表面涂层研究

仪器信息网表面涂层研究专题为您整合表面涂层研究相关的最新文章,在表面涂层研究专题,您不仅可以免费浏览表面涂层研究的资讯, 同时您还可以浏览表面涂层研究的相关资料、解决方案,参与社区表面涂层研究话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

表面涂层研究相关的耗材

  • 温敏培养表面培养器
    CellDETACHTM温敏培养表面培养器无需胰酶、无需刮刀,温度诱导性收获贴壁细胞 使用胰酶消化或细胞刮刀分离贴壁细胞,可影响细胞表面蛋白的表达,并损害细胞健康、降低细胞活力。CellDETACHTM温敏培养表面是一层特殊的、均一的温度敏感性的纳米聚合物涂层,当温度从37°C下降到4°C的过程中,温敏表面逐步从轻度疏水性转变为亲水性,即可实现贴壁细胞的非酶收获。这种相对温和的处理方式,避免了细胞受蛋白酶或刮刀的损伤,最大程度的保持了细胞的活性和细胞表面受体和抗原的完整性,从而轻松实现细胞收获时无损伤及可连续多次重复传代培养等 产品优势CellDETACHTM温敏培养表面,由洁特生物研发团队专为细胞传代、单细胞分析和细胞移植等研究而设计,并获得国家发明专利,旨在帮助实验者收获细胞单片,建立由正常细胞结合和细胞外基质连接的3D组织模型,简化细胞培养和组织工程技术,最小化实验操作时间。u 荣获国家发明专利技术(专利号:ZL201510780506.3)u 只需通过降低温度即可诱导细胞脱落,简单、快速、易操作u 无需胰酶消化:更好的保持细胞表面蛋白和标记物的完整性u 无需细胞刮刀:避免细胞机械损伤,保证细胞高活性u 优化细胞培养流程和组织工程技术 应用范围CellDETACHTM温敏培养表面,适用于大多数贴壁型细胞的体外培养,如干细胞、神经细胞、巨噬细胞、癌细胞等,是无损伤细胞收获的理想选择。可广泛应用于细胞扩增培养、细胞治疗、3D组织建模、细胞外基质研究等领域。 使用说明体外细胞培养? 温度在32℃以上时,CellDETACHTM温敏培养表面的温敏聚合物涂层为高分子卷缩状态,表现为轻度疏水性,因此,将培养介质和产品先预热到37℃,更有利于细胞的贴附和生长。? 温度在32℃以下时,表面的温敏聚合物涂层为高分子伸直状态,将结合水分子并膨胀,表现为亲水性,将有利于贴壁细胞的脱落,当温度下降到4℃时,脱落效率最佳。? 温敏培养表面的温度下降到32℃以下时,过多的扰动可能会造成细胞脱落,因此在细胞培养过程中拍照观察时,请勿过多延迟时间。 细胞收获? 细胞增殖到汇合度大于80%时收获最佳。? 细胞收获时,将环境温度降到4℃时更有利于降温处理及细胞的脱落(如将温敏产品置于4℃的无菌、低温恒温箱中,或将培养介质更换为4℃)。? 当温敏培养表面温度降到4℃时,保持20~30分钟,再用吸管(培养皿)、移液管或电动移液器(600ml培养瓶)吸取温敏培养表面上方的培养介质对贴壁细胞进行吹打,促使细胞脱落。在吹打过程可看到细胞成片从温敏培养表面脱落。? 细胞的温敏脱落能力取决于细胞的类型,贴壁能力较强的细胞可能需要多次吹打。(通常用0.25%新鲜胰酶在37℃消化时间超过3分钟,视细胞贴壁能力较强)存储和运输本产品不宜长时间接受阳光直射或暴晒,室温存储和运输即可。保质期:一年 细胞培养皿, 无菌目录号规格(mm)灭菌表面积(cm2)包装方式包装方式 CDD022100100是60.8盒装1/24CDD023100100是60.8 袋装5/100细胞培养瓶,无菌目录号容量(ml)盖类型灭菌表面积((cm2)包装方式个/箱 CDF024600600滤膜盖是182袋装1/20CDF023600600 滤膜盖是182袋装5/40CDF014600600密封盖是182袋装1/20CDF013600600密封盖是182袋装5/40CEllDETACHTM 温敏细胞表面器只用于科学研究,仅一次性使用使用L929细胞在37℃、5%CO2培养48小时,细胞汇合率>80%时收获在4℃环境保持15-20min后吹打的图片,细胞脱落率>80%-90%
  • Nalgene 6303 螺旋装订现场笔记本,有涂层的PolyPaper 页面
    Nalgene 6303 螺旋装订现场笔记本,有涂层的PolyPaper 页面;蓝色聚乙烯封面理想的现场作业用大型笔记本,适用于潮湿或有化学侵蚀的任何环境。灵活耐用的封面,内页采用牢固的螺旋装订方式。该笔记本带有标题页和目录页,页码从1标至96,双面都有1/4-in. 的绿色细网格线。每一页上都有填写日期、研究记录的操作员与见证人的签名位置。 订货信息:Nalgene 6303 螺旋装订现场笔记本,有涂层的PolyPaper 页面;蓝色聚乙烯封面目录编号 6303-1000总尺寸,mm235×286×11总尺寸,in.9-1/4×11-1/4×7/16页面尺寸,mm229×286页面尺寸,in.9×11-1/4每盒数量1每箱数量6
  • 无涂层直角棱镜
    无涂层直角棱镜用于90°或180°反射准直光束。因此用于改变成像方向,逆反射和作为外反射器。无涂层直角棱镜具有高品质的表面抛光,适合在高功率应用中使用。无涂层直角棱镜材料为N-BK7或UVFS,支持定制材料和尺寸。标准倒角:0.35mm@45°,角度公差:±3arc min。CVI提供了包括光束转向,成像图像调整,波长分离等多种类型的棱镜。适合于在高功率激光工业,科研应用。可以定制的材料和尺寸,也提供各种电介质和金属涂层镀膜的棱镜。棱镜在工业上有广泛应用,如通过光谱中实现激光跟踪和定位,测距和大气监测。其宽带宽、高损伤阈值,使得在激光系统中的色散补偿腔内使用或作为光束分离器。棱镜实现通过精抛光具有高表面质量、高面形精度和高激光损伤阈值,可选择镀低损耗抗增透膜。通过优秀的制造工艺,CVI的棱镜具有大的通光孔径,小尺寸公差,以及低角度偏差的优点。棱镜的使用材料包括N-BK7,熔融二氧化硅,Suprasil 1,晶体石英和N-F2,其他材料可根据要求提供。支持各种光学涂层。

表面涂层研究相关的仪器

  • 仪器简介:球磨型膜厚磨损测试仪 球磨型膜厚测试仪Calotest为您提供简单快速并且低成本的膜厚测量方法。一个半径精确已知的磨球由自身重力作用于镀膜试样表面并进行自转。在测试过程中,磨球与试样的相对位置以及施加于试样的压力保持恒定。磨球与试样间的相对运动以及金刚石颗粒研磨液的共同作用将试样表面磨损出一球冠形凹坑。随后的金相显微镜观测可以获得磨损坑内涂层和基体部分投影面积的几何参数。在得知了X和Y的长度后,涂层的厚度D可以通过简单的几何公式计算得出。 膜厚及磨损测试仪Calowear将这个原理更加深了一步。通过监测球体施加在试样上的载荷,我们可以更好的控制薄膜的磨损。研磨液以恒定速率自动滴加在球体与试样界面,构成一个稳定的三体磨损系统。 Calowear不是一次性的磨损试样表面,而是将磨损过程分成几个不同的阶段来完成。磨损坑的形状以及法向力的数值在每阶段的磨损后进行记录。由此,薄膜以及基体的磨损率可以精确的计算出来。 技术参数:主要技术参数 工作台尺寸: 50 x 50 mm 转动速率: 60 to 1200 rpm 标准磨球直径: 20, 25, 30mm 磨损时间范围: 10 - 90 sec or 1 - 9 min主要特点:特点 分为两款紧凑型和工业型薄膜与基体的磨损率测量 膜厚测量 适用于多种材料 可以导出数据进行更深入分析(例如: EXCEL 等)
    留言咨询
  • 浅析海上风电防腐技术应用及优化涂层一种用于海上风电基础的锚固螺栓利用烷基硅酸盐与环氧树脂的有机结合,提高皮膜的附着力和封闭性,抑制表面锌铝粉涂层的消耗,延长使用寿命;独特的片状锌铝粉均匀分布在涂膜中,并依据Zn、Al的电化学性能,使耐候性更加优异;常温速干性,表面干燥1小时,实干24小时。根据季节,气候条件不同,干燥时间有一定的差异,如夏季气温在30℃时,干燥时间减半;较高的固含量(干膜锌铝成分达到85%)具备超强的防腐性能;超薄膜,针对行业广泛(膜干30μ m,耐盐雾试验时间1000小时);适用基材广泛,针对于铁,碳钢,镀锌材,不锈钢,铝材等大多数金属材质都具备良好的性能参数;
    留言咨询
  • 表面涂层综合性能评价试验机(MSE微粒喷浆冲蚀法)微粒喷浆冲蚀MSE方法使用恒定的固体微粒对材料表面进行冲蚀,材料磨损量随表面强度而改变。MSE试验机将磨损量的变化转换成磨损率,来评估和对比各种材料表面强度。适用范围:涂层、镀层、镀膜涂层强度 (可检测多级涂层强度数值化)复合涂层厚度(可分层检测多涂层)涂层间、涂层与基体结合力通过对膜的检测。评价镀膜工艺性能涂层均匀度 表面涂层综合性能评价试验机(MSE微粒喷浆冲蚀法)的特点1、MSE是市场上采用全新方法评估涂层材料的试验机。2、MSE是市场上可以评估坚硬涂层的试验机,对坚硬涂层具有高分辨能力,可对多种坚硬涂层进行评估,如TiN,DLC(类金刚石镀膜),CBN(立方氮化硼)和金刚石等,填补了现在各种试验机不能评估坚硬涂层的缺陷。3、MSE也是可对多涂层进行精确评估的试验机。4、MSE微粒碰撞产生的磨损是纳米级的,可在不破坏基体材料的情况下,对薄膜涂层进行评估。结合对碰撞微粒的精确控制,具有很好的重复性。5、MSE评估分析时间短。浆体的高速喷射使得产生1um的磨损深度只需几秒时间,Si晶片约3s,蓝宝石约75s,TiN薄膜约350s,DLC约8000s。产品应用(所有具有表面涂层材料筛选、研究的应用领域) 1、涂层和硬涂层材料的研发● 切削工具和研磨工具的寿命预测,可与元素分析,划痕测试等设备联用。● 硬涂层薄膜材料的研发。● 坚硬新材料的研发领域,用于尖端技术(飞机或火箭)的坚硬材料和耐高温材料等。● 薄膜制造工艺研发领域,不同的生产工艺导致薄膜质量差异,MSE使用磨损率对薄膜细微差异进行评估。● 烧结材料制造工艺研发领域,在试制阶段及时进行材料的物理和力学特性评估。2、制造领域● 制造设备质量波动检测● 间接设备维护,时常进行产品检验对改进和保持产品质量非常重要的。● 质量保证 表面涂层综合性能评价试验机(MSE微粒喷浆冲蚀法)的示例 表面涂层综合性能评价试验机(MSE微粒喷浆冲蚀法)各种材料的摩损率等级 MSE测量的技术参数MSE-SMSE-AMSE-B基本规格构造磨损处理系统磨损处理系统磨损处理系统-样品清洗单元--自动测量系统--数据处理系统-测试规格样品尺寸30mm× t10mm30mm× t10mm30mm× t10mm磨损面积1mm1mm2mm颗粒类型平均直径1.2&mu m(WA8000)平均直径1.2&mu m(WA8000)平均直径1.2&mu m&mdash 100&mu m浆体密度3wt%(恒定)3wt%(恒定)最大 5wt%浆体罐容量1L1L1L喷射角度90° (恒定)90° (恒定)60° ~90° 喷射过程中恒定喷射分辨率0.5g0.5g0.5g连续测量的准确度± 8%± 8%± 8%测量部分参数方法-垂直扫描 干涉仪形貌测量-面积-1330× 1760&mu m-深度-20&mu m-分辨率-20nm-主体参数尺寸W700× d530× h610W1100× d500× h650W600× d550× h650测量控制部分-W550× d550× h580-屏幕-W400× d200× h400-Utility电源100v 0.8kva100v 1kva100v 0.8kva气源干燥空气(0.55 mpa 以上)15L/min(ANR 0.4kw 相当)干燥空气(0.55 mpa 以上)15L/min(ANR 0.4kw 相当)干燥空气(0.55 mpa 以上)15L/min(ANR 0.75kw 相当)其他空气和水废液水源,空气和水废液空气和水废液
    留言咨询

表面涂层研究相关的方案

表面涂层研究相关的论坛

  • 油漆表面涂层的制备

    测试过程中遇到的油漆表面涂层,一般怎么处理?是采用刀片刮?采用有机溶剂泡使之自行脱离?前者容易刮到基材,后者在分析有机组份时可能给定量带来影响;还有更好的处理方法吗?

表面涂层研究相关的资料

表面涂层研究相关的资讯

  • 铝表面超疏水涂层的疏冰性研究
    在低温条件下,室外设备的冻结已经成为一个严重的问题。特别是电路线、道路、飞机机翼、风力涡轮机等基础设施部件结冰对经济和生命安全造成了严重影响。铝(Al)及其合金具有重量轻、稳定性好、韧性高等优点,广泛应用于各个工业领域。然而,酸雨会腐蚀金属基底,冰雨会对铝结构造成严重的冰积。疏冰性被认为是通过保持基底表面尽可能无水和降低冰晶与基底之间的粘附力来延缓或减少冰在表面的积累。超疏水(SHP)表面由于其拒水和自清洁特性而具有疏冰性。Tan等通过水热反应在Al表面形成机械坚固的微纳结构,然后用十六烷基三甲氧基硅烷修饰形成SHP表面。其中水接触角(WCA)和滑动角(SA)采用光学接触角仪进行测量,水滴为10µ L。该SHP表面在酸性和碱性环境中都表现出令人印象深刻的疏水性,并表现出显著的自清洁和疏冰性能。图1. (a)裸铝、(b)铝表面微纳和(c)十六烷基三甲氧基硅烷改性SiO2微纳表面的WCA值。(d)不同酸碱溶液在SHP表面静置1min后的静态接触角。(e)在SHP表面静置30min后的水滴(红色1.0,透明7.0,黑色14.0,附有pH试纸)图片。(f)在不同溶液中浸泡30min后的耐酸碱性测试(左)和静态WCA(右):水(上),0.1 M HCl(中),0.1 M NaOH(下)涂层的润湿性主要受两个因素的影响:表面粗糙度和表面能,润湿性可以通过静态WCA可视化。裸铝(图1(a))、具有微纳米SiO2表面的氧化铝(图1(b))和SHP表面(图1(c))的WCA值分别为87°、134°和158°。WCA值的显著变化说明了微纳结构和十六烷基三甲氧基硅烷对SHP表面的重要性。同时,SHP表面的SA值小于5°。SHP表面也采用不锈钢和合金材料(Supplementary Movie 1)。根据Nakajima等人的报道,大的WCA和低的SA预计会导致液滴从表面滚落。图1(d)为pH 1.0 ~ 14.0溶液在SHP表面的静态WCA: WCA在148°~ 158°之间,当pH值接近7.0时,WCA值较大。图1(e)为SHP表面水滴形状(体积约60 μL, pH 1.0 ~ 14.0)。30分钟后形状没有变化。这显示出良好的耐酸性或碱性溶液。图1(f)进一步说明了SHP涂层的耐酸碱性能。左图为实验方法,右图为水(154°)、0.10 M HCl(142°)、0.10 M NaOH(143°)浸泡30 min后的WCA。这些结果表明,SHP涂层在各种酸性/碱性环境下都具有良好的性能。图2. 裸铝和SHP Al的WCA和SA在结冰状态下,进一步测量5次重复实验的WCA和SA,结果如图2所示。SHP表面的WCA约为154°,SA小于8°,而裸露Al表面的WCA约为85°,SA大于10°。因此,在SHP铝表面获得了良好的疏冰性。参考文献:[1] Tan, X., Wang, M., Tu, Y., Xiao, T., Alzuabi, S., Xiang, P., Chen, X., Icephobicity studies of superhydrophobic coating on aluminium[J]. Surface Engineering, 2020, 37(10), 1239–1245.
  • 加拿大发布玩具表面涂层重金属含量法规
    近期,加拿大卫生部发布了一则关于儿童玩具表面涂层含有特定重金属的通知。该通知提醒所有玩具制造商、进口商和零售商,儿童玩具必须经过重金属含量测试,证明完全符合加拿大的法规之后,才可以进入加拿大市场销售。该通知同时公布了上述重金属的法定限量及测试方法。   儿童玩具进入加拿大市场需符合加拿大《危险产品法案》及《危险产品(玩具)条例》,该法规规定,如果儿童玩具、装备及供儿童学习玩乐的其它产品的表面涂料中含有总铅、特定可迁移的重金属及汞化合物,则禁止在加拿大宣传、进口或销售。所有制造商、进口商、经销商和零售商均有责任保证,在加拿大宣传、进口或销售的任何玩具(包括二手玩具)都已符合《危险产品法案》中规定的所有适用的安全规定。   同时,该通知还特别提到,在产品制造过程中使用的标签和贴花纸也属于表面涂层。由于,在许多情况下(特别是在重金属方面),加拿大的法规及相关的测试方法不同于美国或欧洲,因此需要相关人员特别注意。检验检疫专家建议,各相关机构及生产出口企业,应制定针对不同市场玩具重金属限量要求及检测方法的生产应对措施,实行“按需生产”,同时积极了解目标市场法规变化,进行有针对性检测,做到有备无患。
  • 纳米级近场光学成像对钙钛矿太阳能电池表面涂层电子迁移和载流子浓度的研究进展
    太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置, 其中以光电效应工作的晶硅太阳能电池为主流。虽然通过掺杂及表面覆盖抗光反射层能提高晶硅太阳能电池的效率,但是超过能带间隙和一些特定波长的光反射造成了巨大的光能量损失,反而限制了晶硅太阳能电池的效率。 Y.H. Wang等利用有机金属三溴纳米粒子(CH3NH3PbBr3)涂层吸收部分短波长太阳光,使其转化成化电场。该化电场可以通过促进分子重排而增强有机-晶硅异质结太阳能电池的不对称性,从而增加表面活性载流子密度,终将有机-晶硅异质结太阳能电池的效率从12.7%提高到了14.3%。 苏州大学Q.L. Bao教授等人在钙钛矿结构微纳米线的光电转换离子迁移行为和载流子浓度分布等领域作出了突出贡献。2016年,发表在ACS Nano上的钙钛矿结构微纳米线的光电转换离子迁移行为的研究中,作者利用neaspec公司的近场光学显微镜neaSNOM发现:1. 未施加外场电压时, 该微纳米线区域中载流子密度(图1 g. s-SNOM振幅信号)和光折射率(图1 g. s-SNOM相位信号)较均匀;2. 施加外场正电压时,该区域中载流子密度随I-离子(Br?)的迁移而向右移动(图1 h. s-SNOM振幅信号),其光折射率随随MA+离子(CH3NH3+)的迁移而向左移动(图1 g. s-SNOM相位信号)较均匀;3. 施加外场负压时,情况正好与施加正电压时相反(图1 i)。该研究显示弄清无机-有机钙钛矿结构中的离子迁移行为对于了解钙钛矿基的特殊光电行为具有重要意义,进而为无机-有机钙钛矿材料的光电器件应用打下了坚实的基础。图1.SNOM测量钙钛矿结构微纳米线的光电转换的离子迁移行为。 d-f. 离子迁移测量示意图;g-i,相应的s-SNOM光学信号振幅和相位图 2017年, Q.L. Bao教授等人发表在AdvanceMaterials的文章中再次利用neaspec公司的近场光学显微镜neaSNOM,次在实验中研究了太阳能电池表面钙钛矿纳米粒子涂层的载流子密度。结果显示:钙钛矿纳米粒子覆盖区域近场信号强度高于Si/SiO2区域中信号强度(参见下图2 b 图2 a为对应区域的形貌)。另外作者也研究了增加光照的时间的影响(参见下图2 c, d)。其结果显示:近场信号强度随光照时间增加,从12.5 μV (黄色,0 min) 增加到 14.4 μV (红色, 60 min),该近场信号反映了可移动自由载流子密度的变化。终,红外光neaSNOM研究结果证明:随光照时间增加,太阳能电池表面的钙钛矿纳米粒子涂层富集和捕获了大量的电子。图2. SNOM测量钙钛矿结构纳米粒子涂层的载流子密度。a. AFM形貌图;b, s-SNOM光学信号图-未加光照;c, s-SNOM光学信号图-光照30min;d, s-SNOM光学信号图-光照60min 作者预见,该研究对于设计新型太阳能电池,提高其转化效率具有重要意义。同时,该研究还提出了一种使钙钛矿结构材料和晶硅太阳能电池相结合的研究方法,为之后的研究和应用提供了解决新思路。相关参考文献1.Zhang Y.P. et. al. Reversible StructuralSwell?Shrink and Recoverable Optical Properties in Hybrid Inorganic?OrganicPerovskite. ACS Nano 2016,10, 7031?7038.2.Wang Y.H. et. al. The Light-InducedField-Effect Solar Cell Concept - Perovskite Nanoparticle Coating IntroducesPolarization Enhancing Silicon Cell Efficiency. AdvancedMaterial 2017, First published: 3 March 2017 DOI: 10.1002/adma.201606370.相关产品链接超高分辨散射式近场光学显微镜 http://www.instrument.com.cn/netshow/SH100980/C170040.htm德国Neaspec纳米傅里叶红外光谱仪 http://www.instrument.com.cn/netshow/SH100980/C194218.htm
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制