比热容

仪器信息网比热容专题为您整合比热容相关的最新文章,在比热容专题,您不仅可以免费浏览比热容的资讯, 同时您还可以浏览比热容的相关资料、解决方案,参与社区比热容话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

比热容相关的耗材

  • 光学玻璃(N-BK7等)窗片
    光学玻璃(N-BK7等)窗片N-BK7是由Schott设计用于多种可见光应用的最常见的硼硅酸盐冠状玻璃。 这里的基本数据给出了N-BK7。详细参数:透射范围: 350nm至2.5μm折射率: 1.51680 @ 587.5618nm(黄氦线)反射损耗: 8.1% at 587.5618nm(2个表面)吸收系数: - 吸收峰: - dn / dT: 见Schott表dn /dμ= 0: - 密度: 2.51熔点: 557℃导热系数: 1.114 W m-1 K-1热膨胀: 7.1×10-6 K-1硬度: Knoop 610比热容: 858JKg-1K-1介电常数: n / a杨氏模量(E): 82GPa剪切模量(G): n / a体积模量(K): 34GPa弹性系数: n / a表观弹性极限: 63.5MPa(9206psi)泊松比: 0.206溶解性: 不溶于水分子量: n / a类别/结构: 非晶玻璃订购信息:订购型号规格(D×L)(mm)材质S/D材料等级BK7P10-210.0mm×2.0mm BK760/40VISB270P25.4-125.4mm×1.0mm B27060/40VISB270P32-332.0mm×3.0mm B27060/40VIS
  • 比热值校准套装 02190136
    比热值校准套装本品包括分别采用两种直径和厚度生产而得的4个蓝宝石圆盘。它也包括一幅能以合成型蓝宝石的形式给出氧化铝比热值的校准图表。订货信息:产品描述部件编号比热值校准套装02190136
  • 砷化镓(GaAs)窗片
    砷化镓(GaAs)窗片GaAs的生产采用Czochralski或水平Bridgeman晶体生长技术。 由于它是含砷的,应注意处理和工作中的预防措施。砷化镓在远红外光学和透镜系统中具有专门的应用。产品参数:传输范围: 1?16μm(1)折射率: 3.2727 @10.33μm(1)反射损失: 44%@10.33μm 吸收系数: 0.01cm -1吸收峰: n / adn / dT: 147 x 10-6/°C @ 10 μm (4) for derivationdn /dμ= 0: 6.3μm密度: 5.315g / cc熔点: 1511℃热导率: 48 W m-1 K-1 @ 273K (2)热膨胀: 5.7 x 10-6 /°C at 300K (3)硬度: Knoop 750比热容: 360 J Kg-1 K-1介电常数: 在低频下为12.91杨氏模量(E): 84.8GPa剪切模量(G): n / a体积模量(K): 75.5GPa弹性系数: n / a表观弹性极限: 71.9 MPa泊松比: 0.31溶解性: 不溶于水分子量: 144.64类/结构: 立方ZnS,F43m,(100)裂解 折射率:No = Ordinary Rayμm Noμm Noμm No1.033 3.4921.550 3.37372.066 3.3382.480 3.3243.100 3.31254.133 3.30274.959 3.29786.199 3.29217.293 3.28748.266 3.28319.537 3.276910.33 3.272711.27 3.267112.40 3.259713.78 3.249315.50 3.233617.71 3.208119.07 3.1866产品规格:订购型号规格(D×L)(mm)光谱范围GAASP10-0.310.0×0.3mmIRGAASP25.4-225.4×2.0mmIR

比热容相关的仪器

  • 中温比热容测试仪 400-860-5168转1840
    GHC-II-10中温比热容测试仪 固体比热容测试系统是基于混合法测试,运用现代计算机测试技术实现不同温度下固体材料的比热容自动测试。广泛应用于科研教学对于固体材料比热容的测试研究。 系统由管状立式电阻炉,恒温器、控温仪、高精度测温仪、量热计,计算机测试系统等组成。实验时先将式样在管状加热炉中加热到实验温度,然后再落入到量热计中,全过程由计算机测量系统采集到式样和量热计的温度变化。最后得出材料的比热容。对高温易氧化的样品需要配备真空系统。 主要技术指标1:测试温度范围:100—800℃可调2:比热容范围:0.05-5(kj/kg*k) 测试精确度 ≤1%±0.002;3:试样要求 固体样品尺寸(φ16-φ20)×(30-50)mm;4:测温最小分辨率:0.001℃ 5:实验方法 混合法。6:采用智能PID 调节,程序控制。7:量热器:热容约1500J/K, 温度分辩率0.001℃。8:可连接计算机自动测试,数据处理,并可生成检测报告打印输出。9:测试软件windows 10/7/xp操作环境,中文操作界面。10:测试原理满足军用标准:GJB330A-2000,GJB1715-9311:电源电压:220V/50Hz,功耗小于:2KW主要配置: ①中温比热容测试仪主机②软件、通讯接口及数据线③高精度恒温水槽壹台④计算机数据采集系统
    留言咨询
  • 下落法中温比热容测定仪 一、简介依阳公司出品的中温比热容测定仪是一种测定固态材料(包括固体、粉体、纤维和薄膜等)比热容的测试设备,采用的方法方法是下落式铜卡计混合法,依据的测试标准为国军标GJB 330A-2000 “固体材料60K~2773K比热容测试方法”和国标GB/T 3140-2005“纤维增强塑料平均比热容试验方法”,测试温度范围为50℃~1000℃。下落式铜卡计混合法作为一种经典测试方法,具有测试试样体积大、更适合块状复合材料测试的特点,而且测试周期短,对一般材料约一个小时测量一个试样,适合大批量试样的连续测量。中温比热容测定仪由计算机进行自动检测和控制,自动进行样品温度的监控、电动开关控制试样的整个下落过程、自动进行量热计温度的监控以及自动进行测试结果计算。中温比热容测定仪具有很高的测量精度,对于标准参考材料人造蓝宝石(synthetic sapphire:α-Al2O3)在50℃~1000℃范围内的测量相对误差小于±3%。下落法比热容测定仪原理图下落法中温比热容热分析测定仪下落法中温比热容热分析测定仪整机系统二、技术指标 (1)试样尺寸:最大直径14mm、高度30mm;(2)比热容温度范围:室温~1000℃;(3)比热容测量精度:优于±3%;(4)试样加热炉均温区长度:大于50mm;(5)试样加热炉均温区温度波动:±3%;(6)量热块热容量:2000J/℃;(7)量热计测温精度:优于0.01℃。三、特点1. 电动控制试样的下落,控制方式可根据不同需要进行选择,既可以单独进行试样悬丝熔断、炉门和量热计盖板的开启和闭合,也可以选择全自动联动方式,同时进行悬丝熔断、炉门和量热计盖板的操作,有效保证试样下落的准确性。 2. 全自动计算机软件控制,可以通过软件来设定加热炉温度、监测试样温度变化、量热计绝热控制情况和量热计温度变化过程,特别是能自动对试样下落后量热计的温度变化进行检测和显示,并自动计算和显示出测量结果。 3. 下落法比热容测试技术具有很强的扩展性,可以实现高温和超高温3000℃下的材料比热容测量。 4. 依阳公司的比热容测定仪特别采用了独特的仪器结构设计和灵巧的测试步骤,有效的提高了测试效率,使得单个试样在一个温度下的测试时间大大缩短,很轻易的实现快速大批量高效测试,测试效率远高于其他热分析仪器。
    留言咨询
  • 技术参数:GHC-II固体材料高温比热容测试仪 高温比热测试系统是基于混合法测试,运用现代计算机测试技术实现不同温度下固体材料的比热容自动测试。广泛应用于科研教学对于固体材料比热容的测试研究。 系统由管状立式电阻炉(1000度为电阻丝发热,1700度为钼丝发热,高于1700度为石墨炉管),恒温器、控温仪、高精度测温仪、量热计,计算机测试系统等组成。实验时先将式样在管状加热炉中加热到实验温度,然后再落入到量热计中,全过程由计算机测量系统采集到式样和量热计的温度变化。最后得出材料的比热容。对高温易氧化的样品需要配备真空系统。 主要技术指标 1:温度范围:室 温—1400℃比热容范围:大于0.5 (J/g*K) 精度≤1%2:控温精度:±0.3K/30分钟(与设置有关)3:测温最小分辨率:0.01K 4:加热方式:碳棒。5:采用智能PID 调节,程序控制。6:全过程计算机数据采集。7:量热器:热容约1500J/K, 温度分辩率0.01℃。8:绝热屏:3对热电偶,温度分辩率0.01℃。9:恒温水槽:-5.00-60.00(℃)10:试样防氧化保护:氩气11:仪器自带测试软件触摸屏操作,也可连接计算机自动测试,测试软件windows xp操作环境,中文操作界面12:样品大小:直径:11mm,高30mm,粉样配标准试样盒。13:测试原理满足军用标准:GJB330A-2000,GJB1715-9314:电源电压:220V/50Hz,功耗小于6KW
    留言咨询

比热容相关的试剂

比热容相关的方案

比热容相关的论坛

  • 比热容检测

    点击链接查看更多:[url]https://www.woyaoce.cn/service/info-18551.html[/url]比热容检测报告有哪些作用?1、质量及安全性:确定产品原料、半成品、成品的质量及安全性。2、内部质量把控:提供产品质量数据,排查产品性能是否达标。3、招投标检测报告:根据检测要求进行相关检测,提供检测报告。比热容检测标准ASTM E2716-2009(2014)用正弦调制差分扫描量热法测定比热容的试验BS EN 821-3-2005高级工业陶瓷.整体陶瓷.热物理特性.比热容的测定GB/T 3140-2005纤维增强塑料平均比热容试验GB/T 19466.4-2016塑料 差示扫描量热法(DSC) 第4部分JIS K7123-1987塑料比热容测定KS M3049-1990塑料的比热容量测定NB/SH/T 0632-2014比热容的测定QJ 809-1994复合固体推进剂热导率和比热容测定QJ 1521-1988固体材料深低温比热容测试QJ 2275-1992复合固体推进剂比热容测定SY/T 7517-2010原油比热容的测定YS/T 1256-2018有色金属材料比热容试验[b][/b]

  • 关于比热容求助

    我想问问DSC生物质比热容的时候,原料需不需要干燥啊。还有元素分析的时候,需要干燥吗

  • ARC比热容测试

    ARC做比热容测试时,为什么需要用铝块做校准系数,最后电芯算比热容时候再乘上这个校准系数。铝块的标准值又是代表什么?有没有大佬帮帮我解答,谢谢了。

比热容相关的资料

比热容相关的资讯

  • ADVANCE RIKO发布激光闪光法热常数测量系统新品
    激光闪光法热常数测量系统TC-1200RH采用符合JIS/ISO标准的激光闪光法测定材料的三个重要热物理常数:热导率(导热系数)、热扩散系数及比热容。使用红外金面炉替代传统电阻炉加热,大大缩短测量时间。可应用于热电材料的研究与开发,及其他材料的热物理性能评价。 仅需1/4的时间(与使用电阻炉的传统型号相比)。因控温灵敏度提高,温度稳定性大大增加。设备特点红外金面炉的使用使得加热和冷却速度大大提高1. 使用红外线直接加热样品可以迅速使温度稳定;2. 控温的灵敏度提高使得低温区间内的温度稳定性得到改善,从而减少温度波动,进而太高测量精度。符合JIS/ISO标准要求1. 激光闪光法测定精细陶瓷的热扩散系数、比热容及热导率(JIS R 1611) 2. 精细陶瓷热电材料的测定方法 – 第3部分:热扩散系数、比热容及热导率(JIS R 1650-3) 3. 激光闪光法测定铁的热扩散系数(JIS H 7801)应用方向• 热电材料的研究与开发 • 陶瓷、金属及有机材料的研究与开发 • FPD散热材料的热扩散率和比热容评价 • 半导体器件和模制器件的材料热扩散研究设备参数1. 测量参数:热扩散系数,比热容2. 样品尺寸:φ10mm×1mm~3mm(厚度)测量方向:厚度方向3. 测量氛围:真空(*不高于150℃时,可在大气下测量)4. 温度范围:室温至1150℃(最高1200℃)最大升温速度目标温度~100℃~300℃~1150℃升温速度10℃/min20℃/min50℃/min安装条件1. 主机尺寸:约 W900mm×D1050mm×H1700mm2. 主机质量:约 350kg3. 电源:AC200V 单相 8kVA(主机) AC100V 单相 1kVA(PC)4. 冷却水:城市用水 >5L/min 压力>0.15MPa可选件• 方形样品托 • 多样品上样装置:最多3个样品 • 基体测量附件 室温:SB-1 200℃:SB-2• 多层材料分析软件FML系列 如果其中一层材料的热物理参数已知,可根据测量结果分析多层材料 (多层材料分析的模型在JIS H8453中已列出) • 高温炉:最高可达1500℃创新点:使用红外加热炉直接加热样品可以迅速使温度稳定,大大缩短测量时间;控温的灵敏度提高使得低温区间内的温度稳定性得到改善,从而减少温度波动,进而提高测量精度。可应用于热电材料的研究与开发,及其他材料的热物理性能评价。 激光闪光法热常数测量系统
  • 钱义祥&曾智强 :DSC曲线的峰谷之美
    热分析的美存在于DSC曲线的峰谷、TG曲线的流淌和DMA曲线的激荡, 绝妙 ! DSC曲线的峰谷、TG曲线的流淌和DMA曲线的激荡的美学理念是一个完整的美学体系。DSC曲线的峰谷之美,TG曲线的流淌之美和DMA曲线的激荡之美构成热分析曲线之美的三部曲。本篇是DSC曲线的峰谷之美。【热分析简明教程】第五章是热分析实验方法的标准与规范。差示扫描量热法DSC的标准与规范包括玻璃化转变温度测定、熔融和结晶温度、熔融和结晶焓的测定、比热容的测定、特定反应曲线温度、时间、反应热和转化率的测定、氧化诱导期的测定、结晶动力学的测定。本文以差示扫描量热法DSC的标准与规范中提及的玻璃化转变测定、熔融和结晶测定、比热容测定、特定反应测定、氧化诱导期测定、结晶动力学测定为示例,展现DSC曲线的峰谷之美。山高人为峰,脚踏幽幻谷。迈开脚步,探索DSC峰谷之美。传热学是研究由温差引起的热能传递规律的科学。热流DSC是测定热变化引起试样与参比物温差变化的研究方法。温度差既是热量变化的反映,又是引发热传导的必要条件。当试样发生热反应时,温差引起热能传递,DSC曲线上出现了吸热峰、放热峰和和台阶。约定DSC曲线Y轴的代表的热效应方向之后(例如将Y轴正向约定为放热方向),吸热效应用凹下的谷表示;放热效应用凸起的峰表示。高聚物的玻璃化转变表现在DSC曲线上是基线的突然位移,表现为正常吸热曲线的阶跃,呈台阶形。峰、谷和向吸热方向偏离的台阶是展现DSC曲线的峰谷之美的基本形态和美姿。它反映了事物变化的本质和规律。 一.玻璃化转变曲线的阶跃之美玻璃化转变测定的标准是GB/T19466.2-2004/ISO11357-2 2020。它规定了塑料玻璃化转变温度的DSC测定法。玻璃化转变研究植根于高分子化学、高分子物理和近代研究方法(热分析)的根基上。热分析研究玻璃化转变的目的就是科学认识玻璃化转变,用高分子化学、高分子物理和凝聚态物理来解析玻璃化转变曲线中的科学问题和应用问题。玻璃化转变是高聚物的基本物理转变,研究内涵极为丰富,它涉及玻璃化转变的特征温度、状态变化、热力学参数、力学性能、滞后圈、活化能测定;玻璃化转变温度的调控;玻璃化转变与蠕变、应力松弛、屈服、界面、银纹的关联;热-力历史对Tg的影响、以及玻璃化转变与高聚物结构、性能、加工、使用的相关性等。并通过分子运动揭示分子结构与材料性能之间的内联系及基本规律。用DSC方法研究玻璃化转变,当试样发生玻璃化转变时,表现为正常吸热曲线的阶跃,呈台阶形。当高聚物发生物理老化时,应力松弛过程使台阶转化为凹下的谷。我们从玻璃化转变曲线的阶跃和凹下的谷发现玻璃化转变的外在美和内在美。1. 玻璃化转变的简约之美和变化之美 玻璃化转变峰形 应力松弛引起的峰形变化 TMA压入模式测定导线双层涂层的Tg,呈双台阶式,如图所示: 玻璃化转变的峰形简洁优美,简静和谐,简约的形式却表达了丰富的内容。玻璃化转变反映了物质的状态、使用温度、相容性、老化温度区间、制品加工、材料稳定等信息。2. 玻璃化转变台阶演变之美物理老化是玻璃态高聚物通过链段的微布朗运动使其凝聚态结构从非平衡态向平衡态过渡的松弛过程。它一般发生在玻璃化温度和次级转变之间。高聚物的物理老化引起玻璃化转变台阶变异,应力松弛过程使台阶演变为凹下的谷形特征,甚至酷似DSC曲线上的吸热峰。这是玻璃化转变台阶演变之美。从宏观性能角度来看,高聚物的玻璃化转变是指非晶高聚物从玻璃态到高弹态的转变(温度从低到高),或从高弹态到玻璃态的转变(温度从高到低)。DSC是一个测定近似比热容的方法,高聚物的玻璃化转变表现在DSC曲线上是基线的突然位移,呈台阶形。玻璃化转变本质上是一个动力学问题,是一个松弛过程。当高聚物从熔体猝火到玻璃态后,再在低于Tg的温度下进行热处理,则会在Tg附近出现一个吸热峰。如图所示:具有不同热历史的从熔融态淬火聚对苯二甲酸乙二酯膜的DSC曲线(a) 分别在温度下热处理2小时;(b)在25℃下热处理不同的时间此曲线摘自【新编高聚物的结构与性能】 何平笙编著 科学出版社出版社 2009物理老化在DSC的升温测量中表呈现出来,如上图所示。当高聚物从熔体淬火到玻璃态后,再在低于Tg温度下进行热处理,Tg台阶演变为一个松弛峰,温度越高,松弛峰越高。淬火试样在25℃热处理不同时间,DSC吸热峰随处理时间延长而移向高温。研究具有不同热历史对玻璃化转变的影响,其本质是研究高聚物的物理老化。3. 和谐美(统一美)PET的DSC曲线如图所示。热分析曲线集玻璃化转变、冷结晶和熔融于一身,体现了多重转变的和谐(包容)之美。曲线似狼毫疾书,峰(锋)起峰(锋)落,流淌着玻璃化转变、冷结晶、熔融的变化轨迹。PET的DSC曲线在DSC曲线上,既有物理转变峰,也有化学转变峰;既有平坦峰,也有陡削峰;既有强峰,也有弱峰。它们和谐地融汇在一起。 4. 玻璃化转变台阶宽化之美玻璃化转变是非晶态高聚物(包括部分结晶高聚物中的非晶相)发生玻璃态≒高弹态的转变,其分子运动本质是链段发生“冻结”“自由”的转变。基于热运动强烈的时间依赖性和温度度依赖性,高聚物的玻璃化转变不是一个温度点,而是一个温度区间。因此科学认识玻璃化转变峰的寛化现象非常重要。玻璃化转变区一般宽达10~20℃,而且玻璃化转变区还明显地依赖于实验条件。某些高聚物体系的玻璃化转变区域发生加宽现象,加宽现象表明存在多种形式分子链段运动,这主要来源于交联高聚物中交联程度的微观差异、嵌段或接枝共聚物微相结构的差异、高聚物共混体系中相结构和相互作用的不同等因素。5. 玻璃化转变的双重峰之美非晶高聚物通常只有一个玻璃化温度。但高聚物也会出现双重玻璃化现象和双玻璃化温度。从热分析应用研究史来看,随着新型材料不断出现,热分析研究领域也不断扩展。科学认识双重玻璃化温度现象是以热分析实验为基础。在新材料的研究中,通常都需要测定玻璃化转变,常常会发现双玻璃化转变转变现象。归纳整理大量的热分析曲线,发现下列情况常常会出现双重玻璃化现象和双重玻璃化温度:1)许多部分结晶高聚物常表现出两个玻璃化温度;2)交联高聚物的两相球粒模型;微相分离;3)部分相容的共混高聚物;4)部分橡胶均聚物、树脂/基体体系;5)高聚物涂布在基体(尼龙纤维)上的双玻璃化温度;6)导线双层涂层的双玻璃化温度高聚物具有双玻璃化温度,它的DSC曲线将出现二个玻璃化转变的台阶。摘抄几个具有双玻璃化转变的高聚物:DMA也可以测定玻璃化转变,如交联高聚物的两相球粒模型和交联高聚物中的双玻璃化转变现象如图所示:交联高聚物的两相球粒模型和交联高聚物中的双玻璃化转变现象 高交联微球分散在低交联基体中的两相结构中。一个对应于高交联球的玻璃化转变,另一个对应于低交联基体的玻璃化转变。DMA和DSC是测定到双玻璃化现象和双玻璃化温度的常用方法。6. 玻璃化转变的可逆之美 玻璃化转变是一个可逆过程。从宏观性能角度看,高聚物的玻璃化转变是指非晶高聚物玻璃态转变为高弹态(温度从低到高),或从高弹态转变为玻璃态(温度从高到低)。通常,玻璃化转变测量是进行升温实验。但严格来说,玻璃化过程应是从高弹态转变为玻璃态(温度从高到低),由降温曲线求得玻璃化温度更合理。非晶高聚物由玻璃态转变为高弹态(温度从低到高)是解玻璃化过程。非晶高聚物的升温与降温的DSC曲线如图所示: 非晶高聚物的升温与降温的DSC曲线7. 玻璃化温度的调控之美物质的热变化是可调控的,玻璃化温度也是可以调控的。解读特定材料玻璃化转变的热分析曲线,研究它的特征和变化规律,进而对玻璃化温度进行调控,优化材料热物性参数、状态和特性,服务于材料研发、生产和使用,使热变化沿着确定的研究方向发展。你欲调控材料的玻璃化温度,你就要知道哪些因素会影响材料的玻璃化温度。调控玻璃化温度依赖于你对影响玻璃化温度因素的认知。高分子物理告诉我们:玻璃化温度是高分子的链段从冻结到运动(或从运动到冻结)的一个转变温度,而链段运动是通过主链的单键内旋转来实现的,因此,凡是能够影响高分子链柔性的因素,都对Tg有影响。减弱高分子链柔性或增加分子间作用力的因素,如引入刚性基团或极性基团、交联和结晶都使Tg升高,而增加高分子柔性的因素,如引入增塑剂或溶剂,引进柔性基团等都使Tg降低。基于高分子物理对玻璃化转变的认知,改变玻璃化温度的手段有:增塑、共聚、交联、结晶及改变相对分子质量可以使高聚物玻璃温度在一定范围内连续地变化。如不同结构的聚苯并噁嗪,Tg 在107 ℃—368 ℃宽的温度范围内变化;N-羟甲基丙烯酰胺(NMA),参与共聚的EVA乳液的 Tg 值可以在 -30~30℃之间调控;偏二氯乙烯与丙烯酸酯共聚,可制备得到不同Tg的两种乳液:低Tg(-50~0℃)的乳液和高Tg(0~30℃)的乳液;用于粘接水晶的 UV 固化胶,添加增塑剂来降低 Tg , 增加胶的柔韧性。8. 科学认识玻璃化转变中的“未知”人的认知是不断提高的,常常用已知来解释未知。探索未知的利器是丰富完善自身的知识体系,完善的知识结构包括雄厚的知识储备和系统、灵活地运用这些知识的科学方法。几十年来,我们已科学认识了玻璃化转变中的许多“未知”,但还有很多的“未知”需要继续探索。探索未知的前提是你要有求索的觉醒。如果一个人的思维被禁锢,视野和认知就会变狭隘,认知也就停止不前了。玻璃化转变研究中最大的“未知”是人们还是无法回答玻璃态的本质是什么这一基本问题。玻璃态本质的研究一直是凝聚态物理及软物质领域的重要内容,也是至今悬而未决的难题。迄今为止没有一个理论能解释玻璃化转变过程中的所有现象,已有的理论也只是在某些特定的过冷区间和特定的体系中才与实验或模拟结果吻合。诺贝尔奖获得者Andcrson在文章中展示了他对玻璃化转变问题的兴趣,并预言玻璃化转变问题将在21世纪得到最终解决。对玻璃化转变机制的研究,正在不断深入并逐渐逼近正确,对它的研究,既是挑战也是机遇,并将继续吸引科学家们研究下去。经过科学家们持续不断的努力,玻璃及玻璃化转变的物理本质之谜最终一定会解开!热分析方法研究高聚物材料已有几十年的历史,它不仅为材料提供了热物性参数,还为探索玻璃化转变的实验特征(玻璃化转变过程的热力学行为、动力学特征)、实验技术表征和玻璃化转变理论的演变积累了大量的数据,是探索玻璃化转变理论的实验基础。它在玻璃化转变理论研究中的作用不容忽视。热分析方法表征高聚物材料需要玻璃化转变理论指导,研究玻璃化转变理论也需要近代科学方法(包括核磁共振、热分析等)的实验基础和实验证据。玻璃化转变研究在进行中,玻璃化转变的峰谷之美将在不断研究中绽放得更灿烂。二、熔融-结晶的峰谷之美熔融和结晶温度、熔融和结晶焓测定的标准是GB/T 19466.3-2004/ISO 11357-3 2018。它规定了塑料熔融与结晶的DSC测量法。可用DSC方法测定结晶或部分结晶聚合物的熔融和结晶温度及其熔融和结晶热。1. 冷结晶、热结晶、等温结晶之美结晶或部分结晶聚合物的非等温结晶有冷结晶和热结晶之分。试样以适当的速率升温,熔融后淬火,淬火试样以相同速率升温,DSC曲线上的结晶峰称为冷结晶峰。把开始结晶的温度与Tg之差 ∆Tg 作为非等温冷结晶速率的度量,初略地说,∆Tg越大,则冷结晶速率越慢。 聚合物升温熔融与降温结晶的DSC曲线如图所示;可以用过冷度∆Tc来分析非等温实验数据。过冷度 ∆Tc定义为升温DSC曲线熔融峰温与降温DSC曲线开始结晶温度之差,用线性方程式中截距表示聚合物所固有的结晶能力。∆Tc随降温速率而变。 2. 熔融-结晶峰的峰、岭、谷之美DSC方法测定结晶或部分结晶聚合物的熔融和结晶温度及其熔融和结晶热。高聚物的DSC曲线显现结晶高聚物的熔融与结晶过程。升温测量高聚物的结晶-熔融过程,假设DSC图中约定Y轴正方向代表放热,那么冷结晶曲线呈峰的形式,熔融曲线呈谷的形式。降温测量热结晶,热结晶曲线呈峰的形式。PTFE熔融的DSC曲线如图所示:PTFE不同升温速率的DSC曲线PTFE熔融峰的峰形与升温速率有关。随升温速率的提高,熔化峰变宽,河谷越来越深。熔融峰好似平原上的河谷。结晶度高的部分结晶聚合物熔融峰的谷坡陡峻、狭而深,似大峡谷;结晶度低的结晶或部分结晶聚合物熔融峰的谷坡浅而宽。熔融双峰呈现谷—谷相连突起的“岭”,似水中的暗礁或小岛。如图示意:熔融双峰的双谷和暗礁或岛屿的示意结晶峰好似独立高耸的山峰。结晶双峰呈现山峰相连的岭和狭窄低凹的山谷。如图示意:结晶双峰的峰、岭、谷的示意3. 等温结晶峰的变化之美 结构相当规整的聚合物在玻璃化温度Tg和熔融温度Tm所限定的温度范围内出现结晶作用。结晶速率随温度而变,所以采用恒温法测定高聚物的结晶过程,结晶峰的峰形是随结晶温度而变。不同结晶温度的DSC曲线如图所示。它显现了高聚物结晶速率对温度的依赖性,也显现了不同结晶温度下结晶峰形的变化之美。PBS熔融后分别在80℃、81℃、83℃、85℃、88℃等温结晶的DSC曲线部分结晶高聚物是晶相和非晶相的混合体系。晶相最重要的特征温度是熔点Tm。非晶相最重要的特征温度是玻璃化转变温度Tg 。部分结晶高聚物结晶温度范围正是在Tg与Tm之间。实现结晶的途径有两条:一是将熔体或溶液冷却到Tg与Tm之间的温度使之结晶,称为热结晶;二是先将熔体骤冷到Tg以下形成过冷液体(即玻璃),然后再升温到Tg与Tm之间的温度下使之结晶,称为冷结晶。高聚物结晶速率对温度的依赖性取决于成核速率和晶体生长速率的温度依赖性。随温度的下降,成核速率逐渐增大;晶体生长速率的温度依赖性取决于高分子链段向晶核扩散并作规整排列的速度。温度越低,熔体黏度越大,晶体生长速率越小。因此,高聚物的结晶速率随温度的变化不是单调上升,也不是单调下降,而是在某一温度下达到最大值。在结晶温度略低于熔点时,结晶速率因成核速率很低而很慢;在接近玻璃化转变温度时,结晶速率因晶体生长速率很低而很慢;而结晶温度在(0.80 ~ 0.85)Tm附近时,因成核速率和晶体生长速率都较高,结晶速率达到极大。等温实验得到多条等温结晶曲线,绘制等温温度-等温结晶时间下的关系曲线,如图所示:等温结晶温度和结晶时间的关系由等温结晶温度-等温结晶时间下的关系曲线方便地选择等温结晶温度,具有选择之美。U字形曲线显现结晶温度和结晶时间相关性之美。三.比热容曲线的线性美及松弛峰特征比热容的DSC测定法的标准是ISO11357-4 2021和ASTM E 1269-11(2018)规定了比热容的DSC测定法。比热容是指单位温升所需的热量(热容C)除以质量m,单位为J / kg. K 。比热容的DSC曲线如图所示: 显现玻璃化转变和应力松弛特征的比热容曲线通常,比热容与温度的关系是线性增大。当试样发生玻璃化转变且有应力松弛时,比热容曲线会出现台阶和松弛峰峰形。四.特定反应的特征/特性之美 特定反应曲线温度、时间、反应热和转化率测定标准是ISO11357-5。它规定了特征反应曲线温度、时间、反应热与反应程度的DSC测定法。热分析研究特定的反应,热分析曲线就是这种特定反应的特定的形象。DSC研究的特定反应泛指氧化、还原、固化、热降解、热氧降解等。用DSC曲线来表征特定反应曲线温度、时间、反应热和转化率,也可进行剩余热的测量。依实验目的可以采用升温法或恒温法。特定反应的DSC曲线峰谷具有特定反应的特征和特性,呈现特定反应特有的特性之美。特定反应的美是建立在反应本身固有的特征和特性基础上,人们从研究特定反应中得到了快乐,为什么能从中得到快乐呢?因为特定反应的DSC曲线的峰谷具有特定反应的特性之美。特定反应的美是建立在特定反应本身,如DSC研究胶粘剂的固化反应。胶粘剂的固化反应是一个高分子化学问题。高分子链之间通过化学键连接起来形成相对分子质量无限大的三维网络,称之为交联。交联固化过程不是按化学反应平衡方程式来表示,而是以一种不均一的状态存在,交联高分子的网络结构可以是规则的,也可以是不规则的。因此固化反应的DSC曲线常出现双峰峰形和多峰峰形,如图所示。交联固化的DSC曲线示意玻璃化温度(Tg)的测定这是一个高分子物理问题,通过测定Tg来研究交联高分子网状结构和宏观性能(玻璃化转变)的相关性。胶粘剂的固化反应出现双峰,表明固化产物以不均一的状态存在。那么固化产物的DSC峰就会出现双玻璃化转变现象。限于篇幅,其它特定反应曲线温度、时间、反应热和转化率测定就不介绍了。五.氧化诱导期的蓄势之美氧化诱导期的测定标准是ISO11357-6 2018。它规定了聚合物材料氧化诱导期的DSC测定法。氧化诱导期是指稳定化材料耐氧化分解的一种相对度量。是由DSC测量材料在某一特定温度、常压氧气气氛下起始氧化放热的时间间隔来确定的。典型的热氧化稳定性曲线如图所示:热氧化稳定性曲线(切线分析法)t1氧气流切换点 t2氧化起始点 t3切线法起点 t4氧化峰时间氧化诱导期是用起始氧化放热的时间间隔来确定的。在某一特定温度下等温,试样吸附氧,是一个蓄势过程,当物理吸附和化学吸附氧的量蓄聚达到某一个值时,试样突然氧化放热,出现一个氧化放热峰。DSC方法测定聚乙烯的氧化诱导期是典型的实例。试样在氧化气流中200℃或210℃下等温,吸附氧气,蓄势诱导,氧化放热直冲峰顶。润滑油的氧化诱导期是采用压力差示扫描量热法(PDSC)。美国试验与材料协会于1998年将PDSC法测定润滑油的氧化诱导期列为ASTM D6186标准(最近版本发布于2013年。润滑油是液体,易挥发,使用PDSC法测定润滑油的氧化诱导期,试验数据重复性好。氧化起始温度是另一个表示材料氧化分解的概念。动态测定是由DSC测量材料在程序升温下、常压氧气气氛下起始氧化放热的温度来确定的。典型的氧化起始温度的DSC曲线如图所示:两种不同HDPE的氧化起始温度(动态OIT)测试由DSC曲线的氧化放热峰分别求出反应起始温度、外推起始温度、最大反应速率温度、外推终止温度和反应终止温度。氧化诱导时间和氧化起始温度都是稳定化材料耐氧化分解的一种相对度量。氧化诱导时间(等温OIT),氧化诱导温度(动态OIT)分别表示开始出现氧化放热的时间或温度。氧化诱导时间与氧化起始温度是二个不同的概念。要证明材料耐氧化的时间,采用氧化诱导时间来表示;要证明材料耐氧化的温度,采用氧化起始温度来表示;氧化诱导时间长,并不表示氧化起始温度高。反之亦然。六.结晶动力学的测定 结晶动力学测定的标准是ISO11357-7 2022。它规定了利用差示扫描量热法研究部分结晶聚合物结晶动力学的等温和非等温两种方法。该方法可应用于已熔融的聚合物。如果测试过程中聚合物的分子结构有所改变,此法不适用。上面我们用图形和文字展现了差示扫描量热法DSC的标准与规范中提及的玻璃化转变测定、熔融和结晶测定、比热容测定、特定反应测定、氧化诱导期测定、结晶动力学测定的DSC曲线的峰谷之美。峰谷之美的源泉是什么?源之温差引起的能量传递的热传导过程。温差引起的能量传递的热传导过程是峰谷之美的源泉。傅立叶定律是传热学中的一个基本定律,也称为热传导定律。傅立叶热传导定律与差示扫描量热法有一定的内在渊源。传热学是研究由温差(temperature difference)引起的热能传递规律的科学。热流DSC是测定由于热变化引起试样与参比物温差变化的研究方法。DSC热力学体系因温差引起热传导现象,热传导现象与能量的传递相联系,热传导过程就是热量热传递(流动)的过程。DSC测量流入(流出)试样和参比物的热流与温度或时间的关系,得到了热流随温度或时间变化的轨迹,DSC曲线上出现了吸热峰、放热峰和和台阶。热流DSC的理论基础是傅立叶热传导定律,应用傅立叶热传导理论解析热流DSC曲线的热传导现象,展现DSC曲线的峰谷之美。峰谷之美从温差、能量传递和热传导过程中绽放。人们发现美的同时,DSC曲线的峰谷也给人以美的享受。 下面我们继续探索DSC曲线的特性参数转折之美、曲线变异之美、峰-峰、谷-谷、峰-谷连绵之美。托宽思路,探索古陶瓷DSC曲线的远古之美和空间材料的遥远之美。七.特性参数转折之美DSC可以测定比热容、导热系数;TMA可以测定膨胀系数;导热仪可以测定导热系数。比热容、膨胀系数、导热系数在玻璃化转变温度的转折如图所示: 比热容、膨胀系数、导热系数在玻璃化转变前后的转折由图可以看出:比热容、膨胀系数、导热系数峰值都在玻璃化转变温度出现峰值。比热容、膨胀系数、导热系数在高聚物玻璃化转变温度出现转折点是特性参数转折之美。聚合物的比热容、热膨胀、导热系数与分子活动性直接相关。不同物质的比热容、膨胀系数、导热系数各不相同;相同物质的比热容、膨胀系数、导热系数与其结构、密度、湿度、温度、压力等因素有关。八.曲线变异之美 曲线变异是指与定势思维相侼的DSC曲线。热分析实验中出现DSC曲线变异是常见的事。如高聚物玻璃化转变峰出现应力松弛峰;固化反应的DSC曲线出现双峰或多峰时,在固化产物的DSC曲线上就会出现相应的双玻璃化现象。当测试到变异峰时,一定要溯源曲线变异的原因。避免将变异的热分析曲线当作异常峰处理,产生误读与误判。进化的基本机制是变异与选择。求异思维的逻辑内核是“敏于生疑,敢于存疑,勇于质疑”。思维的求异或求异意识是指敢于向权威或传统观念挑战,从已有思路或从相异、相逆的思路去思考变异的DSC曲线,获得新的认知。。物质世界中,唯一不变的是变化,变化是永恒的。人类对变化的认知虽然不断演进,但变化自身的哲学内涵远比我们对变化所能理解的更为深邃。人类对热变化的探索无止境,当你遇到变异的热分析曲线时,潜心研究变异的曲线。运用热变化中的哲理解析变异的热分析曲线。开智悟理,悟而生慧、悟得智慧。科学研究中,常常悟生于常规、传统、标准、经典之外,探索前行。由“悟”而后产生变则通思维具有必然性。“悟”出变幻无常的曲线变异之美是对热变化的认识深化。玻璃化转变是高聚物的一个基本转变,它常常会发生变异。如物理老化引起玻璃化转变曲线变异。物理老化使玻璃化转变峰的峰形由台阶式峰形变异为松弛峰峰形。MDSC可将可逆的玻璃化转变和不可逆的应力松弛分离。 通常,水合氧化铝脱水形成低温氧化铝(γ、δ、η、κ-Al2O3), 低温氧化铝于1250℃转型生成高温氧化铝(ɑ-Al2O3)。测试某一样品,偶然发现高温氧化铝(ɑ-Al2O3)的生成放热峰提前到1050℃。经溯源,峰的变异是由样品中加入了矿化剂之故,使转相温度提前了200℃。玻璃化转变的宽化现象和双重玻璃化现象也是DSC曲线变异的实例。探索曲线变异的原因是认识的深化。变异的DSC曲线呈现峰谷变异之美。DSC曲线的峰谷在变异中越变越美。九.峰-峰、谷-谷、峰-谷连绵之美用凹下的谷表示吸热效应;用凸起的峰表示放热效应;用向吸热方向偏离的台阶表示玻璃化转变。峰、谷和台阶是展现DSC曲线的峰谷之美的基本形态。是对事物本质和规律的反映。DSC曲线中,常常出现峰-峰、谷-谷、峰-谷相连的现象。座座山峰相连称为岭,两峰之间狭窄低凹处称为谷。峰美!谷美!峰-峰相连的山岭美!狭窄低凹的山谷美! 1. 峰-峰连绵之美Al-ZrO2体系的DSC曲线如图所示:不同升温速率下Al-ZrO2反应过程的DSC曲线Al-ZrO2体系在一定条件下(不同升温速率下)发生化学反应。图中两个放热峰分别对应于两个分步反应:Al + ZrO2 → ɑ-Al2O3 + [Zr][Zr] + Al → Al3Zr 两个分步反应在不同升温速率下的峰顶温度Tm是不同的,两个放热峰相连形成不同形状的山岭和山谷。DSC曲线因峰冠雄,因峡显幽。DSC曲线显现放热峰相连的山岭美!显现狭窄低凹的山谷美!2. 谷-谷连绵之美不同升温速率的PET的熔融双峰如图所示: 不同升温速率下PET的DSC曲线PET的结晶比较慢,因此不同的热历史可以造成不同的结晶和熔化过程。在慢速升温过程中,由于PET形成的片晶部分熔化,未熔化部分似作成核点,形成熔融再结晶,这种结晶可以在更高的温度熔化,从而形成熔融双峰。如果用TMDSC的话,还可以测到再结晶过程的放热峰。还有一种观点是,结晶过程中形成了两种不同稳态的晶体,热稳定性差的在较低温度熔化,热稳定性高的在较高温度熔化,从而形成熔融双峰。如果在120-140℃长时间退火,将试样降温到室温后再升温,DSC曲线在140℃以上还会出现第三个小峰。聚乳酸一次升温的DSC曲线如图所示: 161.0℃和167.4℃是聚乳酸的熔融峰,这个双峰现象有几种解释:1)熔融再结晶;2)晶型转变;3)分子量分布宽,片晶厚度不同。聚乳酸的熔融双峰具有紧紧相依之美。3. 3.谷-峰衔接之美 Al2O3与ZnO反应过程的DSC曲线如图所示: 图中表明:Al(OH)3脱水谷与AL2O3.ZnO生成的放热峰光滑衔接、谷-峰相连。好似造山运动,Al(OH)3脱水反应使曲线下降,形成脱水谷,AL2O3.ZnO生成的放热反应使曲线突然上升,形成雄伟的山峰。真是一幅因峡显幽,因峰冠雄,绝壁长崖的山水图。 Al2O3与B体系的DSC曲线如图所示:Al-B反应过程DSC曲线Al的熔融吸热峰形成显幽之谷,液态Al与B反应生成ALB2, 放热峰使曲线上升,熔融吸热峰与放热峰光滑衔接,谷-峰相连。好似地壳下沉后又突然升高,绝壁长崖直冲峰顶。4. 台阶与应力松弛峰的组合之美 高聚物的玻璃化转变在DSC曲线上的特征是基线的突然位移,表现为正常吸热曲线的阶跃,呈台阶形。当高聚物在玻璃化转变温度和次级转变温度之间发生物理老化时,应力松弛过程使台阶转化为凹下的谷。 十.迷人材料热分析(DSC)研究的诗意和美“迷人的材料”是英国人马克.米尔多尼克所著。对构建现代世界的物质做了美好的描述,从细微中发现诗意和美, 是一部材料科学的颂歌, 也是对人类智慧的赞颂。“迷人的材料”是《物理世界》2014年推荐的最佳科普书。书中展现了人类需求和欲望的材料,带领人们走进神奇的材料世界。本书介绍了“迷人的材料”:钢、纸、混凝土、巧克力、发泡材料、塑料、玻璃、碳材料、瓷器、长生不死的植入物等材料。介绍迷人材料的资料还有:未来最有潜力的新材料;有能力改变整个世界的超级材料及地球上十大神奇的极端物质。如石墨烯、气凝胶、碳纳米管、富勒烯 、非晶合金、泡沫金属、离子液体、纳米纤维素、纳米点钙钛矿、3D打印材料、柔性玻璃、自组装自修复材料、可降解生物塑料、钛碳复合材料、超材料、超导材料、形状记忆合金、磁致伸缩材料、磁(电)流体材料、智能高分子凝胶。美国材料研究学会在每次年会上进行图片比赛,通过显微镜人们看到了如艺术品一般的材料组织,发现材料既有外在美,又有内在微观世界的神奇,微观世界与宏观世界具有异曲同工之妙。用热分析研究迷人的材料,可以提供许多有用的参数。DSC在材料研究中有着广泛的应用,展现了材料DSC曲线之美。 1.石墨烯的DSC曲线之美2.锂电池的的DSC曲线之美3.含能材料瞬变反应的新奇美 4.古陶瓷DSC曲线的远古之美以古陶瓷研究为例,古陶瓷是火与土的艺术,运用近代科技方法研究釉陶的的物理—化学过程,对古陶瓷样品的显微结构、物相结构进行深入研究,为推测古陶瓷的烧制工艺、揭示我国古代名瓷的呈色机理、再现我国古代名瓷的制作奥秘提供有力的数据支撑。应用近代科技方法(含热分析方法)研究古陶瓷是将今论古,今为古用,呈现远古之美。 现代陶瓷研究:先驱体裂解转化制备陶瓷,突破了火与土的传统,是突破之美。先驱体裂解转化制备陶瓷是利用有机先驱体聚合物裂解制备陶瓷材料的新方法。人们已用热分析方法(DSC方法)探索先驱体裂解转化制备陶瓷工艺中的合成过程、交联过程和裂解过程。 陶瓷反应体系Al-TiO2的DSC曲线及反应结果的X射线衍射花样如图所示: 陶瓷反应的DSC曲线的包容性陶瓷反应体系Al-TiO2的DSC曲线主要有三个峰和谷:第一个谷为吸热峰,发生在667℃,对应于Al液化吸热过程;随着温度升高,在950℃左右时出现了第二个峰,为放热峰,表明试样中发生了以下化学反应:4Al + 3TiO2→ 2ɑ-Al2O3 + 3[Ti]反应产生的活性[Ti]原子随后又与Al原子结合生成Al3Ti ,该反应为强放热反应,峰顶温度1000℃左右。因此,Al-TiO2体系在升温过程中依次经历了一个物理转变(Al的熔融)和两个化学反应,分别产生两种增强体 ɑ-Al2O3陶瓷和Al3Ti金属化合物。反应结果的X射线衍射花样进一步说明了这一点。Al-TiO2体系反应过程的DSC曲线具有强大的包容性。它包容了物理转变(Al的熔融)吸热峰的谷和两个化学反应放热峰及峰-峰相连形成的山岭和山谷。以上多图均摘自【材料科学研究与测试方法】朱和国 王新龙编著 东南大学出版社 2013 5. 空间材料DSC曲线的遥远之美国际空间站的微重力实验:空间条件下集成热分析的先进管式炉(ADV、TITUS)进行材料生长实验。最高工作温度1250℃,采用炉体移动的方式进行材料生长,其最主要的技术特点是该设备在进行材料生长实验的同时,也进行了材料的差热分析(DTA)测试。该实验即为空间材料科学与微重力下的热分析的诌型。在地球万有引力下,单晶硅生长由于重力的作用,生长单晶硅区浮液桥的直径不能超过8 mm。微重力环境实现无容器过程,增大浮区的直径没有限制,生长出比8 mm粗得多的硅单晶。结晶研究表明:具有高体积分数的样品,在有重力的地面上经过一年也不能结晶化的样品,在微重力条件下(10-6g),不到两周就全部晶化了。发挥DSC研究晶体的潜能,应用DSC开展微重力下的晶体生长实验成为可能。 空间生长的GaSb单晶(左、中)与地面生长的GaSb单晶(右)对比图微重力环境下高聚物的结晶研究:微重力环境下的结晶是为制备太空高聚物材料而进行的研究。模拟太空条件下的高真空微重力下对尼龙11、聚偏氟氯乙烯、间同聚苯乙烯、全同聚丙烯(i-PP)等做了等温结晶,发现不少与常规重力下不同的结晶现象。美国国家航空航天局在航空飞机的实验中测出了比热奇异性的趋势,验证了理论物理的预言。比热奇异性的实验曲线如图所示: 空间LPE实验的比热测量结果实线为地面的实验结果;点划线为空间微重力实验结果;虚线为重整化群理论预期结果比热测量时的相变温度控制在10-9 K以内,液体在相变点处的比热为无穷大。由于地面的重力作用使实验温度达不到要求的精度,测量不出比热奇异性。微重力环境提供了高精度的物理实验条件,测出了比热奇异性的趋势。空间LPE实验的比热测量结果如图。红框内即为比热奇异性。值得注意的是温度坐标为纳度nK。 以上均摘自【微重力科学概论】 胡文瑞等著 科学出版社 2010 十一.DSC曲线峰谷群像图DSC曲线的形态犹如地球的地貌特征,独立高耸的山峰和座座山峰相连的岭、两峰之间狭窄低凹的山谷和幽幻的大峡谷,低缓的丘陵、广阔的平原及谷坡陡峻、狭而深的河谷。山峰、山岭、山谷、丘陵、平原及河谷的特征构成了DSC曲线峰谷群像图。DSC曲线与地理地貌的相似性形象,增添了曲线的天然美(自然美)。 DSC方法研究材料的转变和热物性参数,得到各种各样的DSC曲线。DSC曲线的峰谷呈现物质变化规律之美。DSC曲线群像中,既有共性,又有特性,还有变异性。曲线有相像、相似、类似的形象;也有截然不同的形象,以及曲线变异的形象。转变峰的形状、大小、位置似水无常形,变化万千,借助文字和图形的阐释能力,揭示曲线峰谷蕴含的意义。DSC曲线与地理地貌的相似性形象图: 从DSC曲线与地理地貌的相似性形象,领略DSC曲线峰-谷的天然美。 DSC曲线转变峰群像如图所示: 从DSC转变峰群像图中看出:DSC曲线峰谷变幻无穷、群像纷呈。读懂、读透DSC曲线的峰谷不容易,那是你的理解能力。解析DSC曲线的峰谷并被别人读懂也不容易,那是你的表达能力。清乾隆蘅塘退土孙洙对《唐诗三百首》的题词是:“熟读唐诗三百首,不会做诗也会呤”。解读DSC曲线亦如此。熟读经典的DSC曲线和群像图中的应用曲线,认知DSC曲线的峰谷之美。发现美!欣赏美! 如何认知群像图中DSC曲线峰谷呢?人类学习与机器学习方法相结合。传统的方法是人类学习方法。人类对事物的认知路径经是从原始数据出发,凭借人脑拥有的科学知识去认知DSC曲线峰谷的内涵。面对同样的原始数据,拥有不同知识的人将得出不同的认知;同样,拥有相同知识的人,面对没有数据、有少量数据、有大量数据以及有充分数据等不同情况时,也将得出不同的认知。知识的拥有者占据上风。机器学习方法是一种全新的思维方式。机器学习的本质是跳出“知识”的束缚,建立原始数据与认知之间的直接映射,“数据”价值连城。机器学习方法直接建立“数据—认知”关系库,以更加深邃、更加贴近物质本来面貌的视角去认知DSC曲线的峰谷。机器学习方法已在化学、材料科学和高分子玻璃化研究中得到应用。如中国科学院长春应用化学研究所徐文生研究员和美国北达科他州立大学夏文杰教授基于在高分子玻璃化领域的多年研究经历,综述了机器学习方法在高分子玻璃化领域的研究进展。杨镇岳,聂文建,刘伦洋,徐晓雷,夏文杰,徐文生撰写了机器学习方法在高分子玻璃化研究中的应用。此文刊登于高分子学报2023,54(4)409-427运用人类学习和机器学习方法探索DSC曲线峰谷之美是人的需求。山高人为峰,脚踏幽幻谷,迈开脚步,探索DSC峰谷之美,以人为主导。科学的美是客观存在的,人对美的追求,是自然科学发展的源动力。DSC研究物质受热时发生的物理变化和化学变化,并以峰谷的外在美呈现物质变化的内在美。人,怀着对热分析的情感,自由地鉴赏DSC曲线峰谷的美感,发现美,享受物质变化之美。美使人感到愉悦的同时,也揭示了隐含在曲线中的物质热变化规律。
  • 借助FLIR T640,意大利建筑团队成功分析和诊断外部隔热系统
    随着城市建设的高速发展,我国的建筑能耗逐年大幅度上升,建筑总能耗已达全国能源总消耗量的45%。其中空调、采暖造成的能耗约占60%~70%。因此,建筑外部隔热系统在施工领域变得日趋重要。为了检测新建或已有建筑上大面积外部隔热系统是否安装,以及评估这些隔热产品的热性能,由意大利隔热隔音协会(ANIT)在内的多家公司组成的团队,在FLIR红外热像仪的帮助下,开展了一个研究项目。ANIT与该组织的两个会员企业(即:Caparol与FLIR Systems)发起了一项关于辨识隔热系统与安装异常现象的研究。该研究由Tep srl进行统筹,该公司是一家专业从事建筑物无损能效测试的工程服务公司。01建立测试样本为了研究以外部隔热系统安装为特色的热现象,建立了一份测试样本,在样本三侧覆盖隔热面板(带有石墨添加剂的EPS)。在样本的顶部,墙体采用常见的错误铺设方法进行覆盖,而底部采用正确的铺设方法(有/无EPS合板钉)。涂层前的试样布局02主动热成像分析在太阳能蓄热与放热循环期间,对一面虚拟墙体进行监控与分析,定期记录并存储热图像。借助主动热成像技术,蓄热通过影响测试样本表面的太阳能辐射实现。在放热阶段,已聚集能量的结构在阴凉处开始释放能量时,对其进行监控。在该项测试中,ANIT选择了FLIR T640红外热像仪,经证明是最适用于本项目的工具。上图显示了在热负荷期间试样上部出现的温差,其中存在故意设置的安装错误03各种条件下的热传递为了正确分析由热成像分析突显的各种情况,掌握可能存在的铺设异常情况,需要了解不同条件下隔热表面热传递的基本知识。在不同条件下的热传递中(拥有不同的表面温度),每一种材料的热阻、传导率与厚度已不足以定义各隔热层的热性能。事实上,必须考虑材料的密度与比热。蓄热系数是一种表示不同条件下材料属性的参数,该系数与覆盖有外部隔热层结构的表面辐射率有关。呈现试样上部的温度图显示,存在热传导率低、比热容有限的隔热材料,以及热传导率高、比热容大的粘合剂和PVC合板钉。考虑到由于太阳辐射而储存的能量,保温层冷却得更快,因为储存的能量较小,即其体积比热容较小。热辐射率是衡量材料热能穿透力的一项参数:受太阳辐射影响的外部隔热层,其表面温度与材料表面向子层传导热量的方式有关,借助材料的比热来蓄热,进而得以升温。在这种条件下,热辐射率表示材料经过太阳辐射后,内部升温的容易程度:值越低,表示加热该材料需要的能量越小。测试样本包含拥有不同热发射率值(eff.)的多种材料:粘合剂(eff.=906),带有石墨添加剂的EPS(eff.=27),合板钉上的PVC(eff.=530)。04FLIR T640红外热像仪ANIT选择FLIR T640,是因为其可满足各种技术要求。样本研究需要检测温差在0.5℃的情形,在不同的时间段,能够自动记录和控制表面温度的变化。热像仪同样需要生成优质的视频图像,能够证实表面热性能的有效研究。利用平均太阳吸收系数对外墙表面放电时的热像图分析FLIR T640红外热像仪是一款性能优质的高质量产品。作为一款高性能的红外热像仪,其配备500万像素的可见光相机、可互换镜头选件、自动对焦功能,以及宽大的4.3英寸液晶触摸屏。本产品集卓越的人体工程设计以及优质成像功能于一身,提供高质量的图像清晰度与精确度,以及可扩展的通信可行性。检测完成后,使用FLIR T640还可以通过Wi-Fi连接至FLIR Tools Mobile进行图像分析和分享,或通过METERLiNK® 传输测试和测量数据至热像仪。05测试样本分析对材料的特性分析表明了由辐射引起的储能,以及在阴凉处进行后续放热的不同行为。对具有平均太阳吸收系数的外墙表面充电时的热成像分析热分析清楚地表明:存在两种截然不同的表面层,一类是具有低热传导率及有限比热容的隔热材料,一类是拥有较高热传导率及比热容的粘合剂和PVC合板钉。在进行热像图分析时,热像师必须清楚,哪些为表面异常现象:此外,还必须熟悉外部隔热系统,以及在合适环境条件下观测时,哪些现象可认为是存在缺陷。除此之外,FLIR T640还有助于您发现隐藏的电阻、机械磨损和其它热相关问题的迹象。FLIR T640拥有307,200(640×480)像素,提供MSX® 丰富细节和FLIR UltraMax® 增强分辨率,可达2000℃的温度校准,具有快速诊断问题和立即开始维修所需的出色图像质量和清晰度。