手段。此外,开发水凝胶补片来修复受损的心肌,也是弥补心肌再生能力受限的关键方法。尽管基于水凝胶的贴片在心肌梗死中已经显示出良好的治疗效果,但机械、电和生物的协同作用与心脏电传导和舒张期-收缩期功能之间的关系尚未完全阐明。Yu等[40]通过动态共价/非共价交联方式开发了一种可注射的机械-电耦合水凝胶贴片,适合于细胞封装和微创植入心包腔。其结果显示,心包固定和水凝胶的自黏性能使该贴片能够与周期性变形的心肌高度顺应地进行界面耦合。不仅如此,自适应的水凝胶贴片能抑制心室扩张,同时协助心脏的搏动功能(见图7)。图7 心包内注射机械-电耦合水凝胶贴片用于心肌修复示意图[40]除上述方法外,3D工程心血管组织在替换受损结构方面显示出巨大的前景。具体地说,组织工程血管移植物具有取代生物和合成移植物的潜力。Mayoral等通过3D打印、混合熔融沉积建模、静电纺丝技术和干细胞接种制作了一种组织工程化体外血管贴片(见图8),用于评价3D生物技术在再生医学中是否具有广泛的应用潜力[41]。该研究获取的参数是基于一名2个月大的患有主动脉弓发育不良患者的医学图像;其结果发现,患者特异性贴片显示足够的血流动力学特征、力学性能、生存力和功能。因此,这种创新的3D生物技术具有广泛应用于再生医学和预防心脏病的潜力。此外,该研究也为基于组织工程技术的个性化治疗提供了理论依据。图8 基于3D 打印和静电纺丝技术的组织工程化血管贴片制备[41]由此可见,利用生物力学相关方法,可以评估不同种类的组织工程学技术的效果,并进一步优化组织工程学的设计和构建。利用力学生物学方法则可以评估不同材料的力学特性以及材料与细胞间的相互作用,以选择合适的生物材料和细胞类型来构建功能性的心血管组织。总之,心血管力学生物学在组织水平上的应用有助于深入了解心血管组织的力学特性和动态行为,为心血管疾病的研究和治疗提供了理论和实验基础。在器官水平上,心脏是一个高耗能的结构,由4个形态和功能上不同的腔室组成。心脏功能的执行依赖于其内部力学特性。从整体上评价力学特性改变所致的心脏病理生理反应,对于研究心脏疾病的发病机制以及新型心脏病诊治手段的开发都有重要意义。心脏移植术一直是终末期心脏病患者的最佳选择,但是由于供体源的匮乏和手术成本的高昂,心脏移植术并非是所有患者都适合和能够接受的治疗方式。随着科技的不断发展,心脏辅助装置提供了一种心脏移植的替代治疗方法。左心室辅助装置已成为治疗严重心力衰竭越来越重要的方法。Amstad等[42]基于一项回顾性分析,探讨了心室辅助装置患者在心脏康复过程中运动能力和生活质量的变化。其结果发现,心脏辅助装置植入患者的运动能力和生活质量在统计学和临床上呈现显著的改善。在最近的一项离体猪心脏研究中,Dort等[43]描述了一种能够提高离体跳动猪心脏泵血功能的新型室内膜泵。通过研究血流动力学参数、动脉和冠状静脉血氧含量变化情况发现,室内膜泵在生理条件下提高了机械效率,因为心功能的显著提高仅导致耗氧量的适度增加。此外,室内膜泵在急性泵衰竭的情况下能迅速恢复心脏功能,这表明心脏辅助装置在一定程度上能够提高心脏的使用效率。在一项临床研究中,Krauss等[44]发现心室辅助装置的存在能够改善儿科心脏移植患者的预后,为围手术期患者带来了帮助。当然,还需要更多的临床和实验室研究来验证上述这些发现。人工心脏等替代治疗方法也逐渐成为了心脏病患者的治疗选择。作为一种机械循环支持装置,人工心脏可用于双心室性心衰患者。尽管人工心脏于2004年在美国被批准用于临床移植,但大多数中心不采用人工心脏作为双心室衰竭患者的标准治疗策略。因此,关于全人工心脏移植的研究相对较少。Aeson全人工心脏已经开发用于双心室衰竭死亡风险患者。为评估该装置的治疗效果,Peronino等[45]在1年多的时间里评估了9个植入Aeson全人工心脏受试者的炎症状态,主要包括植入前后白细胞计数、炎性细胞因子测定和外周血单核细胞变化等指标。结果发现,心脏植入后的12个月内,受试者外周血中没有明显的炎症信号。另外一项研究证实了该人工心脏不会引起溶血,具有良好的血液相容性[46]。除Aeson人工心脏外,美国克利夫兰医学中心的连续流动全人工心脏也得到了广泛研究。据报道,连续流动全人工心脏采用重新设计的右叶轮和马达。然而,其脉动血流的评价尚未在体内进行测试。Kuroda等[47]以小牛为对象,进行了为期30天的实验研究。通过脉动研究发现,泵的最大流量和最小流量与基线相比都有显著变化,而泵的平均流量没有变化。连续流动全人工心脏显示了正弦泵调速脉动循环的可行性。总之,心血管生物力学在器官水平上的应用可以帮助我们深入了解心血管系统的力学特性,为心血管疾病的研究和治疗提供了理论和实验基础。由此可见,基于计算机程序进行的心血管系统建模和仿真的计算模拟在未来可能会得到广泛应用。这种方法可以定量分析心血管系统的生物力学特性,并预测器官和组织在不同疾病状态下的行为。例如,心肌缺血的模拟可以帮助研究心肌缺血时的血流动力学特性,预测心肌缺血范围和程度,优化诊断和治疗方案。此外,心肌力学性能的体内评估对于患者特异性诊断和心脏疾病的预后至关重要,涉及心肌重塑,包括心肌梗死和心力衰竭。目前的方法使用耗时的逆有限元方法,包括重建心脏几何结构和划分网格、施加测量载荷和进行计算代价高昂的迭代有限元模拟。因此,亟需寻找更多的体内计算模拟方法。Babaei等[48]构建了一种机器学习模型,根据所选定的几何、结构和血流动力学指标,可以准确地预测被动心肌特性,从而绕过了心脏逆有限元方法中通常需要的详尽步骤。该项研究弥补了舒张末期压力-容积关系和内在组织级特性之间的差距。相对于传统的心功能指标,这些属性提供了增量信息,改善了心脏疾病的临床评估和预后。总体而言,计算模拟在心血管生物力学领域的应用越来越广泛,研究者们利用多种软件和方法,例如如有限元法、多物理场耦合模拟、计算流体动力学,进行心血管系统的建模和仿真。这些方法和工具不仅可以研究心血管系统的生物力学特性和疾病机制,还可以指导临床诊断和治疗。随着心血管生物力学领域的发展,相关的研究技术不断更新和完善,包括成像技术、材料测试技术和仿真软件等。成像技术方面,包括超声成像、磁共振成像、计算机断层扫描等技术,可以非侵入性地获取心血管系统的结构和功能信息,如血流速度、动脉壁厚度、血管直径等。近年来,随着技术的发展,例如超高频超声成像和功能性磁共振成像等技术的应用,使得心血管成像技术更加精细和灵敏。在材料测试技术方面,原子力显微镜、拉伸试验和压缩试验等可以对心血管材料的力学特性进行测量和分析。这些技术的应用,有助于研究心血管组织的本质力学特性,并为材料模型的建立提供数据支持。有限元软件、多物理场耦合等仿真软件可以建立心血管系统的数学模型,并通过计算机仿真对其进行分析和优化。这些软件的应用,可以预测和模拟心血管系统的结构和功能,包括血流动力学、血管壁应力和应变分布等,为疾病机制的探究和新型医疗器械的设计提供基础。4 结论与展望2022年,心血管生物力学和力学生物学的研究取得了许多重要的进展。在血管壁结构和功能的生物力学特征方面,研究已经深入探索了血管壁中不同成分的作用,以及它们对血管弹性和稳定性的贡献。在心血管疾病与生物力学关系的研究中,人们已经发现了许多与心血管疾病相关的生物力学特性,如动脉瘤形成和动脉粥样硬化等。在心血管细胞水平上的应用方面,力学生物学已经被广泛应用于细胞形态学、细胞黏附和迁移等方面的研究。在心血管组织和器官水平上的应用方面,力学生物学已经在心肌梗死、动脉瘤和动脉粥样硬化等方面取得了显著的进展。在研究方法方面,成像技术、材料测试技术和仿真软件的发展为心血管生物力学和力学生物学的研究提供了有力的支持。然而,心血管生物力学和力学生物学的研究仍面临着许多挑战和问题:① 数据获取难度是一个重要的问题。心血管系统具有高度复杂的结构和功能,而获取准确的生物力学数据是非常具有挑战性的。例如,测量血管壁的厚度、硬度和应力分布需要使用高端的成像技术和仪器,并且需要在实验中处理一些复杂的因素,如流动和应力变化等;② 模型精度不足是另一个需要解决的问题。尽管现代计算机模拟技术已经取得了很大的进展,但是仍然存在模型过于简单、假设过多和参数选择不准确等问题。这些问题可能会导致模拟结果与实际情况之间的差异,从而影响研究的可靠性和有效性;③ 个性化医疗也是一个需要解决的挑战。随着心血管生物力学和力学生物学研究的深入,未来的研究方向包括但不限于:① 多尺度建模:当前的研究主要集中在细胞、组织和器官水平;但是在未来,研究将会更加关注不同尺度之间的相互作用。例如,如何在心脏水平上对细胞和组织力学特性进行建模,以及如何将这些模型应用于疾病预测和治疗方案的优化等问题,都是未来研究的重点。此外,未来还将加强多尺度建模与数据挖掘技术的结合,利用大数据分析和机器学习算法,将不同尺度的数据整合起来,以更好地理解心血管系统的生物力学特性和疾病机制;② 个性化医疗:由于每个人的心血管系统结构和功能都有所不同,因此在未来,研究将更加关注个性化医疗的实现。这意味着,基于个体的医疗方案将会更加精确和有效,包括个性化的预防措施、诊断方法和治疗方案等。为了实现个性化医疗,需要采用多种技术,包括医学影像学、基因组学、蛋白质组学、计算机模拟等,以建立个体化的心血管系统模型,并将其应用于治疗方案的优化和预测;③ 数据科学:未来的研究将更加注重数据科学的应用,例如,如何从大量的生物医学数据中提取有用的信息,以辅助心血管生物力学和力学生物学的研究。总之,心血管生物力学和力学生物学的研究将为心血管医学领域的发展提供重要的支撑和推动,未来有望在心血管疾病的预防和治疗中发挥重要作用。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制