二维有机金属晶体

仪器信息网二维有机金属晶体专题为您整合二维有机金属晶体相关的最新文章,在二维有机金属晶体专题,您不仅可以免费浏览二维有机金属晶体的资讯, 同时您还可以浏览二维有机金属晶体的相关资料、解决方案,参与社区二维有机金属晶体话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

二维有机金属晶体相关的耗材

  • 高质量二维晶体材料
    高质量二维晶体材料二维晶体材料指的是以石墨烯为代表的单原子层及少数原子层厚度的晶体材料。巨纳集团除了提供石墨烯材料、设备、检测等一体化服务外,还联合荷兰HQ Graphene为全球客户提供高质量的二维晶体材料,并提供定制服务(如二维材料机械剥离技术培训,层数判定等性能检测培训等),以满足客户的不同需求。1、名称:硫化镓(GaS) 纯度:>99.995% 尺寸:可定制 属性:半导体 2、名称:硒化铋(Bi2Se3) 纯度:>99.995% 尺寸:~10 mm 属性:拓扑绝缘体 3、名称:碲化铋(Bi2Te3) 纯度:>99.995% 尺寸:~10 mm 属性:拓扑绝缘体 4、名称:二硒化钼(MoSe2) 纯度:>99.995% 尺寸:~6 mm-10 mm 属性:半导体 5、名称:硫化锗(GeS)纯度:>99.995% 尺寸:可定制 属性:半导体 6、名称:二碲化钼(MoTe2) 纯度:>99.995% 尺寸:~6 mm-10 mm 属性:半导体 7、名称:二硫化钼单晶(MoS2)-合成纯度:>99.995% 尺寸:~10 mm-20 mm 属性:半导体 8、名称:二硫化钼单晶(MoS2)纯度:>99% 尺寸:~10 mm-20 mm 属性:半导体 9、名称:二硫化钨(WS2) 纯度:>99.995% 尺寸:~10 mm 属性:半导体 10、名称:二硒化钨(WSe2) 纯度:>99.995% 尺寸:~10 mm 属性:半导体 11、名称:二硒化钒(VSe2) 纯度:>99.995% 尺寸:~7-10 mm 属性:半导体 12、名称:二碲化钨(WTe2) 纯度:>99.995% 尺寸:联系我们 属性:半金属 13、名称:硒化镓(GaSe) 纯度:>99.995% 尺寸:~10 mm 属性:半导体 14、名称:大尺寸六边形氮化硼晶体(HBN) 纯度:>99.99% 尺寸:1.0-1.5 mm鳞片 属性:绝缘体 15、名称:高定向热解石墨(HOPG) 纯度:>99.995% 尺寸:可达12 x 12 x 2 mm 属性:金属 16、名称:天然石墨(NG) 纯度:>99.995% 尺寸:~2 mm 属性:金属 17、名称:石墨烯(graphene) 纯度:>99.995% 尺寸:<60 μm 属性:金属 18、名称:二硒化铪(HfSe2) 纯度:>99.995% 尺寸:~8 mm 属性:半导体 19、名称:二硫化铪(HfS2) 纯度:>99.995% 尺寸:可定制 属性:半导体 20、名称:硒化铟(In2Se3) 纯度:>99.995% 尺寸:~7 mm 属性:半导体 21、定制二维异质结 22、转移二维晶体材料的高纯聚合物 23、名称:定制二维晶体材料样品盒 可定制 超过30多种 24、名称:1T-二硒化钛(1T-TiSe2) 纯度:>99.995% 尺寸:可定制 属性:半导体 25、名称:二硫化钛(TiS2) 纯度:>99.995% 尺寸:~10 mm 属性:半金属 26、名称:2H-二硫化钽(2H-TaS2) 纯度:>99.995% 尺寸:可定制 属性:半导体,具有电荷密度波 27、 名称:1T-二硫化钽(1T-TaS2) 纯度:>99.995% 尺寸:可定制 属性:半导体,具有电荷密度波 28、名称:二硒化钽(TaSe2) 纯度:>99.995% 尺寸:~8 mm 属性:半导体 29、名称:二硒化锡(SnSe2) 纯度:>99.995% 尺寸:~8 mm 属性:半导体 30、名称:二硫化锡(SnS2) 纯度:>99.995% 尺寸:~10 mm 属性:半导体 31、名称:二硒化铼(ReSe2) 纯度:>99.995% 尺寸:~6 mm 属性:半导体 32、名称:二硫化铼(ReS2) 纯度:>99.995% 尺寸:~6 mm-8 mm 属性:半导体 33、名称:二硒化铂(PtSe2) 纯度:>99.99% 尺寸:~2 mm 属性:半金属 34、名称:Pb3Sn4FeSb2S14 纯度:>99.995% 尺寸:~8 mm 属性:半导体 35、名称:硫锡铅矿(PbSnS2) 纯度:>99.995% 尺寸:~8 mm 属性:半导体 36、名称:二硒化铌(2H-NbSe2) 纯度:>99.995% 尺寸:~8 mm 属性:超导体,具有电荷密度波 37、名称:二硫化铌(NbS2) 纯度:>99.995% 尺寸:~4 mm 属性:超导体 38、名称:金云母(KMg3AlSi3O10(OH)2) 纯度:高 尺寸:25 x 25 x 0.15 mm 属性:绝缘体 39、名称:白云母(K2O-Al2O3-SiO2) 纯度:高 尺寸:25 x 25 x 0.15 mm 属性:绝缘体 40、名称:CaSO4-2H2O 纯度:高 尺寸:1-2 cm 属性:绝缘体 41、名称:黑磷(BP) 纯度:>99.995% 尺寸:可达cm级别 属性:半导体(带隙~0.3eV)
  • 定制二维晶体材料样品盒
    1、企业介绍泰州巨纳新能源有限公司:巨纳集团(Sunano Group)是能源行业的知名品牌。泰州巨纳新能源有限公司(Sunano Energy)是国内最早的从事石墨烯制备、性能检测及应用产品开发的公司之一,注册资本11000万元,有办公用房300多平方米,厂房和洁净室3000多平方米。核心研发团队主要由国内外知名高校博士组成,部分成员来自于2010年诺贝尔物理学奖小组,项目技术处于国际领先地位,在石墨烯领域拥有专利30余项。企业管理团队有丰富的成功创业经验,创新意识强,公司客户遍布全球。2、高质量二维晶体材料简介:二维晶体材料指的是以石墨烯为代表的单原子层及少数原子层厚度的晶体材料。巨纳集团除了提供石墨烯材料、设备、检测等一体化服务外,还联合荷兰HQ Graphene为全球客户提供高质量的类石墨烯二维晶体材料,并提供定制服务,以满足客户的不同需求。 名称:定制二维晶体材料样品盒 可定制 超过30多种
  • 转移二维晶体材料的高纯聚合物
    1、企业介绍泰州巨纳新能源有限公司:巨纳集团(Sunano Group)是能源行业的知名品牌。泰州巨纳新能源有限公司(Sunano Energy)是国内最早的从事石墨烯制备、性能检测及应用产品开发的公司之一,注册资本11000万元,有办公用房300多平方米,厂房和洁净室3000多平方米。核心研发团队主要由国内外知名高校博士组成,部分成员来自于2010年诺贝尔物理学奖小组,项目技术处于国际领先地位,在石墨烯领域拥有专利30余项。企业管理团队有丰富的成功创业经验,创新意识强,公司客户遍布全球。2、高质量二维晶体材料简介:二维晶体材料指的是以石墨烯为代表的单原子层及少数原子层厚度的晶体材料。巨纳集团除了提供石墨烯材料、设备、检测等一体化服务外,还联合荷兰HQ Graphene为全球客户提供高质量的类石墨烯二维晶体材料,并提供定制服务,以满足客户的不同需求。 转移二维晶体材料的高纯聚合物

二维有机金属晶体相关的仪器

  • OMRS系列二维高稳定光学调整架OMRS 系列是卓立汉光结合长期制造和应用的经验,使用优质材料、采用优化结构、经过精密加工装配而成,具有高稳定性、高灵敏度的系列产品,该系列产品的主要特点:● 均采用高灵敏度细牙螺纹副,可进行二维调整● 产品系列化完善,涵盖从12.7~50.8的多个尺寸● 每个尺寸的调整架,包含多种镜片装卡方式,包括:封闭式顶丝式(标准型)、开口式顶丝式(-B型)、封闭式压圈式(-C型)● 每种调整架,均具有不带锁紧(标准型)和带锁紧(-S型)两种方式选型表(封闭顶丝式):选型表(开口顶丝式):选型表(压圈式):注:压圈式25/25.4及50/50.8不能通用。关联产品:金属膜反射镜介质膜反射镜 连接附件连接附件应用实例:锁紧机构螺纹副锁紧机构
    留言咨询
  • TSAW系列二维整体电控平移台TSAW系列电控二维整体平移台采用二维整体设计,通过步进电机控制,实现空间X Y两轴位移调整自动化。手动手轮配置电控手动均可。关键零部件:精密滚珠螺杆,弹性联轴器均为进口高品质产品,并提供整机质量保证。电机与滚珠螺杆通过弹性联轴器连接,排除空回及加工形位误差;相对运动部分采用交叉滚柱导轨滚动摩擦;安装限位开关保护产品;标准接口,方便信号传输;台面可装卡载物玻璃,底座有螺纹及通孔两种固定方式,可根据具体情况方便安装。 ■技术规格 型 号TSAW100× 100-XY-(A)行程范围(X轴*Y轴)(mm)100x 100螺杆导程(mm)4重复定位精度(&mu m)<5; (-A<3)8细分下分辨率(&mu m)1.25步进电机(步距角)42B(0.9° )额定工作电流(A)1.7最大负载(kg)20
    留言咨询
  • 仪器简介:TSAW系列电控二维整体平移台采用二维整体设计,通过步进电机控制,实现空间X Y两轴位移调整自动化。手动手轮配置电控手动均可。技术参数:型 号 TSAW100× 100-XY-(A)行程范围(X轴*Y轴)(mm) 100x 100螺杆导程(mm) 4重复定位精度(&mu m) <5; (-A<3)8细分下分辨率(&mu m) 1.25步进电机(步距角) 42B(0.9° )额定工作电流(A) 1.7最大负载(kg) 20主要特点:关键零部件:精密滚珠螺杆,弹性联轴器均为进口高品质产品,并提供整机质量保证。电机与滚珠螺杆通过弹性联轴器连接,排除空回及加工形位误差;相对运动部分采用交叉滚柱导轨滚动摩擦;安装限位开关保护产品;标准接口,方便信号传输;台面可装卡载物玻璃,底座有螺纹及通孔两种固定方式,可根据具体情况方便安装。
    留言咨询

二维有机金属晶体相关的试剂

二维有机金属晶体相关的方案

二维有机金属晶体相关的论坛

  • 【求助】二维晶格像的拍摄

    请教各位,对于不同的晶体结构拍摄二维晶格像时,要使入射光束平行于某晶带轴,请问要获得较好的晶格像,这个晶带轴对于不同的结构如何确定?比如FCC一般是,那其他结构呢?

  • 【分享】金属键和金属晶体结构理论!!

    一,金属键理论及其对金属通性的解释一切金属元素的单质,或多或少具有下述通性:有金属光泽,不透明,有良好的导热性与导电性,有延性和展性,熔点较高(除汞外在常温下都是晶体),等等.这些性质是金属晶体内部结构的外在表现.金属元素一般比较容易失去其价电子变为正离子,在金属单质中不可能有一部分原子变成负离子而形成离子键.由于X射线衍射法测定金属晶体结构的结果可知,其中每个金属原子与周围8到12个同等(或接近同等)距离的其它金属原子相紧邻,只有少数价电子的金属原子不可能形成8到12个共价键.金属晶体中的化学键应该属于别的键型.1916年 ,荷兰理论物理学家洛伦兹(Lorentz,H.A.1853-1928)提出金属"自由电子理论",可定性地阐明金属的一些特征性质.这个理论认为,在金属晶体中金属原子失去其价电子成为正离子,正离子如刚性球体排列在晶体中,电离下来的电子可在整个晶体范围内在正离子堆积的空隙中"自由"地运行,称为自由电子.正离子之间固然相互排斥,但可在晶体中自由运行的电子能吸引晶体中所有的正离子,把它们紧紧地"结合"在一起.这就是金属键的自由电子理论模型.根据上述模型可以看出金属键没有方向性和饱和性.这个模型可定性地解释金属的机械性能和其它通性.金属键是在一块晶体的整个范围内起作用的,因此要断开金属比较困难.但由于金属键没有方向性,原子排列方式简单,重复周期短(这是由于正离子堆积得很紧密),因此在两层正离子之间比较容易产生滑动,在滑动过程中自由电子的流动性能帮助克服势能障碍.滑动过程中,各层之间始终保持着金属键的作用,金属虽然发生了形变,但不至断裂.因此,金属一般有较好的延性,展性和可塑性. 由于自由电子几乎可以吸收所有波长的可见光,随即又发射出来,因而使金属具有通常所说的金属光泽.自由电子的这种吸光性能,使光线无法穿透金属.因此,金属一般是不透明的,除非是经特殊加工制成的极薄的箔片.关于金属的良好导电和导热性能,高中化学课本中已用自由电子模型作了解释.上面介绍的是最早提出的经典自由电子理论.1930年前后,由于将量子力学方法应用于研究金属的结构,这一理论已获得了广泛的发展.在金属的物理性质中有一种最有趣的性质是,包括碱金属在内的许多金属呈现出小量的顺磁性,这种顺磁性的大小近似地与温度无关.泡利曾在1927年对这一现象进行探讨,正是这一探讨开辟了现代金属电子理论的发展.它的基本概念是:在金属中存在着一组连续或部分连续的"自由"电子能级.在绝对零度时,电子(其数目为N个)通常成对地占据N/2个最稳定的能级.按照泡利不相容原理的要求,每一对电子的自旋方向是相反的 这样,在外加磁场中,这些电子的自旋磁矩就不能有效地取向.当温度比较高时,其中有一些配对的电子对被破坏了,电子对中的一个电子被提升到比较高的能级.未配对的电子的自旋磁矩能有效地取向,所以使金属具有顺磁性.(前一节中介绍价键理论的局限性时已指出,顺磁性物质一般是具有自旋未配对电子的物质.)未配对电子的数目随着温度的升高而增多 然而,每个未配对电子的自旋对顺磁磁化率的贡献是随着温度的升高而减小的.对这二种相反的效应进行定量讨论,解释了所观察到的顺磁性近似地与温度无关.索末菲与其他许多研究工作者,从1928年到30年代广泛地发展了金属的量子力学理论,建立起现代金属键和固体理论——能带理论,可以应用分子轨道理论去加以理解.(可参看大学《结构化学》教材有关部分)

  • 基于零维硫化铅量子点与二维二硒化钨纳米片协同效应的高性能宽光谱光电场效应晶体管

    基于零维硫化铅量子点与二维二硒化钨纳米片协同效应的高性能宽光谱光电场效应晶体管

    近年来,伴随石墨烯研究发展而来的二维过渡金属硫属化合物(TMD)因其天然的半导体性,原子级的材料维度、超高的载流子传输能力等物理属性而成为当前光电子领域的研究热点。基于TMD的各类新颖器件被广泛地应用于电子、光电、传感等领域。作为一类典型的p型二维材料,巨纳集团低维材料在线91cailiao.cn提供的二硒化钨拥有达到350cm-1V-1s-1的高迁移率以及1.6 eV的合适带隙,是制备高灵敏光电探测器的理想材料。最近,基于二硒化钨纳米片的光电探测器被广泛报道,然而由于其较弱的光吸收和较窄的光谱响应范围,导致其光响应率不理想(0.02-7 AW-1),严重限制了其在微弱光电信号探测领域的应用。另一方面,低成本硫化铅量子点由于其极强的光吸收能力、溶液加工特性和可调的光响应特性被认为是柔性光电器件的明星候选材料,其被广泛地应用于近红外探测、光伏和光谱分析。美中不足的是硫化铅量子点光电探测器的响应率被其本身的低载流子迁移率所限制,阻碍了其在光电探测领域的广泛应用。基于以上两类器件的长期研究和积累,结合当前零维-二维杂化器件的研究现状,华中科技大学武汉光电国家实验室(筹)宋海胜和唐江教授研究团队巧妙利用了二硒化钨和硫化铅量子点优越互补特性设计和实现了零维-二维协同工作的高性能光电探测器。这种构建策略将量子点的光吸收特性与二维材料的高迁移率相结合,构建了零维-二维器件结构与type-II的能带结构,器件表现出超高的光响应度,达到了2×105 A/W,比单立材料制成的对应器件响应率高出了4个数量级。高响应率产生机制被证实来源于光致栅控效应。硫化铅量子点能够高效吸收入射光子,并将光生空穴注入到二硒化钨导电沟道,而光生电子被俘获在硫化铅量子点层,延长了光生载流子寿命,从而对二硒化钨起到光电导调控作用;同时,由于二硒化钨的高迁移率,大大减少了光生载流子在导电沟道的渡越时间,提高了器件的增益。与已报道的类似(零维-二维)结构的器件相比,该器件表现出更低的暗电流与更高的开关比;在整个栅控电压范围内,不论是开态还是关态,该器件都可正常工作。研制的零维-二维杂化器件在表现出高响应度的同时也拥有高的比探测率(7×1013 Jones)和快速的响应速度(7 ms);由于量子点的光敏特性,其光谱响应范围也相应拓宽到近红外范围,实现紫外到近红外的宽光谱探测。以上系列核心优势使其在光电探测领域有着巨大的应用前景。该项研究不仅为高性能光电探测器的研制提供了新思路,也为光电探测领域丰富了材料的选择性,拓宽了器件的应用范围。低维材料在线商城专注材料服务,主要销售以低维材料为代表的相关的实验室耗材和工具,比如各类二维材料,一维材料,零维材料,黑磷BP,石墨烯,纳米管,HOPG,天然石墨NG,二硫化钼MoS2,二硫化钨WS2,hBN氮化硼晶体,黑磷,二碲化钨WTe2,二硒化钨WSe2,二硫化铼ReS2,二硒化铼ReSe2量子点,纳米线,纳米颗粒,分子筛,PMMA,探针......[align=center][img=,500,386]http://ng1.17img.cn/bbsfiles/images/2017/08/201708311349_03_2047_3.jpg[/img][/align]

二维有机金属晶体相关的资料

二维有机金属晶体相关的资讯

  • Advanced Materials | 新型二维原子晶体材料Si9C15的构筑
    碳元素与硅元素同属第四主族,其原子最外层有四个未配对电子,可形成四根共价键。例如金刚石与单晶硅分别是碳原子和硅原子以sp3杂化方式与临近的四个原子成键形成的稳定结构。原则上,碳原子和硅原子可以以任意的比例互换,组成SixCy的一大类具有闪锌矿结构的晶体材料。理论预言表明,二维的SixCy晶体可以以蜂窝状结构稳定存在,随着碳硅比例的不同具有大范围可调节的带隙,从而产生丰富的物理化学性质,引起了研究人员广泛的关注。然而,自然界中的硅原子并不喜欢sp2杂化方式的平面二维结构,碳硅化合物晶体多数不存在像石墨一样的层状体材料。因此,常规的机械剥离方法并不适用于制备二维碳化硅材料。已有的实验报道包括利用液相剥离和扫描透射电子显微镜电子束诱导等手段获取准二维SiC和SiC2材料,然而这些材料存在着厚度不均一、尺寸太小以及无法集成等问题。因此,发展一种新的实验手段获取高质量、大尺寸的单晶二维碳化硅材料具有重要意义。最近,中国科学院物理研究所/北京凝聚态物理国家研究中心纳米物理与器件实验室高鸿钧研究团队利用组内自主设计研发的分子束外延-低温扫描隧道显微镜联合系统,对石墨烯硅插层技术进行了优化,并将其应用于二维碳化硅材料的构筑,成功在钌和铑两种单晶表面生长出大面积、高质量、单晶的单层Si9C15材料。他们首先在金属钌(铑)单晶表面生长获得高质量单层石墨烯,然后在石墨烯上沉积过量的硅,在1400 K高温下退火得到了厘米量级的单层碳化硅材料(图一)。他们进一步结合扫描隧道显微镜、扫描透射电子显微镜、X射线光电子能谱等表征手段和第一性原理计算,确定该二维材料是组分为Si9C15的翘曲蜂窝状结构(图二,图三)。蜂窝状结构由碳-碳六元环和碳-硅六元环组成,每个碳-碳六元环被十二个碳-硅六元环所包围。扫描隧道谱显示该二维材料表现出半导体特征,能隙为1.9eV(图四)。值得一提的是,单层Si9C15晶体具有较好的空气稳定性。制备的二维单晶样品在直接暴露空气72小时后重新传入超高真空腔体,在870 K退火1小时之后可以看到晶体结构几乎没有受到破坏(图五)。该项研究首次获得了大面积、高质量的单晶二维碳化硅材料。计算结果还显示在不同晶格常数的金属单晶衬底上有可能生长出不同碳硅比的二维材料,揭开了利用外延生长获取二维碳化硅材料的序幕。相关成果以“Experimental realization of atomic monolayer Si9C15”为题发表于Advanced Materials上。该工作与中国科学院大学的周武教授和国家纳米中心的张礼智研究员进行了合作。博士高兆艳、博士生徐文鹏、博士后高艺璇和博士后Roger Guzman为论文共同第一作者,李更、张礼智、周武和高鸿钧为共同通讯作者。该工作得到科技部(2019YFA0308500, 2018YFA0305700, 2018YFA0305800)、国家自然科学基金(61888102,51991340,52072401)、中国科学院(YSBR-003)和北京杰出青年科学家计划(BJJWZYJH01201914430039)等的支持。文章链接:https://onlinelibrary.wiley.com/doi/10.1002/adma.202204779 图一:单层Si9C15材料的获取。图二:二维Si9C15材料的原子构型图三:STEM图像证实二维Si9C15材料的存在。图四:二维Si9C15材料的电子结构。图五:二维Si9C15材料具有较好的空气稳定性。【近期会议推荐】仪器信息网将于2022年8月30-31日举办第五届纳米材料表征与检测技术网络会议,开设“能源与环境纳米材料”、“生物医用纳米材料”“纳米材料表征技术与设备研发(上)”、“纳米材料表征技术与设备研发(下)”4个专场,邀请20余位领域内专家,围绕纳米材料热点研究方向,从成分分析、形貌分析、粒度分析、结构分析以及表界面分析等主流分析和表征技术带来精彩报告。会议涉及热点研究方向:电极材料、医药材料、多铁/铁电材料、电子敏感材料、超宽禁带半导体材料......会议包含表征与检测技术:冷冻电镜、透射电镜、扫描电镜、扫描隧道能谱、X射线光电子能谱、纳米粒度及Zeta电位仪、超分辨荧光成像、表面等离子体耦合发射、荧光单分子单粒子光谱、磁纳米粒子成像、拉曼光谱、X射线三维成像......为纳米材料工作者及相关专业技术人员提供线上学术与技术交流的平台,帮助大家迅速掌握纳米材料主流分析和表征技术,共同提高纳米材料研究及应用水平。(点击此处进入会议官网,免费报名参会)
  • 狂发Nature等顶刊!Lake Shore低温探针台,助力超越硅极限的二维晶体管革新
    当今科技迅猛发展,电子器件的小型化和性能提升是科研人员的极致追逐。其中,晶体管是当代电子设备中不可或缺的核心组件,其尺寸微缩和性能提升直接关系到整个电子行业的进步。与此同时,硅基场效应晶体管(FET)的性能逐渐逼近本征物理极限,国际半导体器件与系统路线图(IRDS)预测硅基晶体管的栅长最小可缩短至12 nm,工作电压不低于0.6 V,这决定了未来硅基芯片缩放过程结束时的极限集成密度和功耗。因此,迫切需要发展新型沟道材料来延续摩尔定律。 二维(2D)半导体具备可拓展性、可转移性、原子级层厚和相对较高的载流子迁移率,被视为超越硅基器件的下一代电子器件的理想选择。近年来,先进的半导体制造公司和研究机构,都在对二维材料进行研究。Lake Shore的低温探针台系列产品可容纳最大1英寸(25.4mm)甚至8英寸的样品,可以为二维半导体材料研究提供精准的温度磁场控制及精确可重复的测量,是全球科研工作者的值得信赖的工具。本文我们将结合近期Nature、Nature electronics期刊中的前沿成果,一起领略Lake Shore低温探针台系列产品在二维晶体管革新中的应用吧! 图1. Lake Shore低温探针台1. 探针台电学测量揭秘最快二维晶体管——弹道InSe晶体管 对于二维半导体晶体管的速度和功耗方面的探索,北京大学电子学院彭练矛院士,邱晨光研究员课题组报道了一种以2D硒化铟InSe为沟道材料的高热速度场效应晶体管,首次使得二维晶体管实际性能超过Intel商用10纳米节点的硅基FinFET(鳍式场效应晶体管),并将工作电压下降到0.5V,称为迄今速度最快、能耗最低的二维半导体晶体管。相关研究成功以“Ballistic two-dimensional InSe transistors”为题发表于《Nature》上。 基于Lake Shore 低温探针台完成的电学测试表明,在0.5 V工作电压下,InSe FET具有6 mSμm-1的高跨导和饱和区83%的室温弹道比,超过了任何已报道的硅基晶体管。实现低亚阈值摆幅(SS)为每75 mVdec-1,漏极诱导的势垒降低(DIBL)为22 mVV-1。此外,10nm弹道InSe FET中可靠地提取了62 Ωμm的低接触电阻,可实现更小的固有延迟和更低的能量延迟积(EDP),远低于预测的硅极限。 这项工作首次证实了2D FET可以提供接近理论预测的实际性能,率先在实验上证明了二维器件性能和功效上由于先进硅基技术,为2D FET发展注入信心和活力。2. 探针台光电测量揭示光活性高介电常数栅极电介质——2D钙钛矿氧化物SNO 与2D半导体兼容的高介电常数的栅极电介质,对缩小光电器件尺寸至关重要。然而传统三维电介质由于悬挂键的存在很难与2D材料兼容。为解决以上问题,复旦大学方晓生教授等人进行了大量研究实验,发现通过自上而下方式制备的2D钙钛矿氧化物Sr10Nb3O10(SNO)具有高介电常数(24.6)、适中带隙、分层结构等特点,可通过温和转移的方法,与各种2D沟道材料(包括石墨烯、MoS2,WS2和WSe2)等构建高效能的光电晶体管。文章以“Two-dimensional perovskite oxide as a photoactive high-κ gate dielectric”为题发表在Nature electronics上。图3. 具有SNO顶栅介电层的双栅WS2光电晶体管的电特性和光响应 基于Lake Shore探针台的光电测试表明,SNO作为顶栅介电材料,与多种通道材料兼容, 集成光电晶体管具有卓越的光电性能。MoS2晶体管的开/关比为106,电源电压为2V,亚阈值摆幅为88&thinsp mVdec-1。在可见光或紫外光照射下,WS2光电晶体管的光电流与暗电流比为~106,紫外(UV)响应度为5.5&thinsp ×&thinsp 103&thinsp AW-1,这是由于栅极控制和光活性栅极电介质电荷转移的共同作用。本研究展示了2D钙钛矿氧化物Sr2Nb3O10(SNO)作为光活性高介电常数介质在光电晶体管中的广泛应用潜力。 3. 探针台电学测量探索200毫米晶圆级集成——多晶MoS2晶体管 二维半导体,例如过渡金属硫族化合物(TMDs),是一类很有潜力的沟道材料,然而单器件演示采用的单晶二维薄膜,均匀大规模生长仍具挑战,无法应用于大尺度工业级器件制备。与单晶相比,多晶TMD的较大规模生长就容易很多,具备工业化应用集成的潜力。 有鉴于此,三星电子有限公司Jeehwan Kim和Kyung-Eun Byun 团队提出一种使用金属-有机化学气相沉积(MOCVD)制造大规模多晶硫化钼(MoS2)场效应晶体管阵列的工艺,与工业兼容,在商用200毫米制造设备中进行加工,成品率超过99.9%。文章以“200-mm-wafer-scale integration of polycrystalline molybdenum disulfide transistors”为题发表在Nature electronics上。 图4. 三种不同接触类型(a常规顶部接触,b多晶MoS2的底部接触,c单层MoS2底部接触)的电学特性和肖特基势垒高度 基于Lake Shore低温探针台CPX-VF的电学测试表明,相比于顶部接触,底部接触可以更好的消除2D FETs阵列中多晶2D/金属界面的肖特基势垒。没有肖特基势垒的多晶MoS2场效应晶体管表现良好,迁移率可达21 cm2V-1s-1,接触电阻可达3.8 kΩµ m,导通电流密度可达120µ Aµ m-1,可比拟单晶晶体管。4. Lake Shore低温探针台系列 美国Lake Shore公司的低温探针台根据制冷方式不同,主要分为无液氦低温探针台和消耗制冷剂低温探针台,其下又因为磁场方向、尺寸大小差别,有更多型号的细分,适用于不同应用场景(电学、磁学、微波、THz、光学等),客户可根据需要,选择不同的温度和磁场配置。客户可以选择自己搭配测试仪表集成各类测试,也可以选择我们的整体测试解决方案,如电输运测试、半导体分析测试、霍尔效应测试、铁电分析测试,集成光学测试等。图5. 低温探针台选型和适用的应用场景Lake Shore低温探针台主要特征☛ 最大±2.5 T磁场☛ 低温至1.6 K,高温至675 K☛ fA级低漏电测量☛ 最高67 GHz高频探针☛ 3 kV 高电压探针(定制) ☛ 大温区低温漂探针☛ 真空腔联用传送样品(定制)☛ <30 nm低振动适用于显微光学测量☛ 无需翻转磁场快速霍尔效应测试☛ 多通道高精度低噪声综合电学测量☛ 光电、CV、铁电、半导体分析测试参考文献:1. J. Jiang, L. Xu, C. Qiu, L.-M. Peng, Ballistic two-dimensional InSe transistors. Nature 616, 470-475 (2023).2. S. Li, X. Liu, H. Yang, H. Zhu, X. Fang, Two-dimensional perovskite oxide as a photoactive high-κ gate dielectric. Nature Electronics 7, 216-224 (2024).3. J. Kwon et al., 200-mm-wafer-scale integration of polycrystalline molybdenum disulfide transistors. Nature Electronics 7, 356-364 (2024).相关产品1、Lake Shore低温探针台系列
  • 迄今速度最快能耗最低二维晶体管问世
    北京大学电子学院彭练矛教授-邱晨光研究员课题组日前制备出10纳米超短沟道弹道二维硒化铟晶体管,首次使得二维晶体管实际性能超过Intel商用10纳米节点的硅基鳍型晶体管,并将二维晶体管的工作电压降到0.5V,这也是世界上迄今速度最快能耗最低的二维半导体晶体管。该研究成果以《二维硒化铟弹道晶体管》为题日前在线发表于《自然》。芯片为大数据和人工智能的发展提供源源不断的动力,芯片速度的提升得益于晶体管的微缩,然而当前传统硅基场效应晶体管的性能逐渐接近其本征物理极限。受限于接触、栅介质和材料等方面的瓶颈,迄今为止,所有二维晶体管所实现的性能均不能媲美业界先进硅基晶体管,其实验结果远落后于理论预测。对此,团队在研发过程中实现了三方面技术革新:一是采用高载流子热速度(更小有效质量)的三层硒化铟作沟道,实现了室温弹道率高达83%,为目前场效应晶体管的最高值,远高于硅基晶体管的弹道率(小于60%);二是解决了二维材料表面生长超薄氧化层的难题,制备出2.6纳米超薄双栅氧化铪,将器件跨导提升到6毫西微米,超过所有二维器件一个数量级;三是开创了掺杂诱导二维相变技术,克服了二维器件领域金半接触的国际难题,将总电阻刷新至124欧姆微米。研究团队表示,这项工作突破了长期以来阻碍二维电子学发展的关键科学瓶颈,将n型二维半导体晶体管的性能首次推近理论极限,率先在实验上证明出二维器件性能和功耗上优于先进硅基技术,为推动二维半导体技术的发展注入了强有力的信心和活力。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制