氨磺必利

仪器信息网氨磺必利专题为您整合氨磺必利相关的最新文章,在氨磺必利专题,您不仅可以免费浏览氨磺必利的资讯, 同时您还可以浏览氨磺必利的相关资料、解决方案,参与社区氨磺必利话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

氨磺必利相关的耗材

  • 速测水质氨氮测试包各种污水检测氨氮
    速测水质氨氮测试包各种污水检测氨氮 深圳市方源仪器有限公司批发供应的速测水质氨氮测试包各种污水检测氨氮,系日本共立理化研究所生产制造,中国大陆深圳是方源仪器代理销售,原产自日本。(周) 速测水质氨氮测试包有多款不同种类主要检测水质中金属离子及化学物离子浓度,如:COD,氨氮,总氮,氯,残余氯,铜,镍,铬,六价铬,锌 氰 磷酸,铁,锰,氟....透过测试包表面所显示的颜色,便能测出污水中金属或化学品的浓度,可广泛地使用在污水测试、饮用水测试、研究环境污染,PCB厂,电镀厂污水处理,一切液体离子含量及浓度分析等多方面,使用方法非常简单而且非常安全,快速准确任何人都会使用。 速测水质氨氮测试包各种污水检测氨氮参数:NH4氨氮离子测试包测试范围/间隔(mg/l=ppm):0.2 0.5 1 2 5 10 12 15 18 20以上反应时间:1分钟数量包装:50支/盒 其他相关测试参数:银 0,0.5,1,2,≥5 50 粉红色→紫色铝 0,0.05,0.1,0.2,0.5,1 40 淡黄色→淡红紫色砷 0.2,0.5,1,2,5,10 40 白色→淡蓝→蓝色金 0,2,5,10,20 40 红色→紫色钯 1,2,5,10,20,30,50 50硼 0,0.5,1,2,5,10 50 淡黄色→黄色钙 0,2,5,10,20,≥50 50 淡黄色→淡红紫色钙硬度 0,5,12.5,25,50,≥125 50 淡黄色→淡红紫色氯化物(300) ≥200,大约250,≥300 40 褐色→白色氯化物(200) ≥100,大约150,≥200 40 褐色→白色氯化物 0,2,5,10,20,≥50 40 黄绿色→褐色残留氯 5,10,20,30,50,100 150,200,300,600,≥1000 50 淡黄色→褐色残留氯(DPD) 0.1,0.2,0.4,1,2,5 50 白→淡粉红→粉红总残留氯 0.1,0.2,0.4,1,2,5 50 白→淡粉红→粉红二氧化氯 0.2,0.4,0.6,1,2,5,10 40 白→淡粉红→粉红游离氰 化物 0.02,0.05,0.1,0.2,0.5,1,2 40 白→淡紫→淡粉红化学需氧量 0,30,60,120,200,≥250 50 紫色→绿色→褐色化学需氧量 0,5,10,13,20,50,100 50 红色→紫→绿→黄化学需氧量 0,2,4,6,≥8 50 红色→紫色→绿色六价铬 0.05,0.1,0.2,0.5,1,2 50 白→粉红→红紫色总铬 0.5,1,2,5,10,20 40 白→粉红→红紫色铜 0.5,1,2,3,5,10 50 白→淡柑黄→柑黄铜(DDTC) 0.5,1,3,5,10 50 白色→黄色→褐色氟 0,0.4,0.8,1.5,3,≥8 50 红色→红紫色→蓝铁 0.2,0.5,1,2,5,10 50 白→淡柑黄→柑黄铁 0.05,0.1,0.3,0.5,1,2 50 白→淡红→红柑黄铁(二价) 0.2,0.5,1,2,5,10 50 白→淡柑黄→柑黄铁(二价) 0.1,0.2,0.5,0.8,1.2,2.5 50 白→淡红→红柑黄甲醛 0,0.1,0.2,0.3,0.5,1,2 40 黄色→绿色→蓝色过氧化氢 3,7,13,20,35,70,100,130,200,400,700 50 淡黄色→褐色过氧化物氢 0.02,0.1,0.2,0.5,1,5 50 白→淡红色→红色肼(联氨) 0.05,0.1,0.2,0.5,1,2 40 白→淡黄色→黄色金属总量(5种) 0,0.2,0.5,1,2,5以上镁 0,1,2,5,10,20 50 黄色→柑黄色镁硬度 0,4.1,8.2,20.5,41,82 50 黄色→柑黄色锰 0.5,1,2,5,10,20 50 白→粉红色→红色铵 0,0.5,1,2,5,10,≥20 50 黄色→青绿铵-N 0,0.4,0.8,1.6,4,8,≥16 50 黄色→青绿铵 0.2,0.5,1,2,5,10 50 白色→蓝色铵-N 0.16,0.4,0.8,1.6,4,8 50 白色→蓝色镍 0.5,1,2,5,10 50 白→粉红色→红色亚硝酸盐 16,33,66,160,330,≥660 50 黄色→红色褐色亚硝酸盐-N 5,10,20,50,100,≥200 50 黄色→红色褐色亚硝酸盐 0.02,0.05,0.1,0.2,0.5,1 50 白→粉红→红紫色亚硝酸盐-N 0.006,0.015,0.03, 0.06,0.15,0.3 50 白→粉红→红紫色硝酸盐 90,225,450,900,2250,4500 50 淡黄色→褐色硝酸盐-N 20,50,100,200,500,1000 50 淡黄色→褐色硝酸盐 1,2,5,10,20,45 50 白→粉红→红紫色臭氧 0.1,0.2,0.5,1,2,5 50 淡紫色→ 紫色pH pH 5.0 - 9.5【0.5 分度】 50 柑黄色→绿→蓝色pH(TBL) pH 1.6 - 3.4【0.2 分度】 50 红色→黄色pH(BCG) pH 3.6 - 6.2【0.2 分度】 50 红色→绿色→蓝色pH(BTB) pH 5.8 - ≥8.0【0.2 分度】 50 黄色→绿色→蓝色pH(TBH) pH 8.2 - 9.6【0.2 分度】50 黄色→绿色→蓝色高锰酸钾消耗 0,3,6,10,12,15 40 黄色→柑黄色苯酚 0.2,0.5,1,2,5,10 40 黄色→柑黄色磷酸盐 2,5,10,20,50,100 50 白→淡蓝色→蓝色磷酸盐-P 0.66,1.65,3.3,6.6,16.5,33 50 白→淡蓝色→蓝色磷酸盐 0.2,0.5,1,2,5,10 40 白→淡蓝色→蓝色磷酸盐-P 0.066,0.165,0.33, 0.66,1.65,3.3 40 白→淡蓝色→蓝色磷酸盐 0.05,0.1,0.2,0.5,1,2 40 淡紫色→紫色磷酸盐-P 0.0165,0.033,0.066, 0.165,0.33,0.66 40 淡紫色→紫色硫化物 0.1,0.2,0.5,1,2,5 40 白色→蓝色亚硫酸盐离子 50,100,200,500,1000,2000 50 淡黄色→褐色硅酸盐 2,5,10,20,50,100 40 白色→黄色硅酸盐 0.5,1,2,5,10 40 白色→蓝色总硬度 0,10,20,50,100,200 50 光蓝色→红紫色总氮 0,5,10,25,50,100 40 黄→ 绿→ 蓝-绿锌 0.5,1,2,5,10 50 黄→柑黄色→红色(周) 中国代理商:深圳市方源仪器有限公司
  • WAK-NH4氨氮测试盒氨氮水质检测
    WAK-NH4氨氮测试盒氨氮水质检测 WAK-NH4氨氮测试盒氨氮水质检测测试产品专业处理检测废水中氨氮含量。该测试盒使用简单且测试结果非常准确,测试时间又短。可广泛地使用在污水测试、饮用水测试、研究环境污染等多方面(周)。 测试参数:-NH4(C)氨(高浓度)0 0.4 0.8 1.6 4 8 16以上15分钟50次/盒- NH4氨0.16 0.4 0.8 1.6 4/85分钟50次/盒 使用说明:1.拔出管类端的细丝。2.以孔为上,用手指捏紧比色管的下半,赶出里面的空气。3.插入被检测水质中,吸入水一半左右时停止。4.轻轻摇晃5-6次,在指定的时间后(途中摇晃1-2次),与所带标准比色卡比色使用图解: 废水中氨氮的构成主要有两大类,一种是氨水形成的氨氮,一种是无机氨形成的氨氮,主要是硫酸铵,氯化铵等等。共分四种:有机氮.氨氮.亚硝酸氮(NO2-)和硝酸氮(NO3-)。而自然地表水体和地下水体中主要以硝酸盐氮(NO3-)为主。高氨氮废水的一般的形成是由于氨水和无机氨共同存在所造成的,一般上ph在中性以上的废水氨氮的主要来源是无机氨和氨水共同的作用,ph在酸性的条件下废水中的氨氮主要由于无机氨所导致。 产品特点:操作简便-无需辅助仪器,直接检测,无需专业的实验室和技术人员 快速高效-3-5分钟即可完成一个水样的分析,所有试剂及附件均内置,无需另行准备 结果可靠-引进日本专利技术,结果与国标方法一致 携带方便-PE塑胶制试管,体积小,重量轻,不易破损储藏方便-常温下保存即可,有效期为18个月 中国代理商:深圳市方源仪器有限公司
  • 氨氮半定量测试条91315
    氨氮半定量测试条91315德国MN氨氮测试条,可以检测溶液的氨氮含量,测试过程既简单又快速,10秒内就可以测出结果。产品编号91315类型QUANTOFIX® 氨氮测试条测量范围0 10 25 50 100 200 400 mg/L 氨氮 测试次数100 次保质期2.5 年颜色变化亮黄 → 橙

氨磺必利相关的仪器

  • 仪器简介:典型应用:适用于自来水氯胺消毒工艺,监测总氨、游离氨及一氯胺含量。检测原理:先用改进酚盐方法确定一氯胺浓度。然后再取一次水样,先加入过量的次氯酸盐,在合适的pH值下,次氯酸盐试剂可以把样品中得全部游离氨转换为一氯胺,再用酚盐法测得总氨浓度。总氨减去一氯胺,得到游离氨浓度。测试的氨氮含量不受水样中余氯干扰。技术参数:测量范围:0.02~2mg/L,以氮计(0.1~10mg/L,以Cl2 计)准 确 度:读数的± 5%或± 0.02mg/L,取较大者重 现 性:读数的± 3%或± 0.01mg/L,取较大者响应时间:单通道设备,90%响应少于5 分钟,测量周期:5.0 分钟(平均)最低检测限:0.01mg/L,以氮计(0.05mg/L,以Cl2 计)样品压力:0.03~2.04bar样品温度:5~50℃样品流速:&le 100~2000mL/min电源要求:95~240VAC,50/60 Hz± 2 Hz防护等级:NEMA 4X(室内)/ IEC 529(IP66),有空气吹扫接口。试剂瓶的箱子防止滴漏。排水连接:排水管要垂直安放,推荐使用透气管道。接口规格:进口连接:1/4&rdquo NPT,排水连接:3/4&rdquo NPT接头仪器尺寸:522× 627× 526mm仪器安装:挂墙式、工作台式和壁挂式重 量:25.5kg主要特点:● 仪器可同时显示总氨、一氯胺和游离氨三个监测浓度;● 采用标准酚盐法测量氨氮,其他方法相比,不受水样中余氯的干扰● 仪器箱密封- 化学反应在恒温条件下进行;● 自动校正、自动清洗、自动试剂添加;样品和试剂的消耗量小;● 2路4-20MA模拟输出,2个报警继电器输出;可以扩展到14个4-20输出,可以扩展到14个报警继电器输出;● 可分别测量两路水样● 仪器可无人职守,30 天连续自动运行。● 具有强大的数据处理功能,可以存储30天的分析数据,可进行图形分析、趋势分析
    留言咨询
  • 主要用途   微机控制弹簧拉压试验机(双臂)依据国家弹簧拉压试验机标准规定的技术要求,对拉簧、压簧、碟簧、塔簧、板簧、卡簧、片弹簧、复合弹簧、气弹簧、模具弹簧、异性弹簧等精密弹簧的拉力、压力、位移、刚度等强度试验和分析。 HP-TLS-W5微机控制弹簧拉压试验机(双臂)功能特点   1、 本弹簧试验机能够测量弹簧的拉力、压力、刚度、位移及显示日期、编号等内容  2、 微机控制全自动弹簧拉压试验机(双臂)采用大规模继承电路,提高了测试精度,人机对话直观明了  3、 依据国家标准设计的弹簧检测专用程序,效率高、功能全、操作方便  4、 从寄希望原理和程序软件两方面考虑提高了量程的精确测量范围  5、 即适合生产线上弹簧的批量检测、分选,也适合试验室的精密抽检  6、 数据与曲线随试验过程动态显示  7、 可对曲线进行再分析,可放大、缩小和点击察看曲线上各点对应的数据。  8、 可将力值、位移、刚度、曲线等数据形成标准的试验报告进行打印  9、 微机控制全自动弹簧拉压试验机(双臂)具有程控和机械两级限位保护 HP-TLS-W5微机控制弹簧拉压试验机(双臂)技术参数 最大试验力5000N10KN20KN50KN 100KN试验力准确度±1%试验力的最小读数0.01N位移最小读数值0.01mm拉伸试验的最大距600mm压缩试验的最大距600mm上、下盘直径200mm拉伸及压缩试验最大行程600mm上压盘下降上升速度0.01-500mm/min,分档可调变形示值误差《±(50+0.15L)um试验机级别1级主机形式门式主机尺寸720*500*1780mm试验机净重400Kg
    留言咨询
  • 概述: Y-100、150T弹簧管压力表的测量系统由接头与弹簧管组成,由于被测介质压力的变化使弹簧管自由端产生位移,通过连杆带动扇形齿轮进行角位移的转换,使指针从零度达到270度的转角,在度盘上指示出相应的压力值,以实现测量压力的目的。 压 力 表:用于测量对铜和铜合金无腐蚀,无爆炸性且不结晶介质的压力。 真 空 表:用于测量介质的负压 压力真空表:用于测量介质的压力和负压 氧气压力表:用于测量氧气的压力和负压 氢气压力表:用于测量氢气的压力和负压 乙炔压力表:用于测量乙炔的压力和负压 压力表氨用压力表:用于测量氨气或液氨的压力和负压 Y-100、150T弹簧管压力表主要技术指标: 弹簧管压力表型号 Y-60 Y-60T Y-60TQ Y-60Z Y-60ZT Y-100 Y100T Y-100TQ Y-100Z Y-150ZT Y-150 Y-150T Y-150TQ Y-150Z Y-150ZT Y-200 Y-250 公称直径(mm) Φ60 Φ100 Φ150 Φ200 Φ250 连接螺纹 M14X1.5 M20X1.5 精度等级 2.5 1.6 弹簧管压力表测量范围 (Mpa) 0-0.1 0.16 0.25 0.4 0.6 1 1.6 2.5 4 6 10 2.5 4 6 10 16 25 40 0-0.1 0.16 0.25 0.4 0.6 1 1.6 25 4 6 10 16 25 40 60 0-0.1 0.16 0.25 0.4 0.6 1 1.6 2.5 4 6
    留言咨询

氨磺必利相关的试剂

氨磺必利相关的方案

氨磺必利相关的论坛

  • 氨氮预处理絮凝沉淀后瓶璧上有白色颗粒物质

    氨氮预处理絮凝沉淀后瓶璧上有白色颗粒物质

    我们实验室由于某些客观原因,在氨氮测定之前只进行絮凝沉淀,不蒸馏,一般加2滴管硫酸锌和3-4滴氢氧化钠。充分摇晃静止几分钟后,再次摇晃,再过8-10分钟后,观察到锥形瓶内絮凝物基本沉淀下来后,就倒入比色管内,加酒石酸钾钠和纳氏试剂,放置10分钟进行测定。我们不进行过滤,因为过滤对滤纸的要求非常高,客观原因时间不够。有时候氨氮测定的时候观察到测试样品非常干净,时候却是会有白色浑浊。看了几个大家分析的帖子之后,有人认为是酒石酸钾钠的问题。有人认为是水体中本身的干扰物质导致的。我们在实验中观察到在絮凝沉淀的瓶璧上也有这类白色颗粒物质(具体如下图),出现这个情况,我们清洗的时候使用1:12的稀盐酸进行浸泡,但是有时候第二天还是会出现同样的问题,在清洗比色管的时候,比色管璧上也有这种白色颗粒。http://ng1.17img.cn/bbsfiles/images/2014/09/201409111120_513470_2925096_3.jpg我有几个问题想请教一下大家:(1)絮凝沉淀出现这种情况是正常的吗?(2)氢氧化钠和硫酸锌的加入量在水温不同的时候有些什么要求吗?(我们这边样品pH一般为8.3左右)(3)样品测定的时候白色浑浊是由于絮凝沉淀的问题?还是酒石酸钾钠的问题?还是有可能是水中有机物的问题?(4)有哪些实验可以让我们自己做了之后来排除是不是(3)中说的那些问题?第一次发帖,有什么不足的地方请见谅,谢谢.

  • 你究竟有几个好妹妹?——有奖征集小儿氨酚黄那敏颗粒图片

    你究竟有几个好妹妹?——有奖征集小儿氨酚黄那敏颗粒图片

    今天在药店见到好多小儿氨酚黄那敏颗粒(检测标准见40楼),包装精美图案精致,各个厂家对包装上是下了不少功夫了?土豆想:一个品种这么多药厂生产,大家都符合药典规定,质量上无法分出高低,只好在别的方面一较高下了。最近搜集好妹妹上瘾了,看到不同的小儿氨酚黄那敏颗粒我就拍下来,也向各位征集图片了,凡是能提供和我这不重复的小儿氨酚黄那敏颗粒图片的,一张图加10分,十分啊!!http://ng1.17img.cn/bbsfiles/images/2011/08/201108251407_312180_1645752_3.jpg好可爱的小宝宝啊,是不是?http://ng1.17img.cn/bbsfiles/images/2011/08/201108251407_312182_1645752_3.jpg这是个小鸡还是小龙人的卡通图案呢?http://ng1.17img.cn/bbsfiles/images/2011/08/201108251408_312183_1645752_3.jpg宝宝看到这么可爱的图案,一定减少了吃药的抗拒性了。http://ng1.17img.cn/bbsfiles/images/2011/08/201108251409_312184_1645752_3.jpg这个卡通好像不太可爱了http://ng1.17img.cn/bbsfiles/images/2011/08/201108251410_312186_1645752_3.jpg佩夫人登场-----

  • 【原创大赛】小儿氨酚黄那敏片溶出度研究

    http://simg.instrument.com.cn/bbs/images/default/emyc1007.gif支持分坛团队和化学药分析版。小儿氨酚黄那敏片原质量标准控制崩解时限,按标准提高要求,需进行溶出度研究。因此我们对小儿氨酚黄那敏片的对乙酰氨基酚溶出度进行了研究。【处方】马来酸氯苯那敏 0.5g对乙酰氨基酚 125g人工牛黄 5g共制成 1000片供试品来源马来酸氯苯那敏对照品(中国药品生物制品检定所,批号100047-200305)对乙酰氨基酚对照品(中国药品生物制品检定所,批号100018-200408)小儿氨酚黄那敏片(本公司,批号:20060201、20060801、20060802)小儿氨酚黄那敏片阴性样品(不含马来酸氯苯那敏和对乙酰氨基酚、本公司)小儿氨酚黄敏片(某公司上市产品,批号:0511141)对乙酰氨基酚溶出曲线的测定溶出曲线应与体内过程一致。初步研究为简便起见,取上市产品同法测定,对比溶出曲线,看是否有相关性。溶出介质的选择溶出介质首选水,对乙酰氨基酚在水中略溶,即1g能在溶剂30~不到100ml中溶解。本品每片含对乙酰氨基酚0.125g,不考虑其它成分干扰的话,0.125g对乙酰氨基酚应该能在1000ml的水中完全溶解。溶出方法的选择一般认为,桨法50转相当于篮法100转。本研究先从缓和的条件篮法50转开始。溶出度曲线测定方法参照中国药典2005年版对乙酰氨基酚片溶出度项下的有关规定,拟定为“取本品,照溶出度测定法(附录X C第一法),以水1000ml为溶出介质,转速为每分钟50转,依法操作,经5分钟、15分钟、30分钟、45分钟时,取溶液10ml,滤过,精密量取续滤液3ml,加0.04%氢氧化钠溶液稀释至50ml,摇匀,照紫外-可见分光光度法(附录IV A),在[

氨磺必利相关的资料

氨磺必利相关的资讯

  • 技术资讯:水中的氨氮含量测定方式
    氨氮(NH3—N)以游离氮(NH3)或(NH4+)形式存在于水中,两者的组成比取决于水的PH值和水温。当PH值偏高时,游离氨的比例较高。反之,则铵盐的比例高,水温则相反。 水中氨氮的来源主要为生活污水中含氮有机物受微生物作用的分解产物,某些工业废水,如焦化废水和合成氨化肥厂废水等,以及农田排水。此外,在无氧环境中,水中存在的亚硝酸盐亦可受微生物作用,还原为氨。在有氧环境中,水中氨亦可转变为亚硝酸盐,甚至继续转变为硝酸盐。水中氨氮的测定一般都采用纳氏试剂光度法,氨与碘化汞钾的碱性溶液反应,生成淡黄到棕色的配合物碘化氨基合氧汞,选用410-425nm波段进行测定,测出吸收光度,用标准曲线法来得出水中的氨氮含量。不过这种方法的低检出限为0.25mg/L,测定上限为2mg/L,需要注意的是合成物的颜色深浅与氨氮的含量成正比,所以大家在检测之前可以根据颜色的深浅来进行粗略的估计。当干扰较多或氨氮含量较少时,大家可以采用蒸馏法,使氨从碱性溶液中成气态逸出来进行检测,不过这种方法操作复杂,精密度和准确度都比较差。
  • 我国成功研发燃煤锅炉混氨燃烧技术
    1月24日,国家能源集团在京召开技术发布会,正式对外发布燃煤锅炉混氨燃烧技术。该技术日前顺利通过中国电机工程学会与中国石油和化学工业联合会组织的技术评审。 专家一致认为,该技术在40兆瓦燃煤锅炉实现混氨燃烧热量比例达35%属世界首次,项目为我国燃煤机组实现二氧化碳减排提供了具有可行性的技术发展方向,对我国实现碳达峰碳中和目标有重大促进作用,建议在更大容量的煤粉锅炉上进行工业示范。 燃煤发电的二氧化碳排放量巨大,目前占我国总二氧化碳排放量的34%左右,因此,减少燃煤发电的二氧化碳排放是我国顺利实现碳达峰碳中和目标的关键。 与氢相比,氨体积能量密度高,单位能量储存成本低,大规模储存和运输基础设施与技术成熟完善,是一种极具发展潜力的清洁能源载体和低碳燃料。 国家能源集团所属烟台龙源电力技术股份有限公司(以下简称龙源技术)相关负责人表示,考虑到目前可再生能源生产氨的能力有限,短期内不可完全替代煤炭,因此,采用氨与煤在锅炉中混燃的方式降低燃煤机组的二氧化碳排放,是现阶段更加可行的技术发展方向。 然而,目前全球范围内将氨作为低碳燃料的研究仍处于起步阶段,且皆集中在实验室小尺度研究,还未能在工业尺度条件下验证将氨作为低碳燃料大规模使用的可行性。 国家能源集团通过对氨煤混燃机理实验研究、40兆瓦燃煤锅炉混氨燃烧工业试验研究,验证了燃煤锅炉混氨燃烧的可行性,开发了燃煤锅炉混氨燃烧技术,为我国未来燃煤机组实现大幅度碳减排探索出了一条有效技术路径,将会有力地支撑国家碳达峰碳中和目标的顺利实施。 “该技术成果首次以35%掺烧比例在40兆瓦燃煤锅炉上实现了混氨燃烧工业应用,开发了可灵活调节的混氨低氮煤粉燃烧器,并配备多变量可调的氨供应系统,完成了对氨煤混燃技术的整体性研究,为更高等级燃煤锅炉混氨燃烧系统的工业应用提供了基础数据和技术方案。”龙源技术相关负责人说。 研究已初步表明,燃煤锅炉混氨燃烧对机组运行的影响很小,燃料燃尽和氮氧化物排放优于燃煤工况,表明现有燃煤机组只需进行混氨燃烧系统改造,而锅炉主体结构和受热面无需进行大幅改造,即可实现混氨燃烧,达到大幅降低二氧化碳排放的目标。 专家组认为,该项技术成果将改变传统高碳排放的燃煤发电方式,逐步实现化石燃料替代,大幅度缩减燃煤机组碳排放,为我国未来燃煤机组实现大幅度碳减排探索出一条有效技术路径,为推动我国化石能源高效清洁高效利用,国家“双碳”目标的实现提供了有力的技术支撑。 中国工程院院士黄其励表示,该项目的第一完成单位龙源技术在二十年前自主开发的等离子体点火及稳燃技术,通过技术鉴定后迅速在全国推广,节约了大量的锅炉点火和低负荷稳燃用油,为我国燃煤机组节油作出了巨大的贡献。国家能源集团作为“大国重器”,勇担社会责任,科技创新引领强企之路的步伐从没有间断,在国际上首次开发出了高比例混氨燃烧技术,走在了世界前列。
  • 氨的过去,今天以及未来
    在碳达峰、碳中和的世纪热潮中,世界各国都在积极寻找下一代能源技术,氨能高效利用正在成为近期全球关注的焦点。目前,氨正从传统的农业化肥领域向新能源领域拓展。正是因为氢的储存和运输成本太高,氨开始受到更多的关注。资料显示,中国是全球氨生产大国,全世界每年生产合成氨2亿吨左右,我国的产能大约占到全球的四分之一。 图 碳达峰、碳中和是全球人类在21世纪的共同目标 从技术角度,氨由一个氮原子和三个氢原子组成,是天然的储氢介质;常压状态下,温度降低到零下33摄氏度就能够液化,便于安全运输。氨能是一种以氨为基础的新能源,既可以与氢能融合,解决氢能发展的重大瓶颈问题,也可以作为直接或者间接的无碳燃料直接应用,是实现高温零碳燃料的重要技术路线。 在进入新能源时代之前,氨已经是全球使用广泛的高产量(High Production Volume, HPV)的工业化学品之一,其中大约80%的商业化生产的氨进入农业并用于制造肥料。因此氨有完备的贸易和运输体系。所以,从理论上来看,可以用可再生能源生产氢,再将氢转换为氨,运输到目的地。 图 农业施肥为氨目前大的利用领域 除了化肥,氨在许多大型工业制冷系统中用作冷却剂,也时常是制造药品、塑料、纺织品、染料、杀虫剂、炸药和工业化学品的成分。在石油和天然气工业中,氨用于中和原油中常见的苛刻酸性化合物。采矿业使用“裂解”的 氨来提取铜、镍和其他金属,而燃煤和燃油发电厂则将氨添加到反应器中以净化烟雾并将有毒的氮氧化物转化为水和氮。氨还支持用于净化饮用水的氯胺消毒剂,并防止形成致癌副产品,这使得氨成为水处理应用的一种有价值的化合物。 如今,在船舶航运领域,氨即将以崭新替代能源的身份大展宏图。2021年10月28 日,国际可再生能源署(International Renewable Energy Agency, IRENA)发布报告称,氨在海运领域将成为清洁燃料的主力军。令人关注的是,挪威化肥巨头雅苒国际出资建造的全球一艘用氨能驱动的货船雅苒伯克兰号,已于2021年11月22日下水首航。 图 氨在海运领域将成为清洁燃料的主力军 全方位了解氨的危害 虽然氨在现代和未来社会的用途甚广,缺乏正确的氨气浓度测控和法规监管,过高的氨气浓度将会对人体健康和生态环境产生破坏性的影响。 l 健康危害接触低水平的氨会导致咳嗽以及对眼睛、鼻子、喉咙和呼吸道的刺激。虽然,高于25ppm浓度的氨可通过其刺激性气味被人类察觉,提供足够的早期预警信号。但氨的气味也会导致长时间接触后产生嗅觉疲劳,甚至损害人的嗅觉。 如果人体接触高浓度的氨,会立即灼伤鼻子、喉咙和呼吸道,导致呼吸道受损、甚至呼吸窘迫或衰竭,也可能导致死亡。由于儿童的肺表面积与体重之比较大,更容易受到氨的影响。 氨浓度 (ppm)对人体健康的影响50刺激眼睛、鼻子、喉咙(2小时暴露)100眼睛和呼吸道短时间内感到刺激性250大多数人能忍受(30-60分钟暴露)700眼睛和喉咙立即感到刺激性1500咳嗽、肺水肿、喉咙痉挛2500-4500致命(暴露30分钟以上)5000-10,000短时间内因气道堵塞立即致命,甚至造成皮肤损伤表一 暴露在不同的氨气浓度水平,可能会引起不同程度而的人体伤害(来源:Ammonia Toxicological Overview, Public Health England ) l 环境污染氨在二次气溶胶颗粒物生成中扮演着重要角色。其与大气中的硫酸和硝酸反应形成铵盐,作为颗粒物质在大气中停留几天至一周,然后再沉积回地面,是引发重霾污染和过量氮沉降的重要活性氮。图 大气中的氨是PM2.5的重要前体物 l 富营养化氨的排放以湿沉降和干沉降的形式返回地标,造成土壤和地表水的富营养化,从而影响植物和动物物种的生存。 氨气检测面面观 l 报警氨是一种有毒气体,暴露在一定浓度以上的氨气会对人体健康造成伤害,因此必须始终配备适当的安全监控程序和设备,以避免严重的意外伤害或死亡。 现有行业内氨分析仪器的常规标准为JJG 1105-2015《氨气检测仪检定规程》,适用于测量空气或氮气中氨含量的气体分析仪和检测报警器的检定,规程要求的两种量程范围其一为0-50 umol/mol(ppm),要求测试误差在±10%;其二为50-1000 umol/mol,要求测试误差在±6%。 JJG 1105-2015主要针对仪器检测原理的包含电化学、红外声光、非色散红外、化学发光、紫外等,采样方式有吸入式和扩散式两种。 l 氨逃逸燃煤锅炉烟气排放所含的氮氧化物,是空气污染的重要前体物,控制燃煤过程烟气排放的氮氧化物总量是各国环保法规的重点。选择性催化还原(SCR)和选择性非催化还原(SNCR)技术是目前烟气脱硝主流技术。通过在烟气中注入氨水或尿素,其主要成分氨与氮氧化物发生化学反应,生成对环境无害的氮气和水。 脱硝过程的还原反应结束后,残余的氨气称之为氨逃逸。考虑氨气本身也是有害污染物,必须对烟气中残余氨气浓度进行实时监控,一方面使喷氨效率达到优,一方面降低氨的消耗及排放。 2018年,国务院将“开展大气氨排放控制试点 ”写入新版空气污染整治目标和计划——《关于全面加强生态环境保护坚决打好污染防治攻坚战的意见》。随着各级政府对氨气污染的高度重视,工业氨气监测的需求也更加具有挑战。举例来说,2019年山东发布新的《火电厂大气污染物排放标准》重点增加了氨逃逸和氨厂界浓度控制指标要求,要求采用氨法脱硫或使用尿素、液氨或氨水作为还原剂脱硝的企业,其氨逃逸浓度应满足HJ2301中小于2.0mg/m3(约2.63ppm)的要求。 除了空气污染,氨逃逸对采用脱硝过程的企业还可能带来诸多危害:l 形成堵塞空预器的铵盐,增加维护成本(逃逸浓度2ppm时,半年后风机阻力增加约30%;3ppm时,半年后风机阻力增加约50%);l 频繁冲洗空预器,影响机组安全;l 使催化剂失活,缩短使用寿命;l 还原剂氨的耗材浪费;l 影响用于建材的飞灰(脱硝过程副产品)质量。 为了有效监测氨逃逸,一般情况下氨的监测仪表安装于脱硝系统的还原反应结束处,烟道处也会安装一台以监测最终烟气中的氨排放浓度。然而,传统的氨逃逸分析仪在实际监测中所遭遇的困难重重。传统基于近红外激光的分析仪,由于氨分子在近红外波段可用吸收光谱窄、吸收峰强度低,使得分辨率低(下限1ppm)并且易受其他气体干扰。从安装方式来看,对射式原位安装对法兰开孔精度要求高,烟道的振动、膨胀及收缩等都非常影响光精度与系统的稳定性,大大降低数据质量。同时原位式在线分析系统难以在线通入标气,对仪器进行有效的检验与标定。 海尔欣科技自主研发的LGM1600便携式高精度激光氨逃逸分析仪,基于新一代中红外激光吸收光谱技术,采用氨分子在中红外波段的强吸收峰,其强度高于近红外波段吸收100多倍,因此LGM1600检测精度比现有大多数氨逃逸分析仪器至少高出一个量级。结合德国进口高温采样预处理系统,LGM1600可实现无冷凝和极低吸附的氨气采样和分析。图 LGM1600便携式高精度激光氨逃逸分析仪 l 大气氨大气中的氨与农业活动密切相关。目前,农业活动例如施肥、畜牧养殖等是主要的人为氨排放源。对农业生产而言,施肥导致的氮挥发还是农田氮养分损失的重要途径。相对于氨的重要性,对其排放和沉降的观测研究工作却相对滞后,这主要受制于氨在线检测仪器及观测方法上的局限。 因氨具有强表面吸附力和水溶性等特性,大气氨浓度和地气氨交换通量的原位准确测量一直是学界的一大挑战,目前国际上主流的测量仪器大多采用闭路吸入式的构造,采样管路的吸附效应一直制约着大气氨浓度的快速高频高准度测量。与此同时,闭路仪器和搭配使用的外置抽气泵均要求交流供电,这意味着目前绝大多数的大气氨通量观测只能在少数电力条件允许的环境下开展。 例如,目前国内外对于氨干沉降通量的观测,大都采用基于低频(数日至数月)浓度采样的沉降速率经验系数法,其结果的准确度亟待检验。相较于氨气泄漏报警和工业排放,大气中的氨气浓度仅为0-50ppb,大多数情况下不超过10ppb,加之氨气在大气中相态转化多变,高频且准确的浓度和通量信息,是对大气氨实施有效调控的必要基础。 宁波海尔欣光电科技有限公司与中科院大气物理研究所碳氮循环团队深入合作,研发了HT8700便携式、高精度、快响应的开路多通池激光氨分析仪(图X)。这款仪器基于可调谐激光吸收光谱(TDLAS)技术,采用了分布反馈式量子级联激光(DFB-QCL)的光源,其开放式的光路结构,解决了传统闭路仪器管路吸附引起的测量误差,光机电软各个部分高度集成,可完全由太阳能驱动运行,适合野外条件使用。 图 HT8700 高精度大气氨本底激光开路分析仪 目前,HT8700在国内已为中科院大气物理所和中国农业大学所采用,研究成果发表于世界SCI期刊《Agricultural and Forest Meteorology》和《Atmospheric Environment》。HT8700同时获得海内外专家青睐,先后展示于国家碳中和北方中心、欧洲地理学会(EGU)年会、世界氮素倡议大会(INI)、亚洲通量观测联盟(AsiaFlux)年会,并出口英国与荷兰,参与欧洲高端科学机构的研究项目。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制