固相环境基质

仪器信息网固相环境基质专题为您整合固相环境基质相关的最新文章,在固相环境基质专题,您不仅可以免费浏览固相环境基质的资讯, 同时您还可以浏览固相环境基质的相关资料、解决方案,参与社区固相环境基质话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

固相环境基质相关的耗材

  • WGLabs硅胶基质固相萃取柱
    固相萃取柱——硅胶质填料 详情固相萃取柱是从层析柱发展而来的一种用于萃取、分离、浓缩的样品前处理装置。主要应用于各种食品、农畜产品、环境样品以及生物样品中目标化合物的样品前处理。固相萃取技术已经被广泛地使用在许多国标(GB/T)以及行业分析标准中。 特点 WGlabs柱管采用医疗级别PE管防止萃取溶出物污染样品 筛板采用蔬水高分子聚乙烯材质加工而成具有有很强的耐腐蚀性,能保证使用重力法时的流速为1-2滴/秒 多种填料,颗粒均匀,流量稳定 产品规格多样化,满足客户不同需求,所有产品均支持个性化定制订购信息 产品产品描述规格只/盒 订货号C18WGLabs-C18(封端)是最常用的硅胶基质反相SPE小柱, 通过疏水性作用萃取非极性化合物,其选择性很广。该柱对大多数有机化合物有保留,是一种通用型固相萃取柱。碳含量: 17% 粒径:40-75μm 表面积:300 m2 /g平均孔径:60&angst 。 200mg/3mL50WGC183200500mg/3mL50WGC183500500mg/6mL 30WGC1865001g/6mL30WGC18610001g/12mL20WGC181210002g/12mL20WGC18122000100g瓶WGC18100C8WGLabs-C8 属于中等疏水性,在吸附性上与C18键合相类似,主要靠非极性碳键相互作用。碳含量 9 % 粒径: 40-75μm 表面积:280 m2 /g平均孔径:60&angst 。200mg/3mL50WGC83200500mg/3mL50WGC83500500mg/6mL30WGC865001g/6mL30WGC8610001000g瓶WGC81000SilicaWGLabs-Silica是以未键合硅胶为吸附剂的极性萃取柱。呈弱酸性,有很强的极性。 Silica用于分离非极性,弱极性化合物,油脂等,特别是结构相似的上述物质。用于弱阳离子化合物的萃取。粒径: 40-75μm 表面积:480 m2 /g平均孔径:60&angst 。 500mg/3mL50WGSIL3500500mg/6mL30WGSIL 65001g/6mL30WGSIL610001g/12mL20WGSIL1210002g/12mL20WGSIL122000100g瓶WGSIL100PSAWGLabs-PSA (乙二胺基-N-丙基)的选择性与氨基类似,同时可作为正相或反相小柱,对中等极性或极性范围较广的多种化合物处于不同体系中均 具有良好的选择性。碳含量 8 % 粒径: 50-75μm 表面积:500 m2 /g平均孔径:60&angst 。200mg/3mL50WGPSA 3200500mg/3mL50WGPSA 3500500mg/6mL30WGPSA 65001g/6mL30WGPSA 610001000gWGPSA 1000100mg/1mL 100WGPRS1100NH2WGLabs-NH2(氨基)是以硅胶为基质的氨丙基萃取柱。它具有极性固定相和弱阴离子交换剂,可通过弱阴离子交换(水溶液)或极性吸附(非极性有机溶液)达到保留作用,因此具有双重作用。碳含量 4.5 % 粒径: 40-75μm 表面积:200 m2 /g平均孔径:60&angst 。200mg/3mL50WGNH3200500mg/3mL50WGNH3500500mg/6mL30WGNH65001g/6mL30WGNH610002g/12mL20WGNH122000100g瓶WGNH100PRSWGLabs-PRS 固相萃取柱是强阳离子交换小柱,官能团为丙基磺酸。PRS适用于弱阳子如吡啶类化合物,有很高的回收率。碳含量 4.5 % 粒径: 40-75μm 表面积:310m2 /g平均孔径:60&angst 。200mg/3mL50WGPRS 3200500mg/3mL50WGPRS 3500500mg/6mL30WGPRS 65001g/6mL30WGPRS610001000g瓶WGPRS 1000
  • 水环境分析用固相小柱 5010-27001
    产品特点:水环境分析用固相小柱特长* 优异的性价比 * AquaTrace 、AQUA Loader对应* 优异的批次间重现性、极性农药的回收率 * 高通液性、可以少量溶媒溶出用途* 自来水法(农药、界面活性剂、霉味)* JIS试验法对应化合物(农药、PCB、环境激素)* 有机物去除(1、4-二氧杂环己烷、无机分析用的精制)InertSep RP-1系列订货信息:品 名尺 寸包装单位(根)Cat.No.InertSep RP-130mg/1mL1005010-2700160mg/3mL1005010-27002250mg/6mL305010-27000InertSep mini RP-1230mg505010-272005005010-27220
  • WondaPak QuEChERS基质分散固相萃取
    WondaPak QuEChERS基质分散固相萃取QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) 作为一种样品前处理方法,最初由美国农业部在2003 年提出,目前已应用于多种样品前处理,尤其是农药残留前处理方面。相比于传统方法,更简便、更经济、更快速。该方法寻找一些高效的提取试剂和净化处理试剂,通过简单的离心操作,将目标组分与样品基质(如脂肪酸,色素,脂类等)分离。净化试剂填装在离心管中,根据填装量不同,有两种规格:2ml 和 15ml,含有硫酸镁( 促进水相和有机相分层) 和PSA 吸附剂(去除糖类和脂肪酸等)。同时,根据样品基质的需求,还可以选择含有C18( 去除脂类干扰) 或石墨化碳( 去除色素) 的净化试剂。特点:●使用简便,处理速度快,能达到4 倍的加速,可参考 AOAC、EN 等相关标准。●整个处理过程不需要固相萃取装置或玻璃器皿等,仅需要离心机、移液枪。●溶剂消耗量更少,能节约6-9 倍溶剂量,无含氯废弃物,相比于常规的固相萃取小柱成本更低。QuEChERS方法的操作步骤WondaPak QuEChERS产品列表适合于NY/T 1380-2007蔬菜、水果中51种农药多残留的测定 气相色谱-质谱法货号描 述包装5010-050020醋酸钠提取盐试剂包 6g MgSO4, 1.5g NaOAc, 50ml 离心管50包 & 50支/p5010-050021醋酸钠提取盐试剂包 6g MgSO4,1.5g NaOAc50包试剂包/p5010-01502615ml PSA/C18净化管 100mg PSA, 100mg C18, 300mg MgSO450/p适合于美国AOAC 2007.01方法货号描 述包装5010-050020醋酸钠提取盐试剂包 6g MgSO4, 1.5g NaOAc, 50ml 离心管50包 & 50支/p5010-0020312ml PSA 净化管 50mg PSA, 150mg MgSO4100/p5010-01503115ml PSA净化管 400mg PSA, 1200mg MgSO450/p5010-0020332ml PSA/C18 净化管 50mg PSA, 50mg C18, 150mg MgSO4100/p5010-01503315ml PSA/C18 净化管 400mg PSA, 400mg C18, 1200mg MgSO450/p5010-0150402ml PSA/C18/GC-e净化管 50mg PSA, 50mg C18, 50mg GC-e, 150mg MgSO4100/p5010-01504115ml PSA/C18/GC-e净化管 400mg PSA, 400mg C18, 400mg GC-e, 1200mg MgSO450/p适合于欧盟EN 15662方法货号描 述包装5010-050010柠檬酸盐提取盐试剂包 4g MgSO4,1g NaCl,0.5g柠檬酸氢二钠,1g柠檬酸钠50包 & 50支/p5010-050011柠檬酸盐提取盐试剂包 4g MgSO4,1g NaCl,0.5g柠檬酸氢二钠,1g柠檬酸钠50包试剂包/p5010-0020302ml PSA 净化管 25mg PSA, 150mg MgSO4100/p5010-01502215ml PSA净化管 150mg PSA, 900mg MgSO450/p5010-01502015ml PSA/GC-e 净化管 150mg PSA, 15mg GC-e, 900mg MgSO450/p5010-01502415ml PSA/GC-e 净化管 150mg PSA, 45mg GC-e, 900mg MgSO450/p5010-0020322ml PSA/C18净化管 25mg PSA, 25mg C18, 150mg MgSO4100/p5010-01503215ml PSA/C18净化管 150mg PSA, 150mg C18, 900mg MgSO450/p

固相环境基质相关的仪器

  • SUPEC 5220在线固相萃取液质联用仪集成在线SPE与LC-MS/MS联用技术,可以有效解决传统离线SPE方法前处理繁琐、效率低等问题,大幅度提升实验室水质样品的检测效率和实验结果的准确性;系统采用在线固相萃取大体积分离技术,增大样品通量,实现对复杂基质中目标物的富集与分离,以及灵敏度要求很高环境下痕量物质的全自动检测功能,显著降低人力、时间成本。产品概述产品介绍直接进样,快速分析无需前处理,直接上样,自动化程度高,在短时间内快速得出分析数据。在线离线,灵活进样双模在线切换,保留LC-MS/MS完整功能,可实现常规进样和大体积进样双模转换,智能高效,灵活多变,为水质中违禁药物、抗生素等痕量物质分析提供更精准监测手段。大体积进样,灵敏度高满足1 µ L-10 mL不同的进样体积,高效的样品利用,结合LC-MS/MS的优越性能,实现ng/L级别的检出限和定量限。抵御污染,精准监测双正交E-Spray离子源、Step Scan 3Q离子传输等抗污染设计,从容应对复杂基质,精准监测污水中的违禁药物!双柱交替,高效分离在线双柱交替运行设计,无需反复平衡,有效节约单个样品分析时间,数据输出更高效、更多、更快! 应用领域SUPEC 5220可有效应对生活污水中毒.品、环境水体中农药、药物和个人护理品(PPCPs)等多项新污染物检测项目,可广泛应用于公安司法、环境监测、食品安全及教学研究等诸多行业。
    留言咨询
  • SK-1000A 环境空气样品采集箱产品简介排放到环境空气中的汞主要是总气态汞, Hg0 (TGM, 包括少量的活性汞和颗粒汞)。元素汞水溶性在进行光化学氧化沉积到生态系统之前,可在全球范围内循环。为了做出适当的政策决定和战略规划,需要提供环境空气中汞的相关数据。日本制定出了一种环境空气汞的测量方法,并将其作为有害空气污染物测量方法手册的一部分予以公布。该方法包括金汞齐捕集、热解吸和冷蒸气原子吸收光谱检测(CVAAS)。测量TGM的经济实惠的方法之一是使用NIC坚固而简单的环境空气样品采集工具采集样品,然后用CVAAS 检测器进行测量。该套采样箱中的金汞齐捕集器,也称为收集管(N-160 or N-65),用于进行环境空气采样。NIC 金汞齐收集管的优势高度可靠和耐用超过40年的品牌专有技术每次测量后的高选择性和可重复使用的特性金与汞具有很好的结合力,是消除其他干扰,选择性收集汞和预富集汞的完美材料。通过加热,齐化后的汞被释放用于测量,汞收集管可以重复使用,用于下一次采样,易于管理,并作为回收产品提供环境效益。方便&安全NIC 汞收集管采用带有塞子的独立玻璃容器包装,避免交叉污染,并为现场采样提供安全运输。气态总汞的测量(热解吸和冷蒸气原子光谱)金汞齐管与WA-5A 或 5F 气态汞分析仪配合使用效果很好。WA-5系列是一款台式汞分析仪, 设计用于测量来自环境空气或气态基质样品(如天然气, 页岩气, 液化石油气/液化天然气等) 的总气态汞(TGM)。WA-5采用热解吸技术从金汞齐收集管中释放捕集到的TGM, 通过第二个金汞齐再次进行汞纯化, 解吸后通过 CVAAS (WA-5A) 或 CVAFS (WA-5F) 检测器进行测量。
    留言咨询
  • 固液相萃取装置 400-860-5168转6216
    固液相萃取装置萃取方式:负压萃取环境温湿度:设计温度37℃,Min 40%RH,Max90%RH样品数:1-12;控制系统:PLC 操作界面:彩色7寸触摸屏,中英文切换废液槽:内置;进样器:12位萃取柱:标配12SPE柱体积(ml)“1,3,6,12;通道数:12真空泵:1台控制电源:220V包装尺寸:430*420*260mm 重量:10KG 外表颜色:乳白色;交货时提供:合格证,说明书,操作视频,铭牌,电源线等产品原理在过去的二十多年中,固相萃取作为化学分离和纯化的一个强有力工具出现了。从痕量样品的前处理到工业规模的化学分离,吸附剂萃取在制药、精细化工、生物医学、食品分析、有机合成、环境和其他领域起着越来越重要的作用。固相萃取是一个包括液相和固相的物理萃取过程。在固相萃取中,固相对分离物的吸附力比溶解分离物的溶剂更大。当样品溶液通过吸附剂床时,分离物浓缩在其表面,其他样品成分通过吸附剂床 通过只吸附分离物而不吸附其他样品成分的吸附剂,可以得到高纯度和浓缩的分离物。保留和洗脱在固相萃取中通常的方法是将固体吸附剂装在一个针筒状柱子里,使样品溶液通过吸附剂床,样品中的化合物或通过吸附剂或保留在吸附剂上(依靠吸附剂对溶剂的相对吸附)。"保留"是一种存在于吸附剂和分离物分子间吸引的现象,造成当样品溶液通过吸附剂床时,分离物在吸附剂上不移动。保留是三个因素的作用:分离物、溶剂和吸附剂。所以,一个给定的分离物的保留行为在不同溶剂和吸附剂存在下是变化的。"洗脱"是一种保留在吸附剂上的分离物从吸附剂上去除的过程,这通过加入一种对分离物的吸引比吸附剂更强的溶剂来完成。容量和选择性吸附剂的容量是在好条件下,单位吸附剂的量能够保留一个强保留分离物的总量。不同键合硅胶吸附剂的容量变化范围很大。选择性是吸附剂区别分离物和其他样品基质化合物的能力,也就是说,保留分离物去除其他样品化合物。一个高选择性吸附剂是从样品基质中仅保留分离物的吸附剂。吸附剂选择性是三个参数的作用:分离物的化学结构、吸附剂的性质和样品基质的组成。
    留言咨询

固相环境基质相关的试剂

固相环境基质相关的方案

固相环境基质相关的论坛

  • 基质效应 顶空固相微萃取

    采用顶空固相微萃取分析固体物质中的6种挥发性香气成分,因为该类物质中都含有这6种香气成分,不知道拿什么去做标准曲线而考察基质效应。请教过几个老师说了两种方法,1:低温旋蒸去除样品中的挥发性成分,拿去除挥发性成分后的剩余固体作为空白基质,加入不同浓度的表品做标准曲线。2:用含有这6种香气成分的样品直接添加不同浓度的标品和内标,根据内标算出分析物的含量,然后以峰面积之差做Y值,浓度之差作为X,看此时是否成线性关系。我觉得两个都有缺陷,第一个方法旋蒸去除挥发性成分会影响到顶空部分的压强,成分吸附间的竞争也没有了,所以觉得有缺陷。不知第二种方法哪里有缺陷,请各位老师给予指教,谢谢。

  • 【讨论】介绍-基质分散固相萃取技术

    [size=3][b]基质分散固相萃取技术[/b]  MATRIX SOLID-PHASE DISPERSION(MSPD)是将样品(固态或者液态)直接与适合反相键合硅胶(如C18、C8等)一起混合和研磨(现在已经扩大到其他材料了,如硅藻土等),使样品本均匀分数于固体相颗粒表面制成半固体装柱,然后采用类似SPE的操作进行洗涤和洗脱。其优点如下:依靠填料颗粒的机械剪切力和C18等填料的去杂作用,是样品匀浆和提取在同一过程中完成,不需要溶剂和除杂步骤 C18等能够破坏脂质的细胞膜,使细胞成分释放并在填料中重新分布 样品基质和待测组分均匀分布在填料中,样品的各种成分按照相似相溶规律在填料表面的键合相中依极性高低进行溶解和分布 组分的保留与填料、样品基质和溶剂有关。 MSPD样品处理速度快,溶剂用量少,同时样品量也少,因此要求检测方法(仪器)具有较高的灵敏度。[/size]

  • 固相萃取柱没有特别说明基质是什么的时候,默认基质是硅胶吗?

    对于固相萃取柱不太了解,想问下大家,标准中只说明使用的是填料为苯磺酸强阳离子交换吸附剂,规格为500mg/3ml,这样的话应该选那种固相萃取柱呀?是以硅胶为基质的还是有机聚合物基质的固相萃取柱?谢谢原文是这样的,大家帮忙判断一下吧,谢谢。Pipet 2.0 mL of this solution into a freshly conditioned solid phase extraction column containing benzenesulfonic acid strong cation-exchange packing with a sorbent-mass to column volume ratio of 500 mg per 3 mL, or equivalent, and elute into a 5-mL volumetric flask.

固相环境基质相关的资料

固相环境基质相关的资讯

  • 全自动固相萃取ASPE和凝胶净化GPC在环境和食品分析中的应用技术交流会通知
    第 一 轮 通 知 莱伯泰科公司计划11月10-13日在上海举办全自动固相萃取ASPE和凝胶净化GPC在环境和食品分析中的应用技术交流会&rdquo 。届时将邀请国内外专家到场与用户进行技术交流。 美国Horizon公司的SPE-DEX4790全自动萃取系统是专为美国国家环保署(US EPA)对液体样品进行固相萃取的所有应用需要而设计的,具有快速、**、操作简单和安全实用等特点,其应用范围包括:饮用水、废水、固体废物、食品、爆炸物、杀虫剂和制药工业排出物。 该系统能够提高化学实验工作者的效率,同时全自动操作可以忽略不同实验人员操作的差别,从而保证结果的一致性。Horizon同时提供独特的溶剂干燥、溶剂蒸发、溶剂收集等技术,应用于环境、工业化学、石化、制药、食品和饮料工业领域。 凝胶渗析色谱净化是US EPA 和 US FDA指定的样品净化标准方法。LabTech全自动凝胶净化系统,通过凝胶柱全自动分离出目标分析物质,去除复杂基体中大分子物质,保留预测小分子组份,改善分析灵敏度,有效延长色谱柱使用寿命,减少基质对分析仪器的影响,提高仪器分析效率,并且避免了干扰物的污染,广泛适用于食品、农业、环保、疾控、质检、高校等领域的有机样品前处理。 会议安排内容如下: 1) 介绍先进的全自动固相萃取(ASPE)和浓缩(DryVap)技术; 2) 介绍在欧美的主要应用领域; 3) 我国新饮用水/地表水标准的具体应用; 4) 热点话题: 如何处理简单轻松测定水中的总油? 如何简单容易处理污水? 5) ASPE和Dryvap仪器现场演示和常见问题. 6)凝胶净化GPC在有机样品前处理中的应用: 食品、蔬菜、肉类、粮食、茶叶等农药残留的提取 牛奶中黄曲霉素等的提取 多环芳烃,多氯联苯的提取 7) 用户交流讨论 主讲人: Robert Johnson博士, 美国Horizon公司首席研究员,ASPE发明人 李 琳,化学硕士,莱伯泰科GPC产品经理 交流会时间: 2008年11月10-14日 上午: 9:30&mdash 11:30 午餐:11:30&mdash 12:30(免费) 下午:13:00&mdash 16:30 交流会地点:上海,具体地址待定(第二轮通知确定具体地点) 参加人员:所有莱伯泰科ASPE、DryVap、GPC的用户; 有兴趣了解ASPE、DryVap、GPC技术的分析工作者; 有兴趣探讨有机样品前处理技术的分析工作者; 想了解美国EPA-ASPE方法的分析工作者。 请有兴趣的单位和个人尽快发送e-mail或填写回执报名参加,免会务费,其他费用如食宿差旅费自理。 联系人: 上海:杜 婧 Email: dujing@labtechgroup.com Tel: 020 64412819/20 Fax: 020 64412915 北京: 张丽莉 Email: llzhang@labtechgroup.com Tel: 010 64973254-615 Fax: 010 64974268 回 执我单位(单位名称)___________________________________将参加贵单位举办的&ldquo 全自动固相萃取ASPE和凝胶净化GPC在环境和食品分析中的应用技术交流会&rdquo 。 参加人员(姓名、人数)_______________________________ 联系电话:_______________________________ Email: _______________________________ ___________________________________________________________________
  • 科学家提出“固态溶剂法”制备混合基质膜
    南京工业大学教授金万勤团队在分离膜领域取得新进展,提出“固态溶剂法”制备出超薄超高掺杂量的混合基质膜。9月22日,相关研究成果在线发表在《科学》上。  据介绍,膜技术具有分离能耗低等优势,但其发展普遍受限于渗透性和选择性的制约关系,将高性能无机填料掺杂在聚合物中制备混合基质膜,有望突破这一瓶颈,成为近年来国际研究前沿。然而,面临填料团聚和界面缺陷的重大挑战,混合基质膜仍未大规模应用。金万勤团队是国际上较早开展混合基质膜研究的团队之一,长期以来一直致力于解决这两大难题。  “我们提出将聚合物作为固态溶剂,溶解填料的前驱体并将其涂覆在多孔载体表面形成超薄膜层,而后将聚合物中的前驱体原位转化成填料。”论文第一作者、南京工业大学博士陈桂宁介绍,区别于传统的“合成填料—分散填料—填料与聚合物混合”制备混合基质膜的复杂工艺,该方法仅需在聚合物中溶解高含量前驱体,即可实现高含量填料的均匀超薄化掺杂,同时以填料为主体相的新型混合基质膜结构有利于填料之间形成贯穿孔道,为分子提供超快传输通道。  实验表明,“固态溶剂法”制备的混合基质膜厚度仅为50纳米,填料掺杂量高达80%以上,实现了膜渗透性和选择性数量级的提升。基于超薄膜层和填充的贯穿筛分孔道,该混合基质膜表现出类无机膜(纯填充相)的优异分离性能,氢气/二氧化碳分离性能高出现有聚合物膜和混合基质膜1~2个数量级。  “‘固态溶剂法’主要依靠聚合物膜的加工制备技术,因此易于放大制备成超薄的平板型和中空纤维型混合基质膜。”论文的共同通讯作者、南京工业大学教授刘公平说,该方法适用于不同类型的填料和聚合物基质,表现出良好的规模化制备前景与膜材料普适性。  “研究首次从实验上证明了超薄超高掺杂混合基质膜的可行性,也为发展基于纳米材料的超薄分离膜及功能涂层提供了新思路和理论技术基础。”论文通讯作者金万勤介绍,该混合基质膜在碳捕集等过程极具应用潜力,有望助力我国双碳战略目标的实施。在国家重点研发项目的资助下,团队正在开展混合基质膜的放大制备与应用技术研究。
  • 西北师范大学王雪梅:黄河上游复杂基质中新污染物的分离、分析及环境行为研究
    新污染物治理列为全面推进美丽中国建设的重要内容,是当前生态环境工作新热点。新污染物种类繁多、性质各异,且在环境中存在的浓度往往极低,这要求检测技术必须具备更高的灵敏度、准确性和选择性。近年来,随着科技的快速发展,新污染物的分析检测技术取得了显著进步。为了更好的展现新污染物分析检测技术的创新成果,以及了解目前行业发展的现状,仪器信息网特别策划《环境新污染物分析检测技术与行业进展》主题约稿活动,集中展示新污染物检测领域的最新成果,以下为西北师范大学王雪梅老师回稿。黄河上游复杂基质中新污染物的分离、分析及环境行为研究王雪梅E-mail: wangxuemei@nwnu.edu.cn高原交汇区水资源安全与水环境保护教育部重点实验室甘肃省生物电化学与环境分析重点实验室西北师范大学化学化工学院随着工业化进程的快速发展和产业结构的调整,化学品数量急剧增长:近两年增加了4400万种,导致越来越多的新污染物(Emerging contaminants, ECs)在环境介质中被检出,对生态环境和公众健康的危害逐步显现,它们的治理也引起了政府的高度重视[1]。2022年5月,国务院办公厅印发了《新污染物治理行动方案》的通知,提出了新污染物治理的总体要求、行动举措和保障措施。2022年10月,党的二十大报告明确提出“开展新污染物治理”是“深入推进环境污染防治”中的一项重要工作[2]。目前,国际上广泛关注的新污染物有四类:持久性有机污染物,内分泌干扰物,抗生素和微塑料[3]。新污染物是指具有生物毒性、环境持久性、生物累积性等特征的有毒有害的化学物质,给生态系统和人类健康带来了风险。因此,针对ECs的分析方法、监测技术、环境行为、生态风险评价及迁移转化机制的研究,已成为近年来环境科学领域的一个重要热点问题[4]。然而该类污染物种类繁多,浓度水平低,净化分离难度大,对其污染水平、迁移转化及分析测定等相关报道十分有限,我国主要在东部沿海及北方部分地区。候选人通过合理设计、定向筛选及萃取分离等方式将介孔泡沫材料、石墨烯复合材料、分子印迹聚合物(MIPs)、金属有机框架(MOFs)、中空纳米微球(HoMS)、离子印迹聚合物及共价有机框架(COFs)等微纳米材料用于ECs的分离分析化学研究,针对黄河上游西北地区复杂环境介质中ECs的界面化学行为和过程动力学进行了探讨,并且取得了一系列具有特色的研究成果,具体内容简述如下:1、 制备了一系列不同类型、性能优越、选择性好的新型微纳米多孔材料。课题组基于目标构建及靶向设计,制备了二十余种在分离分析领域有潜在应用前景的新型多孔材料,包括分子印迹聚合物(MIPs)、金属有机框架(MOFs)、共价有机框架(COFs)及中空纳米微球(HoMS)等。基于表面印迹法和沉淀聚合法制备了具有核-壳结构的磁性介孔MIPs,特别适用于复杂环境样品中POPs的选择性富集,解决了基质干扰的问题(Talanta, 2017,166, 300-305 Talanta, 2019,194: 7-13)。MOFs具有高孔隙率、大比表面积、孔径可调以及拓扑结构多样性等优点,候选人通过将MOFs与具有高导电能力的高分子聚合物与石墨烯、碳纳米管等进行复合,对MOFs表面进行化学修饰,使用具有多个苯环平面共轭结构的配体,提高了MOFs材料的导电性及其在水溶液中的稳定性(Microchim. Acta., 2017, 184, 3681-3687 Talanta, 2018,181, 112-117 Anal. Chim. Acta, 2022, 1195, 339451)。此外,候选人充分利用中空多壳层结构(HoMS)的高负载容量与短的传质路径,通过溶剂刻蚀法和配体转化法制备了独特的中空多壳层结构(HoMS)并用于环境分析领域,实现了HoMS对15种多环芳烃(PAHs)的次序富集并表现出极高的萃取能力(Environ. sci-Nano, 2021, 8, 675-686 Sep. Purif. Technol., 2021, 276, 119367)。2、 建立了不同基质样品中多种ECs的萃取、富集、分离及分析方法。环境样品形态多样、基质复杂,ECs在环境中处于痕量水平,同系物多且干扰严重,高效和选择性好的样品前处理成为ECs分析测定中的重要环节和技术瓶颈。针对这一问题,候选人基于近年发展起来的快速、高效的样品前处理技术,将制备的新型微纳米材料用于ECs的净化、分离、富集和浓缩。候选人在磁性固相萃取(MSPE)具有分离方便、成本低廉、绿色环保等优点的基础上,无需制备Fe3O4(由于传统的Fe3O4在酸性介质中容易被氧化和团聚),充分利用Co,Ni独特的磁性和化学稳定性,将不同的镍、钴有序多孔材料用于MSPE结合高效液相色谱(HPLC)建立了不同基质环境样品中多环芳烃(PAHs),溴代阻燃剂(BFRs)和有机氮农药(ONPs)的分离分析方法(Talanta, 2021, 227(10),122149 Microchim. Acta., 2021, 188, 161 Sep. Purif. Technol., 2022, 287, 120608)。候选人基于博士期间在固相微萃取(SPME)方面的研究工作,创新性地利用化学键合法和溶胶凝胶法制备了内外双涂层和螺旋形SPME探针,通过疏水作用、π-π共轭效应、中心金属离子与多环芳烃π电子之间的络合作用,对15种多环芳烃(PAHs)、4种溴代阻燃剂(BFRs)和7种内分泌干扰物(EDCs)的萃取性能进行了评价(Talanta, 2020, 214, 120866 Sep. Purif. Technol., 2021, 276, 119367)。为了进一步提高POPs的萃取效率及重现性,候选人利用溶胶凝胶法制备了称为管内固相微萃取(In-tube SPME)的有机-无机杂化的毛细管整体柱(HMC)(Chinese. Chem. Lett., 2021, 32, 3199-3201);采用静电纺丝技术将HoMS与聚合物(如聚乙二醇(PEG)、聚二甲基硅氧烷(PDMS)、聚偏氟乙烯(PVDF)等)溶液进行混纺,制备复合纳米纤维膜(HoMS-NFM),将其放入改装的滤头装置用于膜萃取(ME)(Chem. Eng. J., 2022, 449, 137759),建立了不同基质样品中同时萃取、富集及分析7种多环芳烃(PAHs)的方法。3、探讨了复杂环境介质中ECs的环境界面行为及迁移转化机理。复杂环境介质中ECs与不同环境界面的相互作用机制一直是环境科学领域的核心和热点内容之一。ECs经各种暴露途径进入环境后,会在水、大气、土壤等不同环境介质中和介质之间进行迁移转化,在这些环境界面上能够发生吸附-解吸、氧化还原、催化降解乃至转化生成毒性更强的污染物等环境化学过程。候选人基于化学热力学和动力学的模拟方法开展了多介质环境下的ECs界面行为和吸附机制研究。选择以分子印迹柱结合气相色谱-质谱法(MIC-GC-MS/MS)进行实验,通过研究其在食品及塑料制品中的迁移转化规律,建立了外卖餐盒中16种多环芳烃(PAHs)的准确检测方法,对于评价人群中多环芳烃(PAHs)的暴露风险具有重要意义(Talanta, 2022, 243, 123385)。基于Scatchard模型,对水体中三氯生(TCS)和三氯卡班(TCC)的特异性和非特异性吸附的机制进行分析,旨在为评价药品及个人护理产品(PPCPs)及其衍生物的潜在生态环境风险提供依据(J. Chromatog. A, 2018, 1537, 35-42)。利用Langmuir和Freundlich吸附等温模型探讨了9种多环芳烃(PAHs)的界面吸附行为,采用准一级和准二级动力学模型研究了吸附机理(J. Chromatog. A, 2021, 1659, 462639 J. Chromatog. A, 2022, 1681, 463459),为环境介质中ECs的界面化学行为、过程动力学以及生物有效性等研究提供重要的技术支持。综上所述,本课题组近年来主要集中在黄河上游周边环境中新污染物(包括多环芳烃、溴代阻燃剂、内分泌干扰物、药品和个人护理品、农药等)的萃取、分离、富集、分析等一系列相关工作,研究了有着特殊的气象和地理条件的西北地区多介质(水体和土壤)环境中ECs的环境行为特征及典型分布,实现了复杂体系中的靶标物质快速、精准、实时地分析检测,这些学术成果很好地契合了黄河流域生态保护和高质量发展的国家战略,这些研究工作发表在国际相关领域的重要期刊上,拟将授权发明专利转让给相关企业,应用于环境污染物吸附、分离、去除的商业开发。主要参考文献:[1] 政府工作报告——持续改善生态环境,推动绿色低碳发展:加强污染治理和生态保护修复,2022年3月5日。[2] 党的二十大报告——推动绿色发展,促进人与自然和谐共生:深入推进环境污染防治 ,2022年10月16日。[3] 生态环境部举行的新闻发布会,生态环境部固体废物与化学品司司长任勇,2022年3月30日。[4] 江桂斌,刘维屏主编,环境化学前沿,北京:科学出版社,2017(第一版)。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制