白色脂肪组织

仪器信息网白色脂肪组织专题为您整合白色脂肪组织相关的最新文章,在白色脂肪组织专题,您不仅可以免费浏览白色脂肪组织的资讯, 同时您还可以浏览白色脂肪组织的相关资料、解决方案,参与社区白色脂肪组织话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

白色脂肪组织相关的耗材

白色脂肪组织相关的仪器

  • 布鲁克公司直接留言,请将以下链接拷贝到浏览器地址栏(强力推荐) 瘦肉/脂肪分析仪 The mnispec TD-NMR 分析仪为测量活体小鼠和大鼠的瘦肉组织、脂肪和体液含量提供了一种精确无损的试验方法 两分钟内检测全身的瘦肉、脂肪和体液含量。适合垂直和水平测量永磁体,无需冷却剂系统仅需110伏电压小鼠或大鼠对动物无风险无需麻醉剂 布鲁克的minispec瘦肉/脂肪分析仪是用于测量活体小鼠、大鼠及其他动物体内全组分的台式NMR分析仪。在2001年首次应用以来,the minispec 老鼠分析器作为在实验室中表征、扫描和确定老鼠模型的一种有效的、非破坏性的、非侵入性的分析工具迅速被社会所认可。它已经成为测定活老鼠体内瘦肉和脂肪含量的工业性标准仪器。这种仪器主要应用在制药公司及从事糖尿病和肥胖症研究的研究所和大学。 核磁共振法是大多数有效的非破坏性材料分析方法中的一种。利用NMR对身体非侵入性检测 广泛使用并且已经有很多应用,尤其是MRI(核磁共振成像)和MRS(磁共振波谱分析)。TD-NMR使用类似于NMR技术,利用和MRI相同的物理选择规则来进行脂肪组织、瘦肉组织和流动体液的分析。各种射频脉冲序列应用于组织之中,水和脂肪中的氢原子因此在磁体中自旋重新定位,组织中的氢原子也相应的产生射频信号,而后这些信号被the minispec获得,这些与材料特性相关的信号的强度和持久性不同。依据弛豫时间在不同组织中的不同,脂肪和肌肉相对较高,通过特定的射频脉冲序列的应用可以进一步提高它的应用。 The minispec 瘦肉/脂肪分析仪是一个基于时域信号核磁共振仪。获取和分析整个样品管中的所有质子的TD-NMR信号,给出以下三个信息:脂肪、自由体液和瘦肉的含量值。这个核磁技术使得研究者有机会在动物的生命周期中进行更多的测试,并且还有以下优点; 快速分析:不需样品前处理,测试在两分钟内完成方法经济:整个过程中无消耗,保留了昂贵的实验室动物LF50可测的小鼠的重量可达80克LF90用于小鼠和大鼠的测定降低了动物的压力:不需要麻醉;按其原样分析由于对动物健康无损伤可以频繁的进行测试相对于DEXA(x衍射)法有更高的精确度和准确度
    留言咨询
  • 老鼠瘦肉脂肪分析仪 400-860-5168转2714
    产品简介MinispecTD-NMR分析仪为测量活体小鼠和大鼠的瘦肉组织、脂肪和体液含量提供了一种精确无损的试验方法两分钟内检测全身的瘦肉、脂肪和体液含量适合不同体位的测试永磁体免维护系统仅需220伏电压适用于所有小鼠和大鼠对动物无风险无需麻醉剂布鲁克的minispec瘦肉/脂肪分析仪是用于测量活体小鼠、大鼠及其他动物体内全组分的台式核磁共振分析仪。在2001年首次应用以来,the minispec老鼠分析仪作为试验中表征、扫描和确定老鼠模型的一种有效的、非破坏性的、非入侵性的分析工具迅速被认可。它已经成为测定活鼠体内瘦肉和脂肪含量的标准仪器。这种仪器主要应用于制药公司及从事糖尿病和肥胖这个研究的科研机构和相应的大学。核磁共振法师非破坏性分析方法中的一种。利用核磁共振对身体非侵入性检测已有广泛的使用,尤其是MRI(核磁共振成像)和MRS(磁共振波谱分析)。TD-NMR使用类似的NMR技术,利用和MRI相同的物理选择方式来进行脂肪组织、瘦肉组织和流动体液的分析。各种射频脉冲序列应用于组织之中,水和脂肪中的氢原子因此在磁体中自旋重新定位,组织中的氢原子也相应的产生射频信号,而后这些信号被the minispec获得,信号的强度和持久性和材料性质相关。脂肪组织和肌肉组织在弛豫时间上的对比时比较高的,而且可以通过使用特定的射频脉冲序列将这种对比进一步加强。LF50技术指标:NMR频率:7.5MHz磁铁类型:永磁体0.17T磁体温度:可控样品重量:高达60克电压:110或220伏交流电压功率:330瓦附件:密封、温控类型:移动式或台式操作仪器重量:150千克尺寸:台式:65*75*30厘米(长*宽*高)尺寸:移动式:95*55*115厘米(长*宽*高)主机:奔四或更高版本,windows XP ProISO9001标准认证LF90技术指标:NMR频率:6.2MHz磁铁类型:永磁体0.14T磁体温度:可控样品重量:高达850克样品管:51毫米和89毫米电压:110或220伏交流电压功率:4500瓦附件:密封、温控类型:移动式仪器重量:350千克尺寸:台式:65*48*122厘米(长*宽*高)主机:奔四或更高版本,windows XP ProISO9001标准认证瘦肉/脂肪分析仪The minispec瘦肉/脂肪分析仪是一个基于时域信号核磁共振仪。获取和分析整个样品管中的所有质子的TD-NMR信号,给出以下三个信息:脂肪、自由体液和瘦肉的含量值。这种和次技术使得研究者有机会再动物的生命周期中进行更多的测试,并且还有以下优点:快速分析:不需要样品前处理,所有测试在两分钟内完成方法经济:整个过程中无消耗,保留了昂贵的实验室动物LF50可测的小鼠的重量可达60克LF90可用于小鼠和大鼠的测定降低了动物的压力:不需要麻醉;按其原样分析由于对动物健康无损伤可以频繁的进行测试与DEXA(X衍射)法相比有更好的精确度和准确度
    留言咨询
  • 小鼠NAFLD模型脂肪分析仪小鼠NAFLD(非酒精性脂肪性肝病)模型是用小鼠作为实验动物,在其体内模拟非酒精性脂肪性肝病的模型。该模型旨在研究NAFLD的发病机制、病理过程以及评估治疗策略的有效性。评价小鼠肿瘤模型中的脂肪含量可以使用多种方法。以下是几种常用的评估方法:1. 脂肪染色:可以使用染色剂如油红O(Oil Red O)或 Sudan III 等,染色脂肪组织。这些染色剂在脂肪细胞中会呈现红色或橙色,可以通过显微镜观察和图像分析来评估脂肪含量。2. 脂肪酸分析:通过提取脂肪组织,并使用化学方法或色谱技术来测量脂肪酸的含量。这可以提供关于脂肪组织中不同脂肪酸的相对丰度或绝对含量的信息。3. 生化指标:通过测量血液或组织样本中的生化指标,如甘油三酯(triglycerides,TG)和游离脂肪酸(free fatty acids,FFA)等来评估脂肪含量。这些指标可以使用生化分析仪器进行测定。4. MRI 或 CT扫描:使用医学影像技术如磁共振成像(Magnetic Resonance Imaging,MRI)或计算机断层扫描(Computed Tomography,CT)来非侵入性地评估肿瘤模型中脂肪的含量。这些技术可以提供三维图像,并可进行定量分析。纽迈研发的小鼠NAFLD模型脂肪分析仪是一款用于小动物体成分分析的专用低场核磁共振仪器,可在小动物清醒无束缚状态下快速、准确、定量的测量小动物的脂肪、瘦肉及体液含量,无需麻醉,直接进行测试,过程方便简洁,对小鼠或小动物无任何伤害,节约实验成本,可对单只小鼠或小动物进行长期跟踪研究,也通过MRI也可以实时观察体脂分布及沉积情况。通过长时间监测小鼠的生理参数,考察各种药物、运动、外界因素及营养对小鼠生理指标的影响。小鼠NAFLD模型脂肪分析仪技术与应用指标: 1、磁体类型:永磁体; 2、适用于大鼠、小鼠等实验小动物小鼠NAFLD模型脂肪分析仪性能特点:1、测试迅速:测试简单、快速、整个测试过程在1min内;2、样品无需预处理:样品无须麻醉,无须处死;3、测试结果:测试结果为脂肪含量,肌肉含量,可靠真实且稳定性高、重复性好;4、适用性: 活体大鼠、小鼠、兔子等小动物均可测量;小鼠NAFLD模型脂肪分析仪应用案例
    留言咨询

白色脂肪组织相关的试剂

白色脂肪组织相关的方案

  • 老鼠脂肪组织研究|多样品组织研磨机研磨老鼠脂肪组织实验操作
    随着生活水平的提升,全世界的肥胖人口正在迅速增加。脂肪过多还会增加心脏病和2型糖尿病(最常见的糖尿病)的风险。近年来研究表明,与肥胖相关的疾病危险性不只是与脂肪总量有关,更与脂肪在体内的分布有关。因此,越来越多的研究将重点放在对脂肪组织的差异性研究中,而不是简单地仅考虑总体肥胖程度。因此净信多样品组织研磨仪JXFSTPRP-24L则轻松结果老鼠脂肪研磨组织。
  • 柱式法 Minute TM 脂肪组织和细胞的总蛋白提取
    众所周知目前生物样品中水油乳化物最难分离,具有独特表面性质的带孔径的离心管柱和优化的无表面活性剂的缓冲液系统,可以快速有效的从脂肪组织匀浆中将水油乳化物分离。提取缓冲液比脂肪组织中的油冰点低,脂肪组织匀浆通过离心管柱能将水相和油相迅速分开,组织中的总蛋白无丢失。蛋白质得率可达 2-3 mg/ml,远远高于其他方法。
  • 不同生长阶段呼伦贝尔羊3种脂肪组织中膻味脂肪酸含量的变化规律研究
    本试验旨在研究不同生长阶段的呼伦贝尔羊脂肪组织中膻味脂肪酸含量的变化规律。以新生期、断奶期、育肥中期和后期4个不同生长阶段的32只呼伦贝尔羊为研究对象,采集背部皮下脂肪、肾周脂肪和肠系膜脂肪组织样品,采用索式抽提法收集脂肪后进行酸碱法甲酯化处理,并联合使用气相色谱-质谱分析,对4-甲基辛酸(MOA)、4-乙基辛酸(EOA)和4-甲基壬酸(MNA)的含量进行了测定和比较分析。结果表明:1)MOA、EOA、MNA的定量检测限分别为0.10、0.05和0.05μg/mL,线性相关系数(R2)>0.998。2)呼伦贝尔羊背部皮下脂肪和肾周脂肪组织中MOA、EOA和MNA的含量随生长阶段的变化呈显著差异(P<0.05),均表现为育肥后期>育肥中期>断奶期>新生期,且在断奶期~育肥中期的增长速率最快。在肠系膜脂肪组织中,新生期的3种膻味脂肪酸含量低于检测线,而育肥中期和后期的MOA和EOA的含量均显著高于断奶期(P<0.05)。3)膻味脂肪酸的含量存在部位差异性,即背部皮下脂肪组织高于肠系膜和肾周脂肪组织。上述结果表明,呼伦贝尔羊脂肪组织中膻味脂肪酸含量在断奶期至育肥中期的增长速率最快,且以背部皮下脂肪组织中含量最高。

白色脂肪组织相关的论坛

  • 糖尿病药物可抑制脂肪组织炎症

    新华社柏林5月22日电 一个国际科研小组日前发现,在动物实验中,治疗糖尿病常用的格列酮类药物有助于抑制脂肪组织炎症。研究人员说,其作用机制为治疗相关疾病提供了新思路。 此前有研究发现,体重严重超标者的腹部脂肪组织会出现慢性炎症,这种炎症通常被认为是引起胰岛素水平变化、导致Ⅱ型糖尿病的因素之一,甚至会增加肥胖者患癌的风险。 德国和美国研究人员在新一期英国学术期刊《自然》上报告说,他们在动物实验中发现,体重正常的老鼠体内有一种特殊免疫细胞,可抑制脂肪组织炎症,还能让体内的糖代谢保持正常。而肥胖老鼠体内几乎没有这种免疫细胞。 研究人员给肥胖老鼠使用格列酮类药物后,发现其脂肪细胞中的抗炎症免疫细胞增多,导致炎症的巨噬细胞减少,老鼠的脂肪组织炎症得到缓解,糖代谢趋于正常。 研究人员说,利用格列酮类药物抑制脂肪组织炎症的方法可否“照搬”到人身上还有待验证,但新发现的这一作用机制可为今后治疗多种疾病带来新视角。(记者 郭洋)

白色脂肪组织相关的资料

白色脂肪组织相关的资讯

  • 潘东宁/唐惠儒合作揭示天冬酰胺可促进脂肪细胞产热和糖酵解
    棕色和米色脂肪是一类特殊的“产热脂肪”,能够将代谢底物氧化产生的能量转化为热能,是哺乳动物及人类新生儿在寒冷环境下维持体温的重要手段之一,在进化上具有重大意义。近年来,肥胖、糖尿病等代谢性疾病日益流行,能量过剩是此类疾病的共同特征。产热脂肪具有高代谢活性和可诱导性,同时参与维持机体的能量代谢稳态,因而受到人们的关注,产热功能的调节机制和激活信号成为重要的研究课题。糖和脂肪酸是产热脂肪的两大“燃料”,其代谢途径及信号通路已有大量报道。然而,氨基酸是否能作为代谢底物或信号分子调节产热脂肪的功能,目前尚知之甚少。2021年10月27日,复旦大学潘东宁课题组和唐惠儒课题组合作在EMBO Journal上发表了题为 Asparagine reinforces mTORC1 signaling to boost thermogenesis and glycolysis in adipose tissues的研究成果。该研究发现,天冬酰胺通过激活mTORC1信号通路,启动脂肪组织产热和糖酵解,促进白色脂肪米色化,从而提高小鼠对寒冷环境的耐受能力,在肥胖情况下改善胰岛素敏感性、缓解体重增长。天冬酰胺(Asparagine, Asn)属于非必需氨基酸。哺乳动物细胞广泛表达天冬酰胺合成酶(Asparagine synthetase, ASNS),该酶以天冬氨酸为底物,由谷氨酰胺提供氨基,合成天冬酰胺。白血病母细胞(leukemic blasts)缺乏Asns表达,无法合成天冬酰胺,依赖外源摄取。因此,临床上使用天冬酰胺酶(asparaginase, ASNase)作为急性淋巴细胞性白血病的治疗手段,通过清除循环中的天冬酰胺,使白血病细胞由于缺乏天冬酰胺而凋亡。值得注意的是,接受该疗法的患者中,分别有20%和67%出现了高血糖和高血脂。此外,循环中天冬酰胺的水平与代谢综合征、肥胖的发生呈负相关。这些现象引起了本文作者的关注:天冬酰胺是否能影响全身能量代谢?为了探究这一问题,作者改变小鼠循环中天冬酰胺的水平,观察代谢和产热指标的变化。实验发现,在饮水中添加天冬酰胺,提高循环天冬酰胺水平,小鼠在4℃冷暴露时的体温维持能力显著提高,白色脂肪中出现更多米色化细胞;全身耗氧量、产热量均显著增加。另一方面,给予天冬酰胺酶,清除循环中的天冬酰胺,则出现相反的表型。在使用高脂饮食诱导肥胖的同时,给小鼠饮水中添加天冬酰胺,天冬酰胺组肥胖小鼠对β3肾上腺素受体激动剂反应敏感,体重增长减缓,血清胰岛素和血脂水平下降,糖耐量改善。这说明,天冬酰胺确实能促进脂肪组织产热、改善全身能量代谢。天冬酰胺发挥上述作用的机制是什么呢?作者采用代谢组学与同位素标记-靶向代谢流分析手段,发现添加天冬酰胺后,细胞内糖酵解中间产物(果糖-6-磷酸,果糖-1,6-二磷酸)显著增加。与之一致地,糖酵解关键酶(己糖激酶HK2、磷酸果糖激酶PFKL、丙酮酸激酶PKM)蛋白水平显著上调。进一步研究发现,天冬酰胺可激活mTORC1信号通路,上调4E-BP1和S6K的磷酸化水平,从而促进糖酵解关键酶的翻译;天冬酰胺对产热的激活作用,则依赖于mTORC1对Pgc1α的诱导。本研究首次报道了天冬酰胺对脂肪组织产热和糖酵解的激活作用,发现口服补充天冬酰胺能有效改善全身代谢、缓解肥胖进程。这一研究成果完善了我们对氨基酸调节产热脂肪功能的认识,并为利用天冬酰胺作为营养补充来预防和缓解肥胖提供了实验基础。复旦大学基础医学院博士生徐英江和施亭为本文共同第一作者,基础医学院潘东宁研究员和生命科学学院、人类表型组研究院唐惠儒教授为本文共同通讯作者。
  • 燃烧脂肪 改善糖尿病 这个细胞因子“一箭双雕”
    11月24日,暨南大学医学部生物医学转化研究院教授尹芝南团队与合作者,在《自然》在线发表的研究成果显示,白细胞介素27(IL-27)具有促进脂肪细胞产热和能量消耗的作用,其主要响应细胞是脂肪细胞而非免疫细胞,并且IL-27具有减轻肥胖和提高胰岛素信号敏感性,即改善2型糖尿病的治疗作用。  “这一工作历时7年才得以完成。”尹芝南对《中国科学报》表示。  发现减肥新靶点  近年来,随着富含脂肪和糖等高能量食品的摄入持续增加,以及越来越多的工作为久坐形式,人们罹患超重或肥胖的比率快速上升。世界卫生组织流行病学调查显示,2016年,18岁以上的成年人中有超过19亿人超重(身体质量指数即BMI≥25),其中超过6.5亿人为肥胖(BMI≥30),流行率与1975年相比增长近3倍。  “肥胖的根本原因是卡路里的摄入超过消耗,引起能量以脂质形式在脂肪细胞中堆积,而免疫细胞深度参与此过程。因而,寻找新的治疗靶点,尤其是直接靶向脂肪细胞而有效减重的分子尤为迫切。”尹芝南说。  尹芝南长期从事免疫与健康的基础和临床研究,在T细胞领域取得一系列开创性成果,并将研究成果成功应用于临床转化。此次,尹芝南团队通过构建多种基因工程小鼠,进行高脂饮食诱导的肥胖模型,并结合肥胖人群样本发现,肥胖人群血清中IL-27水平下降;突破了传统观念中IL-27专一性靶向免疫细胞的认知,首次发现IL-27通过直接作用于脂肪细胞,导致白色脂肪细胞棕色化,并激活UCP1介导的“脂肪燃烧”;通过将脂肪组织中的脂质转变为热量消耗掉,从而达到降低体重和改善糖尿病等代谢性疾病的目的。  “体重增加,从表面上来看是脂肪细胞增大,但根本原因是胰岛素抵抗。”尹芝南解释,团队发现的IL-27作用于脂肪细胞燃烧,一方面是减肥,但最主要是改善了胰岛素抵抗。改善胰岛素抵抗,对治疗肥胖及很多疾病都具有重要意义,如脂肪肝、多囊卵巢综合征等。  尹芝南指出,该研究突破了对IL-27仅专注于调节免疫系统的传统认知,为肥胖及其相关代谢性疾病的治疗提供了新的靶点和潜力药物,而IL-27作为体内正常表达的分子,具有良好的安全性,因而具有巨大的临床应用潜力和市场价值。不过,他也同时强调,从实验室到临床,还有很长的路要走。  “在肥胖过程中是哪个细胞产生IL-27?IL-27在脂肪细胞的相互作用过程中有没有受到其他细胞的作用,有没有受到情绪的影响?这些都是团队接下来要做的基础研究。”尹芝南说。  躺平燃烧卡路里?  传统观点认为,免疫细胞尤其是T细胞、B细胞和巨噬细胞,是IL-27的主要响应细胞,而脂肪组织局部含有大量的巨噬细胞和T细胞。  为了探究IL-27通过何种细胞发挥改善肥胖的作用,尹芝南团队构建了IL-27Rα的条件性敲除小鼠。他们意外发现,在T/B细胞和巨噬细胞中特异性缺失IL-27Rα,都不影响小鼠对高脂诱导肥胖的易感性。这促使作者猜想,IL-27是否还有其他未被发掘的响应细胞。  为此,尹芝南团队利用IL-27Rα全身性敲除小鼠开展了骨髓嵌合实验,并进行了高脂饲喂或寒冷刺激。结果发现,IL-27信号主要通过非造血系统来源的细胞影响产热与肥胖进程。一个大胆的想法在尹芝南脑海中产生:IL-27是不是可以直接靶向脂肪细胞来促进产热、改善肥胖进程呢?  为了验证上述假设,研究人员首先分离了脂肪组织中的脂肪细胞组分,发现上面确实有IL-27Rα的表达;对体外分化的原代脂肪细胞进行免疫荧光染色,也可以观察到IL-27Rα的阳性表达;并且IL-27处理体外分化的脂肪细胞可以上调UCP1的表达。  于是,他们再次构建了脂肪细胞上特异性缺失IL-27Rα的小鼠和棕色/米色脂肪细胞特异性缺失IL-27Rα的小鼠,这些小鼠也的确表现出对肥胖诱导和寒冷刺激实验的易感性。这些结果表明,IL-27确实可以直接靶向脂肪细胞,以促进产热、减轻肥胖。  “我们在动物实验中,注射重组IL-27可以显著减轻肥胖小鼠的体重并改善胰岛素信号敏感性,初步验证了IL-27作为治疗药物的潜力。”论文共同第一作者、暨南大学附属珠海市人民医院博士后王倩解释,该研究成果的主要优势是IL-27是在本体表达的蛋白,不是人工合成的外源性化合物。  “我们可以在不用限制饮食、不用节食的情况下改善2型糖尿病、燃烧脂肪、减轻体重,从机制上改善胰岛素信号的敏感性。”论文共同第一作者、暨南大学附属珠海市人民医院博士后李德海介绍。  “我们非常期待能够尽快将这一治疗靶点产业化,推动其临床应用,研发出RNA相关药物,为肥胖、糖尿病、脂肪肝等一系列代谢性疾病提供一个全新的治疗方法。”尹芝南还透露了另一研究方向——通过IL-27水平变化,预判身体健康状况。  相关论文信息:https://doi.org/10.1038/s41586-021-04127-5
  • 文献速递 | ECHO荧光显微镜在脂肪产热新机制研究中的应用
    肥胖是指脂肪层的堆积,减肥不仅是为了更美,也是为了更健康,肥胖已被证明会增加多种疾病的发生风险,如心血管疾病、癌症、脂肪肝等,但对于大多数人来说,控制体重却非常困难。减肥则主要通过刺激脂肪组织产热增加全身的能量消耗,运动和节食是我们最常见的方式,但运动和节食太累和痛苦,难以坚持;因此有很多人选择使用药物来进行体重的控制。现有刺激脂肪产热药物大多以β3-肾上腺素能受体(β3-AR)为靶点,通过激活β3-AR及其下游信号通路,活化解偶联蛋白(UCP1),从而引起脂肪组织产热。但是β-AR激动剂会导致血压增加,可能诱发心血管疾病。因此需要一种更低风险和安全的药物靶点。美国加州大学旧金山分校糖尿病中心的研究人员对之前报道的一个与UCP无关的产热机制进行了进一步探索,研究者们将该机制的验证以《Wireless optogenetics protects against obesity via stimulation of non-canonical fat thermogenesis》为题发表在《Nature Communications》上。这个与UCP无关的产热机制涉及依赖于ATP的Ca2+通过肌/内质网Ca2+-ATPase2b (SERCA2b)和Ryanodine受体2 (RyR2)的无效循环(无效循环指两物质自由能始终存在差异,自由能一高一低,即该循环发生必须从循环外注入能量)。之前研究发现作用于RyR2-Calstabin复合体的化学稳定剂S107可以增强Ca2+无效循环,刺激非UCP1依赖的产热,并保护UCP1缺失的小鼠在寒冷暴露后不会降低体温。但是S107是全身性给予小鼠的,无法排除脂肪组织以外的其他组织,如骨骼肌,可能有助于UCP1非依赖性产热的可能性,因此本文采用了独特的光遗传学方法,对脂肪细胞进行特异性操作,以严格测试非典型脂肪产热治疗肥胖的可能。光遗传学是对体内神经元或细胞活动进行时间和空间操作的强大工具。传统的光遗传学研究需要光纤系绳和/或大型头戴式接收器,使其在一般代谢研究中应用受限。而无线供电的光遗传学设备使光能够高效、稳定地传递到行为自由的动物的外周神经,因此本文开发了一种可植入小鼠皮下脂肪组织的无线光遗传学装置,同时该装置刺激的细胞也与之前不同,刺激脂肪细胞而非常见的神经细胞。无线光遗传学装置可以通过光激活转入channelrhodopsin2 (ChR2,光门控的、向内整流的阳离子通道,传输质子和单价Na+,K+和二价阳离子Ca2+,Mg2+)的神经细胞,并可以驱动神经元去极化。而该研究更进一步,将ChR2转入小鼠和脂肪细胞,通过光诱导脂肪细胞激活Ca2+循环的脂肪产热,增加全身能量消耗。首先对细胞层面的可行性进行分析,确定转入ChR2的米色脂肪细胞可以被光激活膜去极化触发细胞内Ca2+内流,通过Echo Revolve正倒置一体显微镜对转入ChR2脂肪细胞在光激活下的Ca2+含量,如视频显示的,光激活后,细胞内Ca2+含量明显升高。且对耗氧量分析发现,光激活的脂肪细胞耗氧量明显增加。进一步对体内脂肪是否会被激活进行检测,通过对温度,耗氧量等的检测确定,光激活后小鼠激活部位温度升高,整体耗氧量增加,表明非UCP1依赖的产热途径在体内脂肪细胞中可以被激活并发挥作用。通过对高脂肪饮食(HFD)的分析发现,光激活小鼠其体重增加明显少于对照组,表明非UCP1依赖的产热途径足以保护小鼠免受饮食诱导的体重增加。此项研究也首次证明了脂肪特异性冷刺激模拟可以通过激活非典型产热来预防肥胖。Echo Revolve正倒置一体显微镜Echo Revolve展现了其非凡的灵活性,可以轻松地实现正置和倒置显微镜转换,创新性地把正倒置显微镜合二为一,开启了显微镜Hybrid时代。▲ Echo Revolve正倒置一体显微镜☑ 视网膜屏显示技术:比拟目镜人眼观察效果。☑ 全视野观察: 更清晰,更方便。☑ 多通道荧光:多达4个EPI荧光通道,无须暗室,就可以轻松快速地完成多色荧光显微分析。☑ 自动化操作:通过iPad Pro点触操控相机及荧光通道之间的切换,实现了完全自动化操作。☑ App应用软件:基于IOS的Echo App是与Apple团队合作研发的专业显微镜软件。☑ 精湛的工艺尽显高端品质:实现非凡的性能。|申请试用|我们的仪器可以申请试用哦!扫描下方二维码关注“深蓝云生物科技”公众号,点击“云活动”→“试用中心”即可。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制