贯叶金丝桃

仪器信息网贯叶金丝桃专题为您整合贯叶金丝桃相关的最新文章,在贯叶金丝桃专题,您不仅可以免费浏览贯叶金丝桃的资讯, 同时您还可以浏览贯叶金丝桃的相关资料、解决方案,参与社区贯叶金丝桃话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

贯叶金丝桃相关的耗材

  • 天津铂金丝铂金丝
    名称:铂金丝(铂金Pt)元素原子量:195.1熔点:1772℃,沸点:3827℃,使用温度最高不可超过1200℃,不能在明火上直接加热。密度:21.46克/厘米3。铂金的特性:(1)铂金属于银白色金属,质柔软,有延展性。晶体结构为面心立方体。(2)具有较高的化学稳定性和良好的耐腐蚀性。,除溶于王水和熔融的碱外,还溶于盐酸和过氧化氢、盐酸和高氯酸的混合物中。不与一般强酸、碱和其他试剂作用。(3)化合价为+2、+4和+6价。(4)铂金丝焰色反应用,效果极好,没有杂质干扰焰色。另外用于氨催化氧化制硝酸的实验使用,氨和空气的混合物接触红热铂丝即可发生反应,生成二氧化氮红棕色气体,铂丝保持红热。用途:1. 用于合成氨氧化制硝酸2.用于制造珠宝饰物、导线、实验室容器、热电偶、耐腐蚀设备、牙科材料等,铂粉可用作催化剂3.电气仪表、化学工业及制造精密合金等用。4.用于制造精密合金5.用作催化剂、氧化剂和气体吸收剂6.用于化工,制药,水泥,科研院校实验室,做高温试验载体用。用于1400度以上实验使用。具有耐高温,寿命长特点。制作工艺真空磁悬浮熔炼,浇铸成锭,热机械处理和精密机械加工
  • 天津铂金丝
    天津铂金丝
  • 天津铂金丝铂金丝 ya10163 0.5mm*10cm
    名称:铂金丝(铂金Pt)元素原子量:195.1熔点:1772℃,沸点:3827℃,使用温度最高不可超过1200℃,不能在明火上直接加热。密度:21.46克/厘米3。铂金的特性:(1)铂金属于银白色金属,质柔软,有延展性。晶体结构为面心立方体。(2)具有较高的化学稳定性和良好的耐腐蚀性。,除溶于王水和熔融的碱外,还溶于盐酸和过氧化氢、盐酸和高氯酸的混合物中。不与一般强酸、碱和其他试剂作用。(3)化合价为+2、+4和+6价。(4)铂金丝焰色反应用,效果极好,没有杂质干扰焰色。另外用于氨催化氧化制硝酸的实验使用,氨和空气的混合物接触红热铂丝即可发生反应,生成二氧化氮红棕色气体,铂丝保持红热。用途:1. 用于合成氨氧化制硝酸2.用于制造珠宝饰物、导线、实验室容器、热电偶、耐腐蚀设备、牙科材料等,铂粉可用作催化剂3.电气仪表、化学工业及制造精密合金等用。4.用于制造精密合金5.用作催化剂、氧化剂和气体吸收剂6.用于化工,制药,水泥,科研院校实验室,做高温试验载体用。用于1400度以上实验使用。具有耐高温,寿命长特点。制作工艺真空磁悬浮熔炼,浇铸成锭,热机械处理和精密机械加工

贯叶金丝桃相关的仪器

  • 产品名称:铂金丝规格:0.0185mm起计量单位:克执行标准:GBn67-83应用行业:冶金钢铁、石油化工、医药化工、陶瓷电镀、科研机构、大专院校、耐火材料、水泥建材、地质矿产、商检系统 及各个科研单位
    留言咨询
  • 黄金丝是一种具有优异电气、导热、机械性能以及稳定性极好的内引线材料,主要作为半导体关键的封装材料(键合金丝、框架、塑料封、焊接球、焊锡球、高密度封装基板、导电胶等)。黄金丝在LED封装中起到一个导线连接的作用,将芯片表面电极和支架连接起来,当导通电流时,电流通过金线进入芯片,使芯片发光。黄金丝具有电导率大、耐腐蚀、韧性好等优点,广泛应用于集成电路,相比较其他材质而言,其较好优点就是抗氧化性,这是金线广泛应用于封装的主要原因。
    留言咨询
  • 基本介绍FRM-1402 超声波金丝楔焊机根据摩擦原理来实现不同介质的表面焊接,是一种物理变化过程.首先金丝的首端必须经过处理形成球形(本机采用负电子高压成球),并且对焊接的金属表面先进行预热处理 接着金丝球在时间和压力的共同作用下,在金属焊接表面产生朔性变形,使两种介质达到可靠的接触,并通过超声波摩擦振动,两种金属原子之间在原子亲和力的作用下形成金属键,实现了金丝引线的焊接. 性能特点主要应用于大功率发光二极管(LED )、激光管(激光)、中小型功率二极管、三极管、集成电路、传感器和一些特殊半导体器件的内引线焊接。 技术参数使用电源 ★ 220VAC±10%(AC110V可订制),50Hz,300W,要求可靠接地。消耗功率 ★ **300W。适用金丝线径 ★ 20~50μm(0.8~2 mil)。焊接温度 ★ 60~400℃。超声功率 ★ 四通道0~3W分两档连续可调。焊接时间 ★ 二通道0~100ms。焊接压力 ★ 二通道35~180g**焊接时间 ★ 0.4s/线。一焊至二焊**自动跨度 ★ 双向均不小于4mm。尾丝长度 ★ 0~2mm。金球尺寸 ★ 线径的2~4倍可任意设定。夹具移动范围 ★ Φ25mm。视觉系统 ★ 体视显微镜(15倍、30倍两档)和图像监视器可选。外形尺寸 ★ 700(长)×460(宽)×550(高)mm。
    留言咨询

贯叶金丝桃相关的试剂

贯叶金丝桃相关的方案

贯叶金丝桃相关的论坛

  • 【“仪”起享奥运】中药材鉴别之贯叶金丝桃

    [size=20px][color=#93c6bc][b]鉴别[/b][/color][/size][size=16px][color=#e2a4a4]|[/color][/size] [font=宋体][/font] [font=宋体][/font] [font=宋体][/font] [font=宋体][/font] [font=宋体][/font] [font=宋体][/font] [font=宋体][/font] [font=宋体](1)本品叶表面观:叶上表皮细胞多角形,细胞壁连珠状增厚;叶下表皮细胞多角形,垂周壁波状弯曲,略呈连珠状增厚,气孔平轴式或[color=var(--weui-LINK)]不定式[i][/i][/color]。黑色腺点由一团分泌细胞组成,细胞内容物红色;半透明腺点为分泌囊结构,由1层上皮细胞包围圆形腔隙构成,内含油状物。[/font] [font=宋体](2)取本品粉末0.1g,加甲醇10ml,超声处理10分钟,滤过,滤液蒸干,残渣加甲醇1ml使溶解,作为供试品溶液。另取贯叶金丝桃对照药材0.1g,同法制成对照药材溶液。照薄层色谱法(通则0502)试验,吸取上述两种溶液各2[/font][font=宋体]μ[/font][font=宋体]l[/font][font=宋体],分别点于同一硅胶G薄层板上,以乙酸乙酯-甲酸(25:1)为展开剂,展开,取出,立即置紫外光灯(365nm)下检视。供试品色谱中,在与对照药材色谱相应的位置上,显相同颜色的荧光斑点。[/font] [font=宋体](3)取[color=var(--weui-LINK)]金丝桃苷[i][/i][/color]对照品、芦丁对照品,分别加甲醇制成每1ml各含0.5mg的溶液,作为对照品溶液。照薄层色谱法(通则0502)试验,吸取〔鉴别〕(2)项下的供试品溶液和上述对照品溶液各2[/font][font=宋体]μ[/font][font=宋体]l[/font][font=宋体],分别点于同一硅胶G薄层板上,以乙酸乙酯-甲酸-水(8:1:1)为展开剂,展开,取出,晾干,喷以5%三氯化铝乙醇溶液,置紫外光灯(365nm)下检视。供试品色谱中,在与对照品色谱相应的位置上,显相同颜色的荧光斑点。[/font] [font=宋体][/font] [font=宋体][/font] [font=宋体][/font] [font=宋体][/font] [size=20px][color=#93c6bc][b]检查[/b][/color][/size][size=16px][color=#e2a4a4]|[/color][/size] [font=宋体][/font] [font=宋体][/font] [b][font=宋体][/font][/b] [font=宋体][/font] [font=宋体][/font] [font=宋体][b]水分[/b] 不得过12.0%(通则0832第二法)。[/font] [b][font=宋体]【含量测定】[/font][/b][font=宋体] 照高效[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]法(通则0512)测定。[/font] [b][font=宋体]色谱条件与系统适用性试验[/font][/b][font=宋体] [/font][font=宋体]以[color=var(--weui-LINK)]十八烷基硅烷键合硅胶[i][/i][/color]为填充剂;以乙腈-0.1%磷酸溶液(16:84)为[color=var(--weui-LINK)]流动相[i][/i][/color];检测波长为360nm。理论板数按金丝桃苷峰计算应不低于3000。[/font] [b][font=宋体]对照品溶液的制备[/font][/b][font=宋体] [/font][font=宋体]取金丝桃苷对照品适量,精密称定,加甲醇制成每1ml含32[/font][font=宋体]μ[/font][font=宋体]g[/font][font=宋体]的溶液,即得。[/font] [b][font=宋体]供试品溶液的制备[/font][/b][font=宋体] [/font][font=宋体]取本品粉末(过三号筛)约0.4g,精密称定,置具塞锥形瓶中,精密加入60%乙醇50ml,称定重量,加热回流1小时,放冷,再称定重量,用60%乙醇补足减失的重量,摇匀,滤过,取续滤液,即得。[/font] [b][font=宋体]测定法[/font][/b][font=宋体] [/font][font=宋体]分别精密吸取对照品溶液与供试品溶液各10[/font][font=宋体]μ[/font][font=宋体]l[/font][font=宋体],注入[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱仪[/color][/url],测定,即得。[/font] [font=宋体]本品按干燥品计算,含金丝桃苷(C[sub]21[/sub]H[sub]20[/sub]O[sub]12[/sub])不得少于0.10%。 [/font] [font=宋体] [/font]

  • 贯叶金丝桃药材中黄酮类成分的含量测定

    [b][font='Times New Roman']1[/font][font=宋体]溶液的制备[/font][/b][align=left][b][font=宋体]对照品溶液的制备[/font][font='Times New Roman'] [/font][/b][/align][align=left][font=宋体]精密称取芦丁对照品[/font][font='Times New Roman']12.75mg[/font][font=宋体],置于[/font][font='Times New Roman']50mL[/font][font=宋体]量瓶中,加[/font][font='Times New Roman']80%[/font][font=宋体]乙醇超声溶解,并稀释至刻度,摇匀,即得浓度为[/font][font='Times New Roman']255.0 [/font][font=Symbol]m[/font][font='Times New Roman']g[/font][font='Times New Roman']/mL[/font][font=宋体]的芦丁对照品贮备溶液。精密吸取[/font][font='Times New Roman']2.5mL[/font][font=宋体]芦丁对照品贮备溶液,置于[/font][font='Times New Roman']50mL[/font][font=宋体]量瓶中,加[/font][font='Times New Roman']80%[/font][font=宋体]乙醇稀释至刻度,摇匀,即得浓度为[/font][font='Times New Roman']12.75 [/font][font=Symbol]m[/font][font='Times New Roman']g[/font][font='Times New Roman']/mL[/font][font=宋体]的芦丁对照品溶液。[/font][/align][align=left][b][font=宋体]供试品溶液的制备[/font][/b][font='Times New Roman'] [/font][/align][align=left][font=宋体]取贯叶金丝桃药材,粉碎,过三号筛。精密称取贯叶金丝桃药材粉末[/font][font='Times New Roman']25mg[/font][font=宋体],置于[/font][font='Times New Roman']10mL[/font][font=宋体]量瓶中,加[/font][font='Times New Roman']80%[/font][font=宋体]乙醇适量([/font][font='Times New Roman']5mL[/font][font=宋体]),超声提取[/font][font='Times New Roman']1h[/font][font=宋体],放冷,[/font][font='Times New Roman']80%[/font][font=宋体]乙醇稀释至刻度,摇匀,[/font][font='Times New Roman']0.45 [/font][font=Symbol]m[/font][font='Times New Roman']m[/font][font=宋体]微孔滤膜滤过,取续滤液,即得药材供试品溶液。[/font][/align][align=left][font=宋体]称取贯叶连翘提取物粉末[/font][font='Times New Roman']5mg[/font][font=宋体]于[/font][font='Times New Roman']10mL[/font][font=宋体]量瓶中,加[/font][font='Times New Roman']80%[/font][font=宋体]乙醇适量([/font][font='Times New Roman']5mL[/font][font=宋体]),超声溶解,用[/font][font='Times New Roman']80%[/font][font=宋体]乙醇稀释至刻线,摇匀,静置。[/font][font='Times New Roman']0.45 [/font][font=Symbol]m[/font][font='Times New Roman']m[/font][font=宋体]微孔滤膜滤过,取续滤液,即得提取物供试品溶液。[/font][/align][b][font='Times New Roman']2 [/font][font=宋体]显色方法选择[/font][/b][align=left][font=宋体]对黄酮类物质的含量测定多采用紫外[/font][font='Times New Roman']-[/font][font=宋体]可见分光光度法,常用芦丁为对照品,经[/font][font='Times New Roman']NaNO[sub]2[/sub]- A1(NO) [sub]3[/sub]-NaOH[/font][font=宋体]显色后用比色法测定,也有用[/font][font='Times New Roman']AlCl[sub]3[/sub]-[/font][font=宋体]醋酸缓冲液[/font][font='Times New Roman'](pH4.5)[/font][font=宋体]显色测定的。本研究分别从方法的稳定性、准确性方面比较了两种测定方法,结果显示亚硝酸钠法测定值偏高,考虑到贯叶金丝桃药材中含有鞣质、绿原酸、咖啡酸等具有邻二酚羟基结构的非黄酮类成分物质,会发生假阳性反应,因此选择三氯化铝显色法。[/font][/align][b][font='Times New Roman']3 [/font][font=宋体]含量测定方法[/font][/b][align=left][font=宋体]分别精密量取供试品溶液及对照品溶液各[/font][font='Times New Roman']1.5 mL[/font][font=宋体],置于[/font][font='Times New Roman']10mL[/font][font=宋体]量瓶中,各精密加[/font][font='Times New Roman']0.1mol/L[/font][font=宋体]三氯化铝溶液[/font][font='Times New Roman']1.0mL[/font][font=宋体],使混匀,再分别加入[/font][font='Times New Roman']80%[/font][font=宋体]乙醇稀释至刻度,摇匀,室温放置[/font][font='Times New Roman']20min[/font][font=宋体],以试剂为空白,按紫外[/font][font='Times New Roman']-[/font][font=宋体]可见分光光度法规定进行检查,在[/font][font='Times New Roman']410nm[/font][font=宋体]波长处测定吸收度,以标准曲线法计算,即得。[/font][/align][align=left][font=宋体][b][font='Times New Roman']4 [/font][font=宋体]含量测定[/font][/b][font=宋体]制备含量测定药材供试品溶液。按含量测定方法项下操作,在[/font][font='Times New Roman']410 nm[/font][font=宋体]波长处测定吸收度值,采用标准曲线法按质量百分比计算样品中黄酮类成分的含量,结果见表[/font][font='Times New Roman']1[/font][font=宋体]。[/font][font=宋体]由表[/font][font='Times New Roman']1[/font][font=宋体]可知,[/font][font='Times New Roman']10[/font][font=宋体]批不同产地的贯叶金丝桃药材中黄酮类成分的含量测定结果范围为[/font][font='Times New Roman']2.91%[/font][font=Symbol]~[/font][font='Times New Roman']4.17 %[/font][font=宋体]。[/font][/font][/align][align=center][b][font='Times New Roman']Tab. 1Contents of [/font][font='Times New Roman']flavonoids[/font][font='Times New Roman'] in [/font][i][font='Times New Roman']Hypericumperforatum [/font][/i][font='Times New Roman']fromdifferent sources[/font][/b][/align] [table][tr][td] [align=center][font='Times New Roman'][color=black]No.[/color][/font][/align] [/td][td] [align=center][font='Times New Roman'][color=black]Sources[/color][/font][/align] [/td][td] [align=center][font='Times New Roman'][color=black]Contents[/color][/font][font=宋体][color=black]([/color][/font][font='Times New Roman'][color=black]%[/color][/font][font=宋体][color=black])[/color][/font][/align] [/td][/tr][tr][td] [align=center][font='Times New Roman'][color=black]S1[/color][/font][/align] [/td][td] [align=center][font='Times New Roman'][color=black]Sichuan[/color][/font][/align] [/td][td] [align=center][font='Times New Roman'][color=black]3.33[/color][/font][/align] [/td][/tr][tr][td] [align=center][font='Times New Roman'][color=black]S2[/color][/font][/align] [/td][td] [align=center][font='Times New Roman'][color=black]Sichuan[/color][/font][/align] [/td][td] [align=center][font='Times New Roman'][color=black]2.98[/color][/font][/align] [/td][/tr][tr][td] [align=center][font='Times New Roman'][color=black]S3[/color][/font][/align] [/td][td] [align=center][font='Times New Roman'][color=black]Gansu[/color][/font][/align] [/td][td] [align=center][font='Times New Roman'][color=black]3.2[/color][/font][/align] [/td][/tr][tr][td] [align=center][font='Times New Roman'][color=black]S4[/color][/font][/align] [/td][td] [align=center][font='Times New Roman'][color=black]Gansu[/color][/font][/align] [/td][td] [align=center][font='Times New Roman'][color=black]3.47[/color][/font][/align] [/td][/tr][tr][td] [align=center][font='Times New Roman'][color=black]S5[/color][/font][/align] [/td][td] [align=center][font='Times New Roman'][color=black]Jiangsu[/color][/font][/align] [/td][td] [align=center][font='Times New Roman'][color=black]2.91[/color][/font][/align] [/td][/tr][tr][td] [align=center][font='Times New Roman'][color=black]S6[/color][/font][/align] [/td][td] [align=center][font='Times New Roman'][color=black]Jiangsu[/color][/font][/align] [/td][td] [align=center][font='Times New Roman'][color=black]3.54[/color][/font][/align] [/td][/tr][tr][td] [align=center][font='Times New Roman'][color=black]S7[/color][/font][/align] [/td][td] [align=center][font='Times New Roman'][color=black]Jiangsu[/color][/font][/align] [/td][td] [align=center][font='Times New Roman'][color=black]3.42[/color][/font][/align] [/td][/tr][tr][td] [align=center][font='Times New Roman'][color=black]S8[/color][/font][/align] [/td][td] [align=center][font='Times New Roman'][color=black]Jiangsu[/color][/font][/align] [/td][td] [align=center][font='Times New Roman'][color=black]3.01[/color][/font][/align] [/td][/tr][tr][td] [align=center][font='Times New Roman'][color=black]S9[/color][/font][/align] [/td][td] [align=center][font='Times New Roman'][color=black]Shanxi[/color][/font][/align] [/td][td] [align=center][font='Times New Roman'][color=black]2.95[/color][/font][/align] [/td][/tr][tr][td] [align=center][font='Times New Roman'][color=black]S10[/color][/font][/align] [/td][td] [align=center][font='Times New Roman'][color=black]Shanxi[/color][/font][/align] [/td][td] [align=center][font='Times New Roman'][color=black]4.17[/color][/font][/align] [/td][/tr][/table]

贯叶金丝桃相关的资料

贯叶金丝桃相关的资讯

  • 中国科学家Nature Genetics上发表金丝猴属物种高海拔适应遗传机制研究成果
    中国科学家Nature Genetics上发表金丝猴属物种高海拔适应遗传机制研究成果金丝猴属(Rhinopithecus)属于灵长目,猴科,疣猴亚科,包括5个近缘物种:滇金丝猴(R.bieti),怒江金丝猴(R.strykeri ),川金丝猴(R. roxellana)、黔金丝猴(R. brelichia)和越南金丝猴(R. avunculus)。所有物种均被列为红色物种名录濒危物种。除了重要保护生物学价值,金丝猴属物种不仅发展出以树叶为食的特化食性,而且占据了从低海拔到高海拔的生境类型(800-4500m)。黔金丝猴和越南金丝猴分别生活在中国贵州和越南北部的低地山区,滇金丝猴,川金丝猴和怒江金丝猴生活在西藏和中国中部不同的高海拔区域。尤其是滇金丝猴,目前仅存于我国滇藏交界的高寒森林中,海拔高度都在4000米左右, 是除人类外世界海拔分布最高的灵长类动物。金丝猴属物种为研究动物对高海拔环境适应性进化遗传机制提供了很好的动物模型。近年来基因组学,特别是进化基因组学的发展,为系统和整体的揭示自然选择的遗传机制提供了前所未有的机会。云南大学于黎研究员课题组,中国科学院昆明动物研究所张亚平院士课题组, 中国科学院昆明动物研究所陈勇斌课题组、芝加哥大学吴仲义教授课题组、和北京基因组所强强联合,成立联合攻关团队,对金丝猴属物种高海拔环境适应遗传机制开展研究。首先,利用二代Ilumina HiSeq2000测序平台,对一只滇金丝猴进行denovo测序,并与其他哺乳动物的比较基因组分析显示:滇金丝猴中显着扩张基因家族中的基因显着富集在DNA修复和氧化磷酸化过程。此外,对滇金丝猴和猕猴多个组织进行RNA测序和比较转录组分析显示:能量代谢相关组织(心脏和肌肉)中高表达基因富集在与氧化磷酸化和心脏肌肉收缩相关通路。接下来,对同属的黔金丝猴,怒江金丝猴和越南金丝猴各一个个体进行全基因组重测序,并结合已经发表的川金丝猴denovo基因组,通过比较基因组学分析,在三个高海拔金丝猴物种中(滇金丝猴,怒江金丝猴和川金丝猴)发现6个基因中的8个共有氨基酸替换,与肺功能,DNA修复和血管生成相关。对其中与DNA修复相关的CDT1的紫外辐照实验表明突变型相对于野生型具有更强的稳定性。推测突变有助于金丝猴在高海拔环境中对紫外线的抵抗。对与血管生成相关的RNASE4基因检测发现突变型在诱导HUVEC细胞生成管状结构方面具有更高活性。推测突变可能增强RNASE4的血管生成能力,有助于金丝猴适应高海拔环境。最后,对滇金丝猴一个群体(20个个体)和川金丝猴三个群体(26个个体)进行基因组扫描,发现了群体之间的重叠和各群体特异的受选择基因,这些基因与DNA修复,心脏和血管发育,缺氧反应,能量代谢和血管生成相关。本研究基于多层次研究,包括种上和群体的基因组序列分析,转录组和功能实验,发现与金丝猴物种适应高海拔环境相关的遗传机制。以非人灵长类为研究模型,为高海拔适应这一复杂性状提供一个新的和更全面的揭示。
  • 关注有礼:康塔仪器粉末冶金陶瓷展与您相约
    2016年4月27-29日,美国康塔仪器公司将携其全自动比表面积及孔径分析仪NOVAtouch和图像法粒度粒形分析仪、真密度仪等产品亮相“第九届上海国际粉末冶金、硬质合金与先进陶瓷展览会”。欢迎大家莅临我们展位,共同探讨粉末冶金、陶瓷粉末表面改性处理以及多孔陶瓷微观结构表征分析等应用。展位号:A215,凡关注“康塔仪器”微信公众号的观众,可现场领取精美礼品一份。 表征多孔结构的主要参数是:孔隙度、平均孔径、最大孔径、孔径分布、孔形和比表面,这恰是全自动比表面和孔径分析仪的主要功能。NOVAtouch系列全自动比表面积及孔径分析仪作为康塔仪器专利产品,是高质量高性能气体吸附分析系统的代表,共有8个型号,采用彩色触摸屏,完全自动化、操作简单,因为可以不使用氦气,运行成本低;一次可以分析多个样品,因而测量效率高,可充分满足科研或质量控制实验室的需要。 除材质外,材料的多孔结构参数对材料的力学性能和各种使用性能有决定性的影响。由于孔隙是由粉末颗粒堆积、压紧、烧结形成的;因此,原料粉末的物理和化学性能,尤其是粉末颗粒的大小、分布和形状,是决定多孔结构乃至最终使用性能的主要因素。多孔结构参数和某些使用性能(如渗透率等)可以用压汞法等来测定,上图为美国康塔仪器公司的全自动压汞仪,可以同时测定两个样品。 烧结多孔材料的力学性能不仅随孔隙度、孔径的增大而下降,还对孔形非常敏感。孔隙率不变时,孔径小的材料透过性小,但因颗粒间接触点多,故强度大。过滤精度即阻截能力是指透过多孔体的流体中的最大粒子尺寸,一般与最大孔径值有关。孔径分布是多孔结构均匀性的判据。对于过滤材料要求在有足够强度的前提下,尽可能增大透过性与过滤精度的比值。根据这些原理,发展出用分级的球形粉末为原料,制成均匀的多孔结构,用粉末轧制法制造多孔的薄带和焊接薄壁管,发展出粗孔层与细孔层复合的双层多孔材料。康塔Porometer 3G孔径分析仪代表了先进的气体渗透法孔径分析技术:是基于电脑的强大软件控制,拥有卓越性能的紧凑型台式分析测量仪。它提供四种型号,适用于不同的压力(即孔径)和流速范围,以实现材料特性和仪器性能(灵敏度、准确度、再现性)的极佳匹配。精确测定施加于样品上的压力对孔隙分布分析至关重要,而这正是Porometer 3G孔径分析仪的优势所在。 多孔材料的孔径、强度等性能在很大程度上取决于所选用粉末的平均粒度、粒度分布、颗粒形状等;为了制出预定性能的材料,通常要对粉末进行预处理,如退火、粒度分级、球化和球选以及加入各种添加剂(造孔剂、润滑剂、增塑剂)等。粒度粒形分析仪,则可以对这个过程进行监控把关。康塔仪器所提供的欧奇奥图像法粒度粒形分析仪500NANOXY,干法湿法两用,具备颗粒计数功能,可提供50个以上的粒径/形貌分析参数,无疑是满足此类应用的优选产品。
  • 中国科大等发明新型离子膜实现近似无摩擦的离子传导
    近日,中国科学技术大学徐铜文、杨正金团队与合作者设计了一类新型离子膜,首次实现膜内近似无摩擦的离子传导,有望应用于能源转化、大规模储能以及分布式发电等领域。相关研究成果论文4月26日发表于《自然》杂志。  离子膜是液流电池、燃料电池等电化学器件或装备的关键部件,传统离子膜普遍存在吸水后容易发生溶胀变形、结构疏松等问题,特别是长时间使用后,可能会发生结构老化、性能下降。中国科大研究团队经过多年研究,创新性地设计了一种具有贯通亚纳米离子通道的微孔框架离子膜材料,同时在通道中进行了化学修饰,不仅解决了传统离子膜材料中离子通道老化和吸水溶胀问题,还兼具高选择性和高传导率,离子传输更加迅速,在膜内实现了近似无摩擦传导。使用该膜组装的液流电池,充放电电流密度可以达到每平方厘米500毫安,是当前普遍报道值的5倍以上。  审稿人认为,这种离子膜在液流电池中展示出了非凡的性能,与迄今为止使用的最好的膜相比,此类离子膜的性能显著提高。研究人员表示,该成果涉及的微孔框架离子膜的设计理念,还可拓展至其他功能化框架聚合物膜,并以此为基础进行高性能膜材料的定向设计。  中国科大研发的这种国产离子膜有望大幅提升液流电池等储能装备的效率,在我国太阳能、风能等新能源的储能领域得到广泛应用。目前,项目孵化的特种离子膜产品已申请中国发明专利,研究人员正加紧实现该型离子膜的量产。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制