发光特性

仪器信息网发光特性专题为您整合发光特性相关的最新文章,在发光特性专题,您不仅可以免费浏览发光特性的资讯, 同时您还可以浏览发光特性的相关资料、解决方案,参与社区发光特性话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

发光特性相关的耗材

  • 化学发光成像系统配件
    化学发光成像系统配件同时具有化学发光成像和荧光成像功能,也是一套多功能免疫印迹成像系统。化学发光成像系统配件具有超高灵敏度制冷CCD相机和超快镜头,为用户提供超高灵敏度的多功能化学发光成像和荧光成像。 化学发光成像系统配件特点 三阶peltier制冷CCD相机,可制冷到室温-60℃工作,确保获得高质量图像 CCD相机分辨率高达2048x2048像素 配备超快镜头 多波长荧光灯光源 超级紧凑设计,方便操作 图像采集软件方便使用,图像分析软件功能强大 化学发光成像系统配件应用 化学发光成像:Western lightning, ECL, ECL plus, CDP star, Super signal, CSPD, lumiGlo 核酸检测,溴化乙锭,SYBR gold, SYBR Green, SYBR safe, GelStar, Fluorescein, Texas red 蛋白质检测:Coomassie blue, Silver Star, Sypro Red, Sypro Orange, Pro-Q Diomand, Deep Purple。 化学发光成像系统配件分析软件:获取凝胶图像, 控制光源镜头和相机工作 自动识别凝胶带数和背景,增加或删除凝胶带,调节或移动任意凝胶带 密度对比,扫描制定凝胶泳道,给出扫描曲线,泳道中的峰值和密度 计算凝胶带的迁移率,分子重量电泳,碎片尺寸和IEF(RF值) 化学发光成像系统配件参数 CCD尺寸:15.2*15.2mm 像素:2048x2048像素, A/D值:16 CCD温度:室温下-60℃ 镜头: 25mm, F0.95超快镜头 光源: EPI-White LED灯 软件:采集,分析软件 可选配件 荧光灯:365nm, 395nm, 460nm, 490nm, 530nm, 630nm 滤波片:530nm, 590nm, 630nm, 670nm. 孚光精仪是全球领先的进口科学仪器和实验室仪器领导品牌服务商,产品技术和性能保持全球领先,拥有包括凝胶成像仪在内的全球最为齐全的实验室和科学仪器品类,世界一流的生产工厂和极为苛刻严谨的质量控制体系,确保每个一产品是用户满意的完美产品。 我们海外工厂拥有超过3000种仪器的大型现代化仓库,可在下单后12小时内从国外直接空运发货,我们位于天津保税区的进口公司众邦企业(天津)国际贸易公司为客户提供全球零延误的进口通关服务。 更多关于化学发光成像系统参数、化学发光成像系统应用等诸多信息,孚光精仪会在第一时间更新并呈现出来,了解更多内容请关注孚光精仪官方网站方便获取!
  • 呋喃它酮代谢物残留化学发光检测试剂盒
    呋喃它酮代谢物(AMOZ)检测试剂 盒(化学发光免疫分析法)使用说明书【产品名称】 呋喃它酮代谢物检测试剂盒(化学发光免疫分析法) 【包装规格】 100T/盒 【概述】 硝基呋喃类药物因有非常好的抗菌作用和药动力学的特性, 曾被广泛应用,作为禽类、水产和猪促生长的添加剂。但在长时 间的实验研究过程中发现,硝基呋喃类药物和代谢物均可以使实 验动物发生癌变和基因突变,正因为如此才导致此类药物禁止在 治疗和饲料中使用。 由于硝基呋喃类药物在体内很快就能被代谢,而在组织中结 合的代谢产物则能存留较长的一段时间,所以在分析此类药物的 残留时经常要分析其代谢后的产物,管理部门就以检测代谢产物 为手段达到检测硝基呋喃类残留的目的。呋喃唑酮代谢产物 AOZ; 呋喃它酮代谢产物 AMOZ;呋喃妥因代谢产物 AHD;硝基糠腙 (呋喃西林)代谢产物 SEM。 【检测原理】 试剂盒采用竞争法进行检测,温育结束后,加磁场沉淀,去 掉上清液,用清洗液清洗沉淀复合物,并吸干废液,除去未与磁 性微粒结合的物质,再将反应杯送入测量室中。仪器自动泵入两 种激发液,使复合物产生化学发光信号,通过光电倍增器测量发 光强度。仪器自动通过工作曲线计算得出检测结果。 【适用范围】 可定性、定量检测组织样品中呋喃它酮代谢物的残留量。 【检测方法】 1.试剂盒为即用型,不能分开使用。 2.使用本试剂盒前请仔细阅读试剂说明书以及全自动化学发光 免疫分析仪的使用说明书,按照相关要求进行测定操作。试剂使 用时,测定仪会自动搅拌磁性微粒,使其处于悬浮状态,如果想 快速进行检测,上机前请手动摇匀磁性微粒。试剂的相关信息可 以自动读取,一次读取相关信息即存入测定仪器,不需反复读取。 3.定标:通过测定高、低值校准品,将预先定义的主曲线上的每 个定标点调整(重新定标)为一个新的、仪器特异的测量水平, 即工作曲线。 4.定标频率:每天进行一次定标,更换不同批号试剂或者激发液 需要重新定标。 【注意事项】 1.使用前请详细阅读说明书,并将试剂水平摇匀。 2.请按照储存方法保存试剂,避免冷冻,冷冻后的试剂质量会发 生变化,请勿使用。 3.避免试剂接触皮肤、眼睛和粘膜,一旦接触,应立即用清水冲 洗接触部位。 4.不同试剂盒中各组分不能互换。 【储存条件及有效期】 1.试剂盒于 2~8℃避光未拆封状态下竖直保存,禁止冷冻。 2.有效期为 12 个月,在 2~8℃环境下保存时,稳定性可持续至所 标示的日期;开瓶后低温避光(2~8℃)可保存 1 个月。
  • 呋喃唑酮残留 化学发光检测 试剂盒
    【概述】硝基呋喃类药物因有非常好的抗菌作用和药动力学的特性, 曾被广泛应用,作为禽类、水产和猪促生长的添加剂。但在长时 间的实验研究过程中发现,硝基呋喃类药物和代谢物均可以使实 验动物发生癌变和基因突变,正因为如此才导致此类药物禁止在 治疗和饲料中使用。呋喃唑酮在 1995 年被禁用。 由于硝基呋喃类药物在体内很快就能被代谢,而在组织中结 合的代谢产物则能存留较长的一段时间,所以在分析此类药物的 残留时经常要分析其代谢后的产物,管理部门就以检测代谢产物 为手段达到检测硝基呋喃类残留的目的。呋喃唑酮代谢产物 AOZ; 呋喃它酮代谢产物 AMOZ;呋喃妥因代谢产物 AHD;硝基糠腙 (呋喃西林)代谢产物 SEM。【检测原理】 试剂盒采用竞争法进行检测,温育结束后,加磁场沉淀,去 掉上清液,用清洗液清洗沉淀复合物,并吸干废液,除去未与磁 性微粒结合的物质,再将反应杯送入测量室中。仪器自动泵入两 种激发液,使复合物产生化学发光信号,通过光电倍增器测量发 光强度。仪器自动通过工作曲线计算得出检测结果。 【适用范围】 可定性、定量检测组织样品中呋喃唑酮代谢物的残留量。【适用范围】 可定性、定量检测组织样品中呋喃唑酮代谢物的残留量。【试剂盒性能参数】 检测限: 组织——0.1 ?g/kg【检测方法】 1.试剂盒为即用型,不能分开使用。 2.使用本试剂盒前请仔细阅读试剂说明书以及全自动化学发光 免疫分析仪的使用说明书,按照相关要求进行测定操作。试剂使 用时,测定仪会自动搅拌磁性微粒,使其处于悬浮状态,如果想 快速进行检测,上机前请手动摇匀磁性微粒。试剂的相关信息可 以自动读取,一次读取相关信息即存入测定仪器,不需反复读取。 3.定标:通过测定高、低值校准品,将预先定义的主曲线上的每 个定标点调整(重新定标)为一个新的、仪器特异的测量水平, 即工作曲线。 4.定标频率:每天进行一次定标,更换不同批号试剂或者激发液 需要重新定标。 【注意事项】 1.使用前请详细阅读说明书,并将试剂水平摇匀。 2.请按照储存方法保存试剂,避免冷冻,冷冻后的试剂质量会发 生变化,请勿使用。 3.避免试剂接触皮肤、眼睛和粘膜,一旦接触,应立即用清水冲 洗接触部位。4.不同试剂盒中各组分不能互换。 【储存条件及有效期】 1.试剂盒于 2~8℃避光未拆封状态下竖直保存,禁止冷冻。 2.有效期为 12 个月,在 2~8℃环境下保存时,稳定性可持续至所 标示的日期;开瓶后低温避光(2~8℃)可保存 1 个月。

发光特性相关的仪器

  • 重新构想和设计的 Agilent 8355 SCD 标志着硫化学发光检测技术 25 年来的第一次重大改进,使这项技术更加可靠且更易于使用。重新构想的检测器具有出色的灵敏度与特异性,且由于采用减少了 50% 组件的简化燃烧头设计而更易于维护。过去需要花费一小时的最常见服务程序如今仅需 10 分钟即可完成。8355 使用双等离子体燃烧器使含硫化合物在高温下燃烧生成一氧化硫 (SO)。光电倍增管可检测由 SO 和臭氧发生化学发光反应而产生的光。实现线性、等摩尔的硫化物响应,大部分样品基质都不会对其产生干扰。硫化物几乎在化学和生物化学的所有领域都起着非常重要的作用。 在石油和化学品领域,含硫化合物通常被认为是对产品和加工有害的。例如,众所周知,含硫化合物有毒,是催化剂毒物。另一方面,含硫化合物具有某些性质,例如在天然气和液态石油气中加入硫醇类气味剂。 原油和天然气中硫的含量通常会不断增加,而环境法规则要求降低燃料中的硫含量。这两种背道而驰的需求就要求业内技术人员、化学家和工程师们提高其对硫加工过程的认识;用于测定硫的分析仪器可提供所需的信息。硫化学发光检测器技术不仅能让用户测定总硫,还可以测定单个硫形态,这样获得的信息比只测定总硫更加丰富,这点通常更为重要。 在食品、调味品和饮料中,含硫化合物具有正面和反面的特性,并且这些特性与浓度有关。因此,能够准确地测定这些化合物,对产品质量控制和研究十分重要。 操作原理安捷伦硫化学发光检测器 (SCD) 利用硫化物燃烧形成一氧化硫 (SO),以及 SO 与臭氧 (O3) 化学发光反应的原理。这一特定的燃烧过程能达到超过 1800 °C 的高温,这在标准热裂解方法中难以达到。这一专利技术使 SCD 能够对任何含硫化合物进行超高灵敏度的检测,这些化合物可以采用气相色谱 (GC) 或超临界流体色谱 (SFC) 进行分析。 反应机理为:S 化合物 + O -- SO + 其他产物SO + O3 -- SO2 + O2 + hν (300–400 nm) 发射光 (hν) 通过滤光片后经光电倍增管进行检测;光的强度与样品中硫含量成正比。这一机理提供了选择性的硫检测,这在以下美国和其他国外专利中有所阐述:5,330,714;5,227,135;5,310,683;5,501,981;5,424,217;5,661,036;6,130,095;WO 95/22049 和申请中的专利。 方法审批SCD 是 ASTM 标准测试方法 D 5504 指定的检测器:采用气相色谱仪和化学发光检测器测定天然气和气态燃料中的硫化物;ASTM D 5623:采用气相色谱仪和硫选择性检测器测定轻质石油液体中的硫化物;ASTM D 7011:采用气相色谱仪和硫选择性检测器测定精炼苯中的痕量噻吩。SCD 是 ASTM D 5623-95 方法使用的唯一检测器,得到的数据足以满足测定方法的精度。(ASTM 研究报告:RR:D02-1335。) 应用SCD 的出色功能和性能使其在石油、化工和石化、食品和饮料、调味品、香料和环境行业中均得到广泛使用和认可。产品特性:● 完全集成化的配置或独立的配置● 皮克级检出限● 没有烃的淬灭● 对硫化物等摩尔线性响应● ASTM 方法兼容● 串联 SCD 和 FID 操作● 燃烧器组件减少约 40%;减少了潜在的泄漏点● 更换内部陶瓷管仅需 10 分钟● 安捷伦还提供 8255 氮化学发光检测器 (NCD)
    留言咨询
  • Flex One 显微光致发光光谱仪欲了解更多信息请拨打:010-56370168-601 性能特点:● 一体化的光学调校——所有光学元件只需要在初次安装时进行调校,确保高效性和易用性● 简单易用的双光路设计——可随意在水平和垂直光路上进行切换,适用于各种常见的样品形态● 超宽光谱范围**——300nm-2200nm● 视频监视光路 ——可供精确调整测试点● 独有的发射光谱校正功能*——让光谱测量更精准且具有可比性 ● 多种激发波长可选**——325nm,405nm,442nm,473nm,532nm,633nm,785nm等● 自动mapping功能可选*——50mm×50mm测量区间,可定制特殊规格● 电致发光(EL)功能可选*——扩展选项● 显微拉曼光谱测量功能可选*——扩展选项● 超低温测量附件可选*——提供10K以下的超低温测量*选配项,请详细咨询; **需根据实际需要进行配置确定。产品简介: 光致发光(photoluminescence) 即PL,是用紫外、可见或红外辐射激发发光材料而产生的发光,在半导体材料的发光特性测量应用中通常是用激光(波长如325nm、532nm、785nm 等)激发材料(如GaN、ZnO、GaAs 等)产生荧光,通过对其荧光光谱(即PL 谱)的测量,分析该材料的光学特性,如禁带宽度等。光致发光可以提供有关材料的结构、成分及环境原子排列的信息,是一种非破坏性的、高灵敏度的分析方法,因而在物理学、材料科学、化学及分子生物学等相关领域被广泛应用。传统的显微光致发光光谱仪都是采用标准的显微镜与荧光光谱仪的结合,但是传统的显微镜在材料的PL 谱测量中,存在很大的局限性,比如无法灵活的选择实验所需的激光器(特别对于UV 波段的激光器,没有足够适用的配件),无法方便的与超低温制冷机配合使用,采用光纤作为光收集装置时耦合效率太低等等问题,都是采用标准显微镜难以回避的问题。 北京卓立汉光仪器有限公司结合了公司十余年荧光光谱仪和光谱系统的设计经验和普遍用户的实际需求,推出了“Flex One( 微光)”系列显微光致发光光谱仪,有效的解决了上述问题,是目前市场上最具性价比的的显微PL 光谱测量的解决方案。( 产品图片仅供参考,以实际系统配置为准)系统组成● 激发光源部分:紫外-近红外波段各种波长激光器● 显微光路部分:优化设计的专用型显微光路● 光谱采集部分:影像校正光谱和高灵敏型科学级CCD或单点探测器和数据采集器● 样品台支架部分:xyz三维可调样品台(手动或自动)、超低温样品台参数规格表:主型号Flex One光谱范围300-2200nm光谱分辨率0.1nm激发光可选波长325nm,405nm,442nm,473nm,532nm,633nm,785nm等探测器类型制冷型CCD 2000×256制冷型InGaAs512×1制冷型InGaAs512×1有效范围300-1000nm800-1700nm800nm-2200nm空间分辨率100μm注*:以上为基本规格,详细规格依据不同配置的选择会有差异,详情请咨询!InGaN/GaN多量子阱的PL谱和EL谱测试 ● 样品提供:KingAbdullahUniversity ofScience and Technology提供的基于蓝宝石衬底MOCVD 生长的 InGaNGaN 量子阱● 测试条件:325nm激发,功率30mW● 光谱范围:340-700nm1. 光致发光(PL)光谱测量分别针对材料的正极( 红色) 和负极( 绿色) 测试得到光致发光光谱曲线如下,GaN 的本征发光峰365nm 附近以及黄带,InGaN 的发光峰475nm 附近。 2. 电致发光(EL)光谱测量将材料的正负极接到直流电源的正负极,电压加到2.5V 时可以有明显的蓝光发射,测量其电致发光光谱曲线如下(红色),峰值在475nm 附近。
    留言咨询
  • 仪器简介: 光致荧光光谱测量是半导体材料特性表征的一个被普遍认可的重要测量手段。MiniPL为模块化设计、计算机自动控制的高灵敏度、宽带隙小型PL(光致荧光)光谱仪;MiniPL采用Photon Systems公司自行研发的深紫外激光器224nm(5.5eV)或248.6nm(5eV)作为激发光源,配合独特的光路设计,采用高灵敏度PMT作为探测器件,并通过仪器内置的门闸积分平均器(Boxcar)进行数据处理,实现微弱脉冲信号的检测。MiniPL可被用表征半导体材料掺杂水平分析、合成组分分析、带隙分析等,不仅可用于科研领用,更可用在半导体LED产业中的品质检测。技术参数:主要规格特点:■ 采用5.5(224nm)或5.0 eV(248.6nm)深紫外激光器■ 室温PL光谱测量范围:190~650nm(标准),190~850nm(选配)■ 高分辨率:0.2nm(@1200g/mm光栅,标配),0.07nm(@3600g/mm光栅,选配)■ 门闸积分平均器(Boxcar)进行微弱脉冲信号的检测■ 可实现量子效率测量■ 基于LabView的界面控制■ 光谱分析软件可获得光谱带宽、峰值波长、峰值副瓣鉴别、光谱数据运算、归一化等■ 最大可测量50mm直径样品,样品可实现XYZ三维手动调整(标准)■ 可选配自动样品扫描装置,实现Mapping功能■ 可用于紫外拉曼光谱测量■ 高度集成化,体积:15 × 18 × 36cm,重量:8kg主要特点: 光致荧光光谱测量是半导体材料特性表征的一个被普遍认可的重要测量手段。MiniPL为模块化设计、计算机自动控制的高灵敏度、宽带隙小型PL(光致荧光)光谱仪;MiniPL采用Photon Systems公司自行研发的深紫外激光器224nm(5.5eV)或248.6nm(5eV)作为激发光源,配合独特的光路设计,采用高灵敏度PMT作为探测器件,并通过仪器内置的门闸积分平均器(Boxcar)进行数据处理,实现微弱脉冲信号的检测。MiniPL可被用表征半导体材料掺杂水平分析、合成组分分析、带隙分析等,不仅可用于科研领用,更可用在半导体LED产业中的品质检测。
    留言咨询

发光特性相关的试剂

发光特性相关的方案

  • 钙钛矿量子点的热致发光特性研究
    文通过电热恒温水槽对钙钛矿量子点进行热致发光实验,探究了其在受热后释放光的特性,以期了解材料的热历史和稳定性。实验结果表明,通过表面钝化策略可以有效提高钙钛矿量子点的抗热淬灭性能。
  • 天津兰力科:聚唾盼衍生物的合成、发光性能及结构的同步辐射研究
    近几年来,由于聚曝吩衍生物在发光器件、光伏电池及场效应份等方而潜在应用而备受关注。要使这类新型的光电聚合物材料走向实用化,还需要一步的改善和提高它们的光电特性和效率。这些性能除了与材料本身的化学构有关外,还与聚合物的物理形貌及分子形态有着密切的关系。Ll前聚合物理形貌对光电特性的影响研究主要集中在导电性能方面,而对光学方而的研较少。本论文分别用氧化聚合法和电化学聚合法合成和制备了聚{3一(2一甲软从苯唆吩』薄膜和纳米线阵列,详细分析了它们的发光特性和机理。利用同步辐射射线近边吸收技术(NEXAFS),分析了不同电负性的取代基对聚咪吩电J气结和分子取向的影响。取得的结果包括以下几个方面:(1)通过格氏反应合成了3一(2甲氧基苯)唆吩,再用FeCI3作催化剂氧化合了聚〔3一(2一甲氧基苯)唾吩』(PMP-Th)。热重分析表明聚合物在400℃刁‘现失重现象,具有较高热稳定性。聚合物的最大发光波长为687nln,带较窄,是较好的近红外发光材料。X射线衍射技术证明聚合物内有微区,这可能是由分子的局域有序排列造成的。(2)以高纯铝为原料,分别在草酸溶液和硫酸溶液中,采用二次阳极钱化法制备了孔洞高度有序的阳极氧化铝(AAO)模板。通过改变制各条件,获了孔径在30tun一80nm,孔密度为一10’。孔/cm,的一系列氧化铝模板。用上自制的不同孔径的多孔氧化铝为模板,采用循环伏安法,制备PMP-Th的纳米线阵列,纳米线的直径与模板的孔径大小相当,纳米线长度可通过控制电量来调控。结果证明循环伏安法电化学技术与模板相结合是制备一维聚合物纳米阵列的有效方法,易于调控纳米线的长和维度。(3)分析研究了各种直径的PMP一Th纳米线阵列在由草酸溶液中制得的AA模板中的发光特性,与PMP一Th薄膜的发光光谱相比,纳米线阵列的发波长都有较大蓝移,强度显著增强。纳米线阵列的发光显示显著的尺依赖性,随着AAO孔径由80lun减小到60nm,发光波长逐渐从58On蓝移至560lun,当孔径从60nln减至40tun时,发光峰从56Onm红移580tun。经过红外光谱分析和对分子环境的比较探讨发现发光潜的蓝移摘要由模板的孔洞限制效应引起的,小孔径中发光的红移是聚合物分子有序取向使有效共辘程度增加带隙能降低导致的。结合聚合物薄膜和从O的吸收光谱和光致发光激发谱,对光强增强的机理进行了探讨,认为光强增强是由AAO与聚合物分子间的能量转移造成的,光强随孔径减小而降低是给体的发光谱与受体的吸收谱搜盖度降低以及分子有序堆积使荧光效率降低的结果。(4)分别比较了PMP一Th纳米线阵列和聚(3一澳代唾吩)(PBr一Th)纳米线阵列在硫酸溶液中制得的AAO(S-AAO)和草酸溶液中制得的从O(C一AAO)中的发光特性,发现PMP一Th纳米线阵列在S一AAO中的发光峰位和强度的尺寸依赖性与C-AAO一致,说明PMP-Th线阵列在从O的发光特性与AAO孔壁的化学环境无关,也进一步说明了PMP一Th纳米与AAO之间没有化学反应。与PMP一Th在C.AAO和S一AAO中的发光特性显著不同的是,PB卜Th纳米线在C.AAO和S一AAO中的发光强度相比于薄膜PB卜Th的光强大大降低,这可能是PB卜Th分子在模板中的取向度较高或者是PB卜Th与AAO有较复杂的相互作用造成的。与PMP一Th纳米线相同的是PB卜Th在两种模板里的发光波长的尺寸依赖性是一致的。因此对这一体系的研究还需要进一步的深入和扩展。(5)利用同步辐射NEXAFS技术,分析了PMP一Th和PB卜Th的电子结构,通过分析角分辨NEXAFS谱,确定了PMP一Th分子和PB卜Th分子在R片电极上的分子取向:PB卜Th分子链“倾斜”于金属表面,而PMP-Th由于甲氧基苯的位阻和电子效应的双重影响表现为无序。
  • 耦合电致发光附件测试III-ⅤLED的应用
    大多数典型的LED由III-V族化合物半导体构成。III-V半导体是指包含元素周期表中第III族(B, Al, Ga, In)和第V族 (N, P, As, Sb)元素的合金材料。对于蓝色和绿色的LED,通常为In、Ga和N元素。InGaN基LED中的p型和n型区域由GaN形成,其带隙较大,为3.4 eV (360 nm)。可以通过调节Ga与N比值使其成为p型或n型。InGaN基LED的有源区由InxGa1-xN形成,加入In元素会降低半导体的带隙。通过改变In与Ga的摩尔比,可以调谐LED的发射波长和发光颜色。但随着In含量的增加,InGaN发光二极管的效率也会随之降低。因此,通过增加In的含量使其发射波长大于550 nm是没有实用意义的。光谱覆盖范围超过550 nm最为常用的LED为(AlxGa1-x)0.5In0.5P。可通过增加Al和Ga的摩尔比,使其带隙增大, 发射波长蓝移。采用电致发光技术能够测试InGaN和AlGaInP LED的发射波长,并确定LED的有源区带隙及组成。本篇应用,通过使用耦合电致发光附件的FS5荧光光谱仪测试了四种III-V族化合物发光二极管的发光特性并确定它们的带隙和色度坐标。

发光特性相关的论坛

  • 特殊的化学发光现象之三:纳米化学发光和电致化学发光

    如前所述,对于化学发光的研究一般仅局限于分子和离子水平以及简单的分子聚集体如胶束和微乳液等。纳米材料作为一种微尺度的物质构成单元,其特殊的Kubo 效应、小尺寸效应、表面效应及量子隧道效应使其呈现许多奇异的物理、化学性质。近年来,有关纳米材料参与的[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]和液相化学发光反应体系受到了越来越广泛的关注。对于[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]化学发光反应,张兴荣课题组从2002 年开始利用纳米材料优良的催化性能发展了一系列基于纳米材料的[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]化学发光传感器,主要用于易挥发性有机物的测定。例如,乙醇和丙酮蒸气在7 种金属氧化物纳米材料的催化氧化作用下具有化学发光现象,其中纳米TiO2 催化作用下的化学发光信号最强,其可能的发光中间体被认为是氧化生成的激发态乙醛分子,并具有很高的选择性。其它易挥发的有机物如丁酮和乙醛也能够在纳米材料的催化氧化作用下产生[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]化学发光。而挥发性氯代有机物在纳米TiO2 的作用下转化为Cl2;生成的Cl2 被富集在填充纳米TiO2 的管中,可以用柱后化学发光法检测。Bard 等于2002 年在Science 上发表第一篇有关纳米粒子的液相电致化学发光的报道以来,纳米粒子参与的液相电致化学发光和化学发光行为也已经引起了人们的关注。Bard 等报道半导体纳米粒子如Si,CdS,CdSe,CdSe/ZnSe,Ge 以及CdTe 等都可以产生电致化学发光。Poznyak 等报道了半导体CdSe/CdS 纳米粒子与H2O2 反应可以产生液相化学发光,其中CdSe/CdS半导体纳米粒子被鉴定为发光体。Corrales 等人报道了纳米TiO2 型着色剂,其化学发光特性可用于聚合物热稳定性的表征。在半导体纳米粒子参与的化学发光或电致化学发光反应中,半导体纳米粒子的表面缺陷以及量子尺寸效应是产生化学发光的基础。总之,纳米材料作为一种新型化学发光响应单元对于提高化学发光反应的效率以及开发新的化学发光反应体系具有重要意义

  • 免疫化学发光原理

    一)原理  化学发光免疫测定属于标记抗体技术的一种,它以化学发光剂、催化发光酶或产物间接参与发光反应的物质等标记抗体或抗原,当标记抗体或标记抗原与相应抗原或抗体结合后,发光底物受发光剂、催化酶或参与产物作用,发生氧化还原反应,反应中释放可见光或者该反应激发荧光物质发光,最后用发光光度计进行检测。    (二)标记物  1.发光剂直接标记 常用鲁米诺及其衍生物等,它们属环肼类化合物,能与很多氧化物如氧、次氯酸、磺、过氧化物等反应而发光。因此可直接将鲁米诺或其衍生物标记抗体或抗原进行CLIA。这类方法特异性强,但往往会因交联影响发光物特性,降低敏感性。  2.发光催化酶标记 常用辣根过氧化物酶、丙酮酸激酶、葡萄糖氧化酶等标记抗体或抗原。与酶标抗体测定基本相同,差别在于CLIA是用发光性底物指示反应,有人称为发光酶免疫测定。  3. 标记物产物参与反应 标记物不直接催化发光反应,而其反应产物能使反应系统发光。如用草酸类标记抗体或标记抗原,在有H2O2作用下,生成二噁二酮,后者可使红荧稀(Rubrene)激化发光。  (三)应用  CLIA特异性强、敏感性高,可检测到10-5mol/L的抗原量。快速,一般几十分钟或1-3小时内完成。操作简便,可进行固相和均相分析。试验重复性好,试剂易标准化和商品化。目前已用于多种药物、激素、病原微生物及其代谢产物、抗体及其他生物活性物质的测定。

  • 阴极灯发光角度及氘灯角度

    有人了解阴极灯和氘灯的发光特性吗?我有咨询过阴极灯厂家,对方无法给出具体的发光曲线,那么大家实际使用中,一般阴极灯角度按多少度计算的呢?谢谢各位老师讨论

发光特性相关的资料

发光特性相关的资讯

  • 1030万!哈尔滨工程大学电致发光器件综合特性测量系统及激光直写系统采购项目
    一、项目基本情况项目编号:HTCL-ZB-236129项目名称:哈尔滨工程大学电致发光器件综合特性测量系统及激光直写系统采购及服务预算金额:1030.000000 万元(人民币)最高限价(如有):1030.000000 万元(人民币)采购需求:1套电致发光器件综合特性测量系统,其他要求详见招标文件。1套激光直写系统,其他要求详见招标文件。合同履行期限:合同签订后12个月内完成所有设备到货、所有设备调试完毕并具备验收条件。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年11月06日 至 2023年11月10日,每天上午8:30至11:30,下午13:00至17:00。(北京时间,法定节假日除外)地点:黑龙江省招标有限公司方式:现场获取。售价:¥500.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:哈尔滨工程大学     地址:哈尔滨市南岗区南通大街145号        联系方式:0451-82519862      2.采购代理机构信息名 称:黑龙江省招标有限公司            地 址:哈尔滨市南岗区汉水路180号            联系方式:陆超、温智伟 电话:0451-82375252            3.项目联系方式项目联系人:陆超、温智伟电 话:  0451-82375252
  • BPCL微弱发光\化学发光\电化学发光测量的原理及应用
    品牌:BPCL是Biological& Physical Chemiluminescence的缩写,1995年开始对外使用;超微弱发光测量仪,英文Ultra-WeakLuminescence Analyzer。 BPCL超微弱发光测量仪,是生物与化学光子计数器,又俗称为化学发光分析仪,是我国原中科院系统科研人员自主研发的一种可探测超微弱生物发光和化学发光的分析仪器,是我国最早商品化的微弱光测量产品。BPCL倾注了老一辈科研工作者的心血,其研制为发光研究提供了有力的科研工具,推动了我国甚至国际发光研究的发展,目前被众多高校、研究院所使用,产生了具有重大社会和经济效益。 涉及研究方向包括:发光分析检测技术研究(如:流动注射发光分析、毛细管电泳发光分析、生物传感器发光分析、纳米材料发光分析、自由基临床检验)、自由基生物学研究、药物抗氧化剂研究、细胞学超微弱发光研究、肿瘤医学研究、农业种质研究、花卉果实超微弱发光研究及农作物抗逆性研究。 BPCL微弱发光测量仪现有19个型号产品,覆盖近紫外、可见及近红外光谱领域微弱光检测,同时还有光谱扫描、多样品测试、温控等型号产品,以适应不同领域研发需求。由于BPCL独特和先进的光探测技术,利用此仪器可测定10^-15瓦的光强度,测量10^-13瓦的微弱光影可给出1-2万/秒的计数率,这对于生物体、细胞、DNA等生命物质的超微弱发光研究尤为重要。通过独特的接口计数,该仪器可实时获得发光动力学曲线,最快采集速度可达0.1毫秒,可用于快速发光反应的监测。 任何有生命的物质都可以自发的或在外界因素诱导下辐射出一种极其微弱的光子流,这种现象称为生物的超微弱发光(UltraweakPhoton Emission),亦被称为生物系统超弱光子辐射、自发发光等。超微弱发光只有10^-5~ 10 ^-8hυ / s cm ,量子产额(效率)为10^-14~ 10 ^-9,波长范围为180~800nm,从红外到近紫外波段。1.BPCL电化学发光测试原理 电化学发光分析技术(Electrogeneratedchemiluminescence,ECL)。ECL是一种在电极表面由电化学引发的特异性化学发光反应。包括了两个过程。发光底物二价的三联吡啶钌及反应参与物三丙胺在电极表面失去电子而被氧化。氧化的三丙胺失去一个H成为强还原剂,将氧化型的三价钌还原成激发态的二价钌,随即释放光子恢复为基态的发光底物。最好的发光标记物-三联吡啶钌分子量小,结构简单。可以标记于抗原,抗体,核酸等各种分子量,分子结构的物质。从而具有最齐全的检测菜单。三联吡啶钌为水溶性,且高度稳定的小分子物质。保证电化学发光反应的高效和稳定,而且避免了本底噪声干扰。 简单来理解,ECL是在电极上施加一定的电压使电极反应产物之间或电极反应产物与溶液中某组分进行化学反应而产生的一种光辐射,其作为一种新的痕量分析手段越来越引人注目。1.1电化学反应过程 在工作电极上(阳极)加一定的电压能量作用下,二价的三氯联吡啶钌[Ru(bpy)3]2+释放电子发生氧化反应而成为三价的三氯联吡啶钌[Ru(bpy)3]3+,同时,电极表面的TPA也释放电子发生氧化反应而成为阳离子自由基 TPA+,并迅速自发脱去一个质子而形成三丙胺自由基TPA,这样,在反应体系中就存在具有强氧化性的三价的三氯联吡啶钌[Ru(bpy)3]3+和具有强还原性的三丙胺自由基TPA。1.2化学发光过程 具有强氧化性的三价的三氯联吡啶钌[Ru(bpy)3]3+和具有强还原性的三丙胺自由基 TPA发生氧化还原反应,结果使三价的三氯联吡啶钌[Ru(bpy)3]3+还原成激发态的二价的三氯联吡啶钌[Ru(bpy)3]2+,其能量来源于三价的三氯联吡啶钌[Ru(bpy)3]3+与三丙胺自由基TPA之间的电势差,激发态[Ru(bpy)3]2+以荧光机制衰变并以释放出一个波长为620nm光子的方式释放能量,而成为基态的[Ru(bpy)3]2+。1.3循环过程 上述化学发光过程后,反应体系中仍存在二价的三氯联吡啶钌[Ru(bpy)3]2+和三丙胺(TPA),使得电极表面的电化学反应和化学发光过程可以继续进行,这样,整个反应过程可以循环进行。 通过上述的循环过程,测定信号不断的放大,从而使检测灵敏度大大提高,所以ECL测定具有高灵敏的特点。上述的电化学发光过程产生的光信号的强度与二价的三氯联吡啶钌[Ru(bpy)3]2+的浓度成线性关系。将二价的三氯联吡啶钌[Ru(bpy)3]2+与免疫反应体系中的一种物质结合,经免疫反应、分离后,检测免疫反应体系中剩余二价的三氯联吡啶钌[Ru(bpy)3]2+经上述过程后所发出的光,即可得知待检物的浓度。1.4电化学发光剂定义:指通过在电极表面进行电化学反应而发出光的物质。特点:反应在电极表面进行发光标记物/化学发光剂:三联吡啶钌Ru(bpy)32+共反应剂/电子供体为:三丙胺(TPA)电化学发光启动条件:直流电场反应产物:三丙胺自由基(TPA*)+620nm的光子最终检测信号:可见光强度反应特点:迅速、可控、循环发光三联吡啶钌“催化”三丙胺发出可见光2.BPCL化学/电化学发光分析领域的应用案例2.1 医学及药学领域 BPCL在临床上,其可直接或与免疫技术结合,通过化学/电化学发光技术,其可用于甲状腺激素、生殖激素、肾上腺/垂体激素、贫血因子、肿瘤标记物、癌细胞等物质的检测;另外,基于活性氧诱导的化学发光现象,其可实现体内及光治疗过程产生的活性氧的检测。2.1.1 Ru@SiO2表面增强电化学发光检测痕量癌胚抗原 癌胚抗原(CEA)被认为是反映人体中各种癌症和肿瘤存在的疾病生物标志物。体液中CEA的灵敏检测利于癌症的临床诊断和治疗评估。 在此,本文提出了一种基于Ru(bpy)32+的局域表面等离子体共振(LSPR)增强电化学发光(ECL)超灵敏测定人血清中CEA的新方法。在这种表面增强ECL(SEECL)传感方案中,Ru(bpy)32+掺杂的SiO2纳米颗粒(Ru@SiO2)并且AuNPs用作LSPR源以增强ECL信号。两种不同种类的CEA特异性适体在Ru@SiO2和AuNP。在CEA存在的情况下Ru@SiO2-将形成AuNPs纳米结构。我们的研究表明Ru@SiO2可以通过AuNP有效地增强。一层Ru@SiO2-AuNPs与不存在AuNP的纳米结构的ECL相比,纳米结构将产生约3倍的ECL增强。通过多层Ru@SiO2-AuNPs纳米架构。在最佳条件下,人血清CEA的检测限为1.52×10^-6ng/mL。 据我们所知,对于ECL传感器,从未报道过具有如此低LOD的CEA测定。2.1.2 基于连接探针的电化学发光适体生物传感器,检测超痕量凝血酶的信号 基于结构切换电化学发光猝灭机制,本文中开发了一种用于检测超痕量凝血酶的新型连接探针上信号电化学发光适体生物传感器。ECL适体生物传感器包括两个主要部分:ECL底物和ECL强度开关。ECL衬底是通过修饰金电极(GE)表面的Au纳米颗粒和钌(II)三联吡啶(Ru(bpy)32+–AuNPs)的络合物制成的,ECL强度开关包含三个根据“结-探针”策略设计的探针。 第一种探针是捕获探针(Cp),其一端用巯基官能化,并通过S–Au键共价连接到Ru(bpy)32+–AuNPs修饰的GE上。 第二个探针是适体探针(Ap),它含有15个碱基的抗凝血酶DNA适体。 第三种是二茂铁标记探针(Fp),其一端用二茂铁标签进行功能化。 文中证明,在没有凝血酶的情况下,Cp、Ap和Fp将杂交形成三元“Y”结结构,并导致Ru(bpy)32+的ECL猝灭。然而,在凝血酶存在的情况下,Ap倾向于形成G-四链体适体-凝血酶复合物,并导致Ru(bpy)32+的ECL的明显恢复,这为凝血酶的检测提供了传感平台。利用这种可重复使用的传感平台,开发了一种简单、快速、选择性的ECL适体生物传感器信号检测凝血酶,检测限为8.0×10^-15M。 本生物传感器的成功是朝着在临床检测中监测超痕量凝血酶的发展迈出的重要一步。2.1.3 Ru(phen)32+掺杂二氧化硅纳米粒子的电化学发光共振能量转移及其在臭氧“开启”检测中的应用 首次报道了灵敏检测臭氧的电化学发光(ECL)方法和利用臭氧进行电化学发光共振能量转移(ECRET)的方法。 它是基于Ru(phen)32+掺杂的二氧化硅纳米颗粒(RuSiNPs)对靛蓝胭脂红的ECRET。在没有臭氧的情况下,RuSiNP的ECL由于RuSiNP对靛蓝胭脂红的ECRET而猝灭。在臭氧存在的情况下,系统的ECL被“打开”,因为臭氧可以氧化靛蓝胭脂红,并中断从RuSiNP到靛蓝胭脂的ECRET。通过这种方式,它通过所提出的基于RuSiNP的ECRET策略提供了臭氧的简单ECL传感,线性范围为0.05-3.0μM,检测限(LOD)为30nM。检测时间不到5分钟。该方法也成功应用于人体血清样品和大气样品中臭氧的分析。2.1.4 用二极管实现数码相机灵敏视觉检测,使无线电极阵列芯片的电化学发光强度提高数千倍 首次报道了无线电化学发光(ECL)电极微阵列芯片和通过在电磁接收器线圈中嵌入二极管来显著提高ECL。新设计的设备由一个芯片和一个发射机组成。该芯片有一个电磁接收线圈、一个迷你二极管和一个金电极阵列。该微型二极管可以将交流电整流为直流电,从而将ECL强度提高18000倍,从而能够使用普通相机或智能手机作为低成本探测器进行灵敏的视觉检测。使用数码相机检测过氧化氢的极限与使用基于光电倍增管(PMT)的检测器的极限相当。与基于PMT的检测器相结合,该设备可以以更高的灵敏度检测鲁米诺,线性范围从10nM到1mM。由于具有高灵敏度、高通量、低成本、高便携性和简单性等优点,它在护理点检测、药物筛选和高通量分析中很有前途。2.1.5 中晶体和仿生催化剂调控肿瘤标志物的比例电化学发光免疫分析 本文以壳聚糖功能化碘化银(CS-AgI)为仿生催化剂,研制了一种基于八面体锐钛矿介晶(OAM)载体的比率电化学发光免疫传感器,用于α胎儿蛋白(AFP)的超灵敏测定。所提出的系统是通过选择鲁米诺和过硫酸钾(K2S2O8)作为有前途的ECL发射单元来实现的,因为它们具有潜在的分辨特性和最大发射波长分辨特性。采用具有高孔隙率、定向亚基排列和大表面积的OAM吸附鲁米诺形成固态ECL,并作为亲和载体首次固定了大量AFP(Ab)抗体。 此外,发现CSAgI具有仿生催化剂活性,可以催化作为鲁米诺和K2S2O8共同助反应剂的过氧化氢的分解,从而放大了双ECL响应。当生物传感器在CSAgI标记的AFP的混合溶液中孵育时(CS-AgI@AFP)和目标AFP,这是由于对CS-AgI@AFP和目标AFP与AbCS-AgI@AFP固定化Ab捕获的蛋白质随AFP浓度的增加而减少,因此,双ECL反应减少。基于两个激发电位下ECL强度的比值,这种提出的比率ECL策略通过竞争性免疫反应实现了对α胎儿蛋白的超灵敏测定,线性检测范围为1fg/ml至20ng/ml,检测限为1fgg/ml2.1.6 一种新型放大电化学发光生物传感器(基于AuNPs@PDA@CuInZnS量子点纳米复合材料),用于p53基因的超灵敏检测 在这项工作中,首次设计了一种基于Au的新型表面等离子体共振(SPR)增强电化学发光(ECL)生物传感模型NPs@polydopamine(PDA)@CuInZnS量子点纳米复合材料。 通过静电力用PDA层涂覆AuNP。CuInZnS量子点结合在Au表面NPs@PDA纳米复合材料。CuInZnS量子点在传感应用中起到了ECL发光体的作用。PDA壳层不仅控制了AuNPs和QDs之间的分离长度以诱导SPR增强的ECL响应,而且限制了电势电荷转移和ECL猝灭效应。结果,纳米复合材料的ECL强度是具有K2S2O8的量子点的两倍。在扩增的ECL传感系统中检测到肿瘤抑制基因p53。 该传感方法的线性响应范围为0.1nmol/L至15nmol/L,检测限为0.03nmol/L。基于该纳米复合材料的DNA生物传感器具有良好的灵敏度、选择性、重现性和稳定性,并应用于加标人血清样品,取得了满意的结果。2.1.7铕多壁碳纳米管作为新型发光体,在凝血酶电化学发光适体传感器中的应 提出了一种新的电化学发光(ECL)适体传感器,用于凝血酶(TB)的测定,该传感器利用核酸外切酶催化的靶循环和杂交链式反应(HCR)来放大信号。捕获探针通过Au-S键固定在Au-GS修饰的电极上。随后,捕获探针和互补凝血酶结合适体(TBA)之间的杂交旨在获得双链DNA(dsDNA)。TB与其适体之间的相互作用导致dsDNA的解离,因为TB对TBA的亲和力高于互补链。在核酸外切酶存在的情况下,适体被选择性地消化,TB可以被释放用于靶循环。通过捕获探针的HCR和两条发夹状DNA链(NH2-DNA1和NH2-DNA1)形成延伸的dsDNA。然后,可以通过NH2封端的DNA链和Eu-MWCNT上的羧基之间的酰胺化反应引入大量的铕多壁碳纳米管(Eu-MWCNTs),导致ECL信号增加。 多种扩增策略,包括分析物回收和HCR的扩增,以及Eu-MWCNTs的高ECL效率,导致宽的线性范围(1.0×10-12-5.0×10-9mol/L)和低的检测限(0.23pmol/L)。将该方法应用于血清样品分析,结果令人满意。2.2 环境领域 采用BPCL已建立了众多灵敏快速检测环境污染物、环境激素、环境干扰物、自由基的发光分析方法。此外有有研究人员将其与臭氧化学发光结合应用于水体COD分析。其突出优点是仪器方法简单、易操作、线性范围宽、灵敏度高。 2.2.1 Fenton体系降解持久性氯化酚产生本征化学发光的机理:醌类和半醌自由基中间体的构效关系研究及其关键作用 在环境友好的高级氧化过程中,所有19种氯酚类持久性有机污染物都可以产生本征化学发光(CL)。然而,结构-活性关系(SAR,即化学结构和CL生成)的潜在机制仍不清楚。在这项研究中,本文中发现,对于所有19种测试的氯酚同系物,CL通常随着氯原子数量的增加而增加;对于氯酚异构体(如6种三氯苯酚),相对于氯酚的-OH基团,CL以间->邻-/对-CL取代基的顺序降低。 进一步的研究表明,在Fenton试剂降解三氯苯酚的过程中,不仅会产生氯化醌中间体,而且更有趣的是,还会产生氯化半醌自由基;其类型和产率由OH-和/或Cl取代基的定向效应、氢键和空间位阻效应决定。 更重要的是,观察到这些醌类中间体的形成与CL的产生之间存在良好的相关性,这可以充分解释上述SAR发现。 这是关于醌和半醌自由基中间体的结构-活性关系研究和关键作用的第一份报告,这可能对未来通过高级氧化工艺修复其他卤代持久性有机污染物的研究具有广泛的化学和环境意义。2.2.2 介质阻挡放电等离子体辅助制备g-C3N4-Mn3O4复合材料,用于高性能催化发光H2S气体传感 提出了一种新的、简单的基于介质阻挡放电(DBD)等离子体的快速制备g-C3N4-Mn3O4复合材料的策略。所获得的g-C3N4-Mn3O4可作为一种优良的H2S气体传感催化发光(CTL)催化剂,具有优异的选择性、高灵敏度、快速稳定的响应。 基于所提出的传感器能够检测到亚ppm水平的H2S,为在各个领域监测H2S提供了一种极好的替代方案。采用SEM、TEM、XPS、XRD、N2吸附-脱附等测试手段对合成的传感材料进行了表征。该复合材料具有较小的颗粒尺寸和较大的比表面积,这可能归因于氧化非平衡等离子体蚀刻。 此外,该合成以Mn2+浸渍的g-C3N4为唯一前驱体,以空气为工作气体,不含溶剂、额外的氧化剂/还原剂或高温,具有结构简单、操作方便、速度快等优点,并且它可以容易地大规模实施,并扩展到制造用于不同目的的各种金属氧化物改性复合材料。2.2.3表面增强电化学发光,用于汞离子痕量的检测 Ru(bpy) 3^2+的电化学发光(ECL)在分析化学中有着广泛的应用。在此,我们提出了一种通过金纳米棒(AuNR)的局域表面等离子体共振(LSPR)来增强Ru(bpy)3^2+的ECL的新方法。 我们的研究表明,通过控制Ru(bpy)3^2+与AuNRs表面之间的距离,可以大大增强ECL强度。我们将这种表面等离子体激元诱导的ECL增强称为表面增强电化学发光(SEECL)。利用这种SEECL现象来制备用于痕量Hg2+检测的生物传感器。SEECL生物传感器是通过在金电极表面自组装AuNRs和富含T的ssDNA探针来制备的。随着Hg2+的存在,ssDNA探针的构象通过形成T-Hg2+-T结构而变为发夹状结构。Ru(bpy)3^2+可以插入发夹结构DNA探针的凹槽中产生ECL发射,AuNR的LSPR可以增强ECL发射。传感器的ECL强度随着Hg2+浓度的增加而增加,并且在水溶液中达到10fMHg2+的检测极限。研究了AuNR不同LSPR峰位对生物传感器灵敏度的影响。 结果表明,Ru(bpy)3^2+的LSPR吸收光谱和ECL发射光谱之间的良好重叠可以实现最佳的ECL信号增强。2.3 农林业领域 BPCL在农业上有着十分广阔的应用价值。植物的超弱发光来自于体内的核酸代谢、呼吸代谢以及各种氧化还原过程,它变化与植物体内的生理生化变化密切相关.边种广泛存在于体内的自发辐射与机体代谢活动、能量转化之间存在着磐然的联系.因此,利用它作为代谢指标的应用研究就很快引起了广泛的重视。 超弱发光可以作为一种反映生命过程及变化的极其灵敏的指标。另一方面,由于植物的超弱发光与环境密切相关,在不同植物、不同的环境条件下超弱发光均有所不同。 BPCL可以探测植物的超弱发光,研究植物的盐碱、抗旱、抗热、抗寒乃至抗病的指标,从而为抗逆性育种提供一种新的灵敏的物理方法。植物的超弱发光能在一定程度上反映植物生活力的大小,所以可用超弱发光鉴定植物或种子的活力.用超弱发光鉴定种子的活力用样品量少又不破坏种子,对于种子量少的珍贵品种极其有益。此外,BPCL还可以用于农蔬作物新鲜度的评价、污染物残留量分析、辐照食品的检测。2.3.1 基于生物延迟发光,评价玉米萌发期抗旱性。(西安理工大学习岗) 玉米种子萌发抗旱性评价是节水农业研究中的难点和热点问题之一,生物延迟发光分析技术的应用有可能解决这一问题。采用生物延迟发光评价方法研究了玉米种子萌发期的抗旱性能力,延迟发光积分强度的升高有不同的抑制作用,胁迫强度越大。以下为玉米萌发过程中的延迟发光积分强度的变化:2.3.2 盐胁迫下绿豆幼苗的超微弱发光(山东理工大学王相友) 对不同 NaCl 浓度胁迫下绿豆种子早期萌发时的超微弱发光变化进行了初步研究。结果表明,随 NaCI 浓度的增加,绿豆胚根的生长速度(根长)减慢,生长受到明显抑制,其超微弱发光的强度显著下降。萌发期间,SOD 活性随着盐浓度的增加而降低,其活性与生物光子强度有极为密切的关系。 这些结果表明生物超微弱发光探测技术有可能成为植物盐胁迫研究的有效工具,对于进一步理解盐胁迫机理有一定的意义。2.3.3 苹果成熟过程中超弱发光强度与果实跃变的关系(山东理工大学王相友) 用1-甲基环丙烯(1-methyicyclopropene,1-MCP)和乙烯利两种化学药剂,测定了红富士苹果果实超弱发光强度的变化及与乙烯释放、呼吸的关系。 结果显示,各处理果实超弱发光强度的变化与呼吸、乙烯释放速率的变化趋势相似,均有明显的高峰出现,且出峰时间一致。乙烯利处理加速了果实软化,使果实超弱发光强度峰直出现时间提前,并加速了果实跃变后超弱发光强度的衰减:1-MCP 处理延缓了果实的衰老,使果实超弱发光强度峰值推迟,并减弱了峰值过后超弱发光强度的衰减。超弱发光强度能反映富士苹果成熟过程中代谢的变化。2.4 材料领域2.4.1 有机改性水滑石量子点纳米复合材料作为新型化学发光共振能量转移探针 在本工作中,通过在有机改性的LDH外表面上以十二烷基苯磺酸钠双层束的形式高度有序和交替地组装痕量CdTe量子点,制备了定向发光量子点(QD)-层状双氢氧化物(LDH)纳米复合材料。 有趣的是,新型QD-LDH纳米复合材料可以显著增强鲁米诺-H2O2体系的化学发光(CL),这归因于H2O2对QD氧化的抑制、辐射衰减率的增加以及对QDs的非辐射弛豫的抑制。 此外,以鲁米诺为能量供体,以固体发光QD-LDH纳米复合材料为能量受体进行信号放大,制备了一种新型的基于流通柱的CL共振能量转移。通过使用鲁米诺-H2O2CL系统测定H2O2来评估该流通柱的适用性。CL强度在0.5至60μM的浓度范围内对H2O2表现出稳定的响应,检测限低至0.3μM。 最后,该方法已成功应用于雪样品中H2O2的检测,结果与标准分光光度法一致。我们的研究结果表明,新型发光量子点-LDH纳米复合材料将用于高通量筛选具有不同尺寸量子点的复杂系统。2.4.2 油膜碳糊电极热电子诱导阴极电化学发光及其在邻苯二酚纳摩尔测定中的应用 首次在油膜覆盖碳糊电极(CPE)上研究了Ru(bpy)32+/S2O82-体系在阴极脉冲极化下的热电子诱导阴极电化学发光。与其他电极相比,CPE具有更低的背景、更好的稳定性和再现性。该方法也适用于邻苯二酚的测定。 在最佳条件下,在2.0*10^-10mol/L~4.0*10^-9 mol/L和4.0*10^-9mol/L~4.0*10^-7 mol/L范围内,观察到猝灭ECL强度(DI)与邻苯二酚浓度对数(logCcatechol)之间的线性相关性,检测限(LOD)为2.0*10^-10mol/L,低于其他报道的方法。 将该方法应用于水库水中邻苯二酚的测定。平均回收率为83.3%–99.0%,相对标准偏差为0.8%–2.2%。2.4.3 等离子体辅助增强Cu/Ni金属纳米粒子的超弱化学发光 采用具有类似Kirkendall效应的简单水溶液法合成了具有稳定荧光和良好水分散性的Cu/Ni纳米颗粒。60±5nm铜镍摩尔比为1:2的Cu/NiNP显著增强了碳酸氢钠(NaHCO3)与过氧化氢(H2O2)在中性介质中氧化反应产生的超微弱化学发光(CL)。时间依赖性CL的增强取决于NP的组成和试剂添加的顺序。 在研究CL发射光谱、电子自旋共振光谱、紫外-可见吸收光谱和荧光光谱的基础上,提出了等离子体辅助金属催化这种金属NP(MNP)增强CL的机理。MNP的表面等离子体可以从化学反应中获得能量,形成活化的MNP(MNP*),与OH自由基偶联产生新的加合物OH-MNP*。OH-MNP*可以加速HCO3-生成发射体中间体(CO2)2*的反应速率,从而提高整个反应的CL。2.5 食品领域 BPCL可以用于食品中的微生物/病原体及其毒素、痕量金属离子、抗生素、氧自由基、含氮、硫、磷物质、抗坏血酸、有机酸以及辐照食品的分析检测。2.5.1 基于光谱阵列的单一催化发光传感器及其在葡萄酒鉴定中的应用 识别复杂混合物,特别是那些成分非常相似的混合物,仍然是化学分析中一个具有挑战性的部分。本文利用MgO纳米材料在封闭反应池(CRC)中构建的单一催化发光(CTL)传感器来识别醋。它可以提供这种类型的高度多组分系统的原型。通过扫描反应期间分布在15个波长的CTL光谱,获得了醋的光谱阵列图案。这些就像他们的指纹。然后通过线性判别分析(LDA)对阵列的CTL信号进行归一化和识别。对九种类型和八个品牌的醋以及另外一系列的人造样品进行了测试;人们发现这项新技术能很好地区分它们。 这种单一传感器在实际应用中表现出了对复杂混合物分析的良好前景,并可能提供一种识别非常相似的复杂分析物的新方法。2.5.2 层状双氢氧化物纳米片胶体诱导化学发光失活对食品中生物胺浓度的影响 通过氢键识别打开/关闭荧光和视觉传感器在文献中已经明确确立。显然没有充分的理由忽视氢键诱导的化学发光失活(CL)。 在本工作中,作为新型CL催化剂和CL共振能量转移受体(CRET),层状双氢氧化物(LDH)纳米片胶体可以显著提高双(2,4,6-三氯苯基)草酸盐(TCPO)-H2O2体系的CL强度。另一方面,生物胺可以选择性地抑制LDH纳米片TCPO–H2O2系统的CL强度,这是由于光致发光LDH纳米片通过O–H…N键取代O–HO键而失活的结果。 此外,组胺被用作食品腐败的常见指标,发现CL强度与组胺浓度在0.1–100uM范围内呈线性关系,组胺(S/N=3)的检测限为3.2nM。所提出的方法已成功应用于追踪变质鱼类和猪肉样品的组胺释放,显示出这些样品中生物胺水平的时间依赖性增加。2.5.3 碳酸盐夹层水滑石增强过氧亚硝酸化学发光,检测抗坏血酸的高选择性 在本研究中,发现Mg-Al碳酸酯层状双氢氧化物(表示为Mg-Al-CO3LDHs)催化过氧硝酸(ONOOH)的化学发光(CL)发射。CL信号的增强是由于过亚硝酸根(ONOO)通过静电吸引在LDHs表面的浓度,这意味着ONOO可以容易有效地与嵌入的碳酸盐相互作用。此外,抗坏血酸可以与ONOO或其分解产物(例如_OH和_NO2)反应,导致Mg-Al-CO3-LDHs催化的ONOOH反应的CL强度降低。 基于这些发现,以Mg-Al-CO3-LDHs催化的ONOOH为新的CL体系,建立了一种灵敏、选择性和快速的CL法测定抗坏血酸。CL强度在5.0至5000nM的范围内与抗坏血酸的浓度成比例。检测限(S/N=3)为0.5nM,9次重复测量0.1mM抗坏血酸的相对标准偏差(RSD)为2.6%。 该方法已成功应用于商业液体果汁中抗坏血酸的测定,回收率为97–107%。这项工作不仅对更好地理解LDHs催化的CL的独特性质具有重要意义,而且在许多领域具有广泛的应用潜力,如发光器件、生物分析和标记探针。2.6 气相催化发光2.6.1 基于纳米ZnS的四氯化碳催化发光气体传感 基于四氯化碳在空气中氧化纳米ZnS表面的催化发光(CTL),提出了一种新的灵敏的气体传感器来测定四氯化碳。详细研究了其发光特性及最佳工艺条件。 在优化的条件下,CTL强度与四氯化碳浓度的线性范围为0.4–114ug/mL,相关系数(R)为0.9986,检测限(S/N=3)为0.2ug/mL。5.9ug/mL四氯化碳的相对标准偏差(R.S.D.)为2.9%(n=5)。 对甲醇、乙醇、苯、丙酮、甲醛、乙醛、二氯甲烷、二甲苯、氨和三氯甲烷等常见异物无反应或反应较弱。在4天的40小时内,传感器的催化活性没有显著变化,通过每小时收集一次CTL强度,R.S.D.小于5%。该方法简便灵敏,具有检测环境和工业中四氯化碳的潜力。2.6.2 珊瑚状Zn掺杂SnO2的一步合成及其对2-丁酮的催化发光传感 将一维纳米级构建块自组装成功能性的二维或三维复杂上部结构具有重要意义。在这项工作中,我们开发了一种简单的水热方法来合成由纳米棒组装的珊瑚状Zn掺杂SnO2分级结构。利用XRD、SEM、TEM、XPS、FTIR和N2吸附-脱附对所得样品的组成和微观结构进行了表征。通过研究在不同反应时间合成的样品,探讨了生长机理。作为催化发光(CTL)气体传感器的传感材料,这种珊瑚状Zn掺杂的SnO2表现出优异的CTL行为(即,与其他15种常见的挥发性有机化合物(VOC)相比,具有高灵敏度、对2-丁酮的优异选择性以及快速响应和回收)。在相同的条件下测试了SnO2样品的三种不同Zn/Sn摩尔比,以证明Zn掺杂浓度对传感性能的影响。在最佳实验条件下,进一步研究了基于1∶10Zn掺杂SnO2传感材料的CTL传感器对2-丁酮的分析特性。气体传感器的线性范围为2.31–92.57ug/mL(R=0.9983),检测限为0.6ug/mL(S/N=3)。2.6.3 缺陷相关催化发光法检测氧化物中的氧空位 氧空位可以控制氧化物的许多不同性质。然而,氧空位的快速简单检测是一个巨大的挑战,因为它们的种类难以捉摸,含量高度稀释。在这项工作中,本文中发现TiO2纳米颗粒表面乙醚氧化反应中的催化发光(CTL)强度与氧空位的含量成正比。氧空位依赖性乙醚CTL是由于氧空位中大量的化学吸附O2可以促进其与化学吸附的乙醚分子的接触反应,从而显著提高CTL强度。因此,乙醚CTL可以用作TiO2纳米颗粒中氧空位的简单探针。通过检测金属离子掺杂的TiO2纳米粒子(Cu、Fe、Co和Cr)和氢处理的TiO2纳米粒子在不同温度下在具有可变氧空位的TiO2表面上的乙醚CTL强度,验证了其可行性。本CTL探针测得的氧空位含量与常规X射线光电子能谱(XPS)技术测得的结果基本一致。与已经开发的方法相比,所开发的CTL探针的优越性能包括快速响应、易于操作、低成本、长期稳定性和简单配置。本文认为氧空位敏感的CTL探针在区分氧化物中的氧空位方面具有很大的潜力。
  • ACS Nano成果速递:光致发光、拉曼、近场光学同步测量技术揭示二维合金材料新特性
    近期,乔治亚大学研究人员成功使用一种新型组合显微镜对二维材料进行了深入分析,该显微镜能够利用纳米的发光,弹性和非弹性光散射测试二维材料,即实现nano-PL、nano-Raman、s-SNOM的同步测量,并将观测的尺度提升到纳米量。乔治亚大学Yohannes Abate教授与研究生讨论neaspec设备[1] 单层异质结构的应用潜力直接受到材料内在和外在的缺陷影响。乔治亚大学的研究人员在Abate教授的带领下,利用neaSNOM散射式近场光学显微镜,研究了二维(2D)单层合金光致氧化过程中纳米尺度下的奇异界面现象。他们发现界面张力可以通过建立稳定的局部势阱来集中本征激子,从而实现高的热稳定性和光降解稳定性。该实验结果由neaspec公司特的nano-PL / Raman和s-SNOM同步测量技术所采集,并已发表在ACS NANO中[2]。在实验中,作者合成了由单层面内MoS2-WS2异质结构制成的2D纳米晶体,这些晶体在富Mo的内部区域和富W的外部区域间,显示出了较强的纳米合金界面。在针增强照明刺激下( 100天),他们进一步观察到,光降解过程中界面的激子稳定性、局域性和不均匀性。得益于高度敏感的s-SNOM成像技术,作者探测到富W的外部区域的反射率出现急剧下降。该反射率始于晶体边缘,并随时间向内传播。在同一样品区域获得的高光谱纳米光致发光(nano-PL)图像显示,W氧化相关的激子的猝灭会遵循与s-SNOM相同的模式(在边缘开始并向内传播)。令人惊叹的是,合金界面的内部区域表现出了强大的抗氧化能力。即使在光降解100天后,它仍具有很强的s-SNOM信噪比和未淬灭的nano-PL信号。为了进一步研究结构变化,作者使用nano-PL进行了增强拉曼高光谱纳米成像测量,并在同一扫描区域的每个像素处获取了空间和光谱信息。实验结果表明,在整个晶体的光降解过程中,WS2拉曼峰逐渐消失,而在内部区域中的MoS2仍然存在。该结果表明在相同的环境条件、同一显微镜下测量相同的晶体,由于热诱导的合金和基底晶格常数的不匹配,导致光氧化与局部应变存在一定的关联。而合金界面可防止该应变传播到内部区域,从而防止其降解。 neaSNOM显微镜特的双光束设计,实现了3种不同测量技术在同一样品点的同步测量。该设计允许在单个显微镜中集成nano-PL / Raman和s-SNOM技术,并保持测量的灵敏度。通过 大程度优化s-SNOM信号,这种组合还可以实现非常快速的光束对准,从而获得 佳的PL和Raman信号。 在neaSNOM设备上,集成不同的纳米光学技术进行的相关分析,为深入探索2D合金奠定了基础,也使得neaSNOM成为了一个电子和发光性质测量的优 秀平台。 参考文献:[1]. Imaging technique provides link to innovative products, Science & Technology, February 4, 2021by Alan Flurry[2]. Photodegradation Protection in 2D In-Plane Heterostructures Revealed by Hyperspectral Nanoimaging: The Role of Nanointerface 2D Alloys. ACS Nano 2021, 15, 2, 2447–2457
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制