透镜成像原理

仪器信息网透镜成像原理专题为您提供2024年最新透镜成像原理价格报价、厂家品牌的相关信息, 包括透镜成像原理参数、型号等,不管是国产,还是进口品牌的透镜成像原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合透镜成像原理相关的耗材配件、试剂标物,还有透镜成像原理相关的最新资讯、资料,以及透镜成像原理相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

透镜成像原理相关的仪器

  • 按形状分平凹透镜与双凹透镜,按材料分为K9玻璃(BK7)与石英。 相关参数: 1.材料:K9光学玻璃2.设计波长:587.6nm3.直径误差:+0.0/-0.1mm4.中心厚度误差:± 0.2mm5.焦距误差(EFL): ± 2%6.倒边:0.2mm× 45° 7.镀膜:无A.K9玻璃,平凹透镜型号尺寸及参数(mm)型号尺寸及参数(mm)OLD12.7-025&Phi 12.7,f-25OLD25-200&Phi 25,f-200OLD12.7-038&Phi 12.7,f-38OLD25-250&Phi 25,f-250OLD20-030&Phi 20,f-30OLD25-366&Phi 25,f-366OLD20-050&Phi 20,f-50OLD25-400&Phi 25,f-400OLD20-060&Phi 20,f-60OLD25-500&Phi 25,f-500OLD20-080&Phi 20,f-80OLD25-1000&Phi 25,f-1000OLD25.4-050&Phi 25.4,f-50OLD30-060&Phi 30,f-60OLD25.4-075&Phi 25.4,f-75OLD30-120&Phi 30,f-120OLD25.4-100&Phi 25.4,f-100OLD30-150&Phi 30,f-150OLD25.4-150&Phi 25.4,f-150OLD50-063&Phi 50,f-63OLD25-025&Phi 25,f-25OLD50-080&Phi 50,f-80OLD25-032&Phi 25,f-32OLD50-100&Phi 50,f-100OLD25-040&Phi 25,f-40OLD50-160&Phi 50,f-160OLD25-050&Phi 25,f-50OLD50-250&Phi 50,f-250OLD25-060&Phi 25,f-60OLD50-500&Phi 50,f-500OLD25-080&Phi 25,f-80OLD50-1000&Phi 50,f-1000OLD25-100&Phi 25,f-100OLD50.8-250&Phi 50.8,f-250OLD25-125&Phi 25,f-125OLD50.8-400&Phi 50.8,f-400OLD25-160&Phi 25,f-160OLD50.8-500&Phi 50.8,f-500B. 石英,平凹透镜OLDQ系列,石英,平凹透镜型号产品名称及尺寸型号产品名称及尺寸OLDQ25-035紫外熔融石英,平凹透镜,&Phi 25.4,f-35OLDQ25-175紫外熔融石英,平凹透镜,&Phi 25.4,f-175OLDQ25-050紫外熔融石英,平凹透镜,&Phi 25.4,f-50OLDQ25-200紫外熔融石英,平凹透镜,&Phi 25.4,f-200OLDQ25-075紫外熔融石英,平凹透镜,&Phi 25.4,f-75OLDQ25-250紫外熔融石英,平凹透镜,&Phi 25.4,f-250OLDQ25-100紫外熔融石英,平凹透镜,&Phi 25.4,f-100OLDQ25-400紫外熔融石英,平凹透镜,&Phi 25.4,f-400OLDQ25-150紫外熔融石英,平凹透镜,&Phi 25.4,f-150   C. K9平凹柱面透镜 (Plano-Concave Cylindrical Lenses)1) OLBCY系列平凹柱面透镜 命名规则:OLBCY尺寸1尺寸2-焦距 相关参数:1.材料:K9光学玻璃2.设计波长:587.6nm3.直径误差:+0.0/-0.2mm4.中心厚度误差:± 0.2mm5.焦距误差(EFL): ± 2%6.倒边:0.2mm× 45° 7.镀膜:无OLBCY系列,K9玻璃,平凹柱面透镜型号名称尺寸(X*Y)焦距边缘厚OLBCY2020-50K9玻璃,平凹柱面透镜20*20-5042) 其他规格平凹柱面透镜(进口)示意图: 相关参数:镀膜说明:标准产品未镀增透膜,若需要镀膜,请联系确认。选型表(部分):D. K9玻璃,双凹透镜型号尺寸及参数(mm)型号尺寸及参数(mm)OLE25.4-025&Phi 25.4,f-25OLE25.4-175&Phi 25.4,f-175OLE25.4-035&Phi 25.4,f-35OLE25.4-200&Phi 25.4,f-200OLE25.4-050&Phi 25.4,f-50OLE25.4-250&Phi 25.4,f-250OLE25.4-075&Phi 25.4,f-75OLE25.4-300&Phi 25.4,f-300OLE25.4-100&Phi 25.4,f-100OLE25.4-500&Phi 25.4,f-500OLE25.4-125&Phi 25.4,f-125OLE25.4-1000&Phi 25.4,f-1000OLE25.4-150&Phi 25.4,f-150E.石英,双凹透镜型号尺寸及参数(mm)型号尺寸及参数(mm)OLEQ25.4-025&Phi 25.4,f-25OLEQ2.45-200&Phi 25.4,f-200OLEQ25.4-050&Phi 25.4,f-50OLEQ25.4-250&Phi 25.4,f-250OLEQ25.4-075&Phi 25.4,f-75OLEQ25.4-300&Phi 25.4,f-300OLEQ25.4-100&Phi 25.4,f-100OLEQ25.4-500&Phi 25.4,f-500OLEQ25.4-150&Phi 25.4,f-150OLEQ25.4-1000&Phi 25.4,f-1000
    留言咨询
  • 消色差透镜 400-628-5299
    消色差透镜一般由两种不同折射率的透镜组成,通过该透镜光线的球差、慧差和色差等近轴像差都能得到较好的校正,一般分为正胶合,负胶合透镜及双分离透镜,大多数都需要订货。欢迎来电垂询。A. 正胶合消色差透镜(Positive Achromatic Lenses) 命名规则:OLPA直径-焦距OLPA系列,正胶合消色差透镜选型表 单位(mm):型号名称直径(&phi )焦距(f)厚度1(TC1)厚度2(TC2)背焦fbOLPA25.4-050正胶合消色差透镜25.4507.8244.5OLPA25.4-060正胶合消色差透镜25.4607255.5OLPA25.4-080正胶合消色差透镜25.4805.5276.4OLPA25.4-100正胶合消色差透镜25.41004.5297OLPA25.4-120正胶合消色差透镜25.41204.22117.1 示意图:B. 负胶合消色差透镜(Negative Achromatic Lenses) 命名规则:OLNA直径-焦距OLNA系列,负胶合消色差透镜选型表 单位(mm):型号名称直径(&phi )焦距(f)厚度1(TC1)厚度2(TC2)背焦fbOLNA25.4-050负胶合消色差透镜25.4-5034.2-53.3示意图:
    留言咨询
  • 对于普通的光学显微镜无法看到的物体,除了光学小伙伴们熟知的透射电子显微镜等仪器之外,还有其他方法,让体积更小的待测物更清晰可辨吗? 日本西格玛光机株式会社的新品——透镜成像型X射线成像单元,或许能帮到很多人。 一、工作原理 透镜成像型X射线成像单元应用了类似于早期CRT电视机的成像原理,它能将不可见的X光照射到特殊的基板上,转换为可见光,从而连接物镜、透镜、CCD等,将X成像变为可能。 ?? 阴极射线管CRT电视机 ?? 阴极射线管CRT原理图 二、产品结构 ?? 产品图 ?? 结构示意图 三、产品特性 1. 透镜成像型X射线成像单元可以将入射的X射线图像通过闪烁器的荧光发射转换成可见图像,并放大成像的系统。 2.通过将闪烁体(LuAG:Ce)和基板(无添加LuAG)进行固相扩散接合,制备了光学特性高的薄膜闪烁器(最薄可达5μm),同时实现了抑制接合界面产生的光的散射、反射。 3.具有200nm Line&Space的高空间分辨率。 4.因为没有使用对X射线耐受性弱的粘结层,所以对X射线有很高的耐久性。 5.因为基板部分会遮蔽X射线,所以可以减小后段镜头的X射线损伤。 四、相关参数 五、闪耀体Q&A 闪耀体是什么材质的?有什么特点? 闪烁陶瓷是一种广泛应用在医疗诊断用辐射探测器、工业无损探伤、核医学、高能物理等领域的新型功能陶瓷材料。 作为闪烁材料,必须具备:高的有效原子序数、高的光输出、快的衰减速度和优异的透光性。 稀上离子激活的Lu3Al5O12 (LuAG) 结构为立方石榴石结构,具有密度高(p=6.73g/cm3)和有效原子序数大(Zeff=62.9)等优点,并且具备优异的光学性能,良好的机械和热力学性能,能够容许高平均功率下工作。 能做闪耀体的LuAG 晶体有啥特性? 1.LuAG 晶体为石榴石结构,属立方晶系,Ia3d 空间群,晶胞参数为1.1914nm , 由一些共顶点的四面体和八面体相连而成。 2.每个八面体和6 个四面体相连,每个四面体和4个八面体相连, Lu归占据着这些由四面体和八面体构成的十二面体网格的中心。 闪耀体应用在哪些领域? 1. 在光电子器件、环境研究、阴极射线荧光粉、军事等方面具有重要的应用价值。 2. 对X射线吸收能力强,是理想的X射线探测材料。 3. 该晶体同时也是高能伽玛射线和带电粒子探测,紫外射线高空间分辨成像屏的一种理想选择。 六、是否可以定制? ?? 闪耀体可单独销售; ?? 可安装配置C口相机; ?? 物镜放大倍率2.5X-100X; ?? 提示:使用大型照相机时,请另外准备支撑系统。 ?? 定制服务 可以配合量子效率,制作所列型号参数以外的外径和厚度的闪耀体。 作为日本西格玛光机株式会社的一级代理商,光谱时代也将为您提供更多相关产品及服务
    留言咨询

透镜成像原理相关的方案

透镜成像原理相关的论坛

  • 无透镜摄像机问世 或将打破光学成像技术垄断

    无透镜摄像机问世 或将打破光学成像技术垄断

    2013年06月07日 来源: 腾讯科学 腾讯科学讯(过客/编译)这种摄像装置使用了一种名为压缩传感的技术,这项技术依靠的是假设许多普通的测量值有大量冗余。因此只需要少量仔细筛选的测量值就可能获得同样的数据。http://ng1.17img.cn/bbsfiles/images/2013/06/201306071456_443428_1644522_3.jpg 研究团队称,无透镜压缩成像的结构是值得推荐的,它能够减少尺寸、成本以及复杂性。 这种技巧需要了解保留哪些测量值以及如何对它们进行组合。这项技术有可能彻底改变传统的光学成像,传统的光学成像依靠透镜创建图像而且使用感光胶卷记录光线。 贝尔实验室的装置相当简单。它由一个允许光线通过的LCD显示屏和一个能探测三种光线色彩的单一传感器组成。这个原型是由市场上可以买到的廉价部件打造的。使用这种方法拍摄有着许多好处。首先没有透镜会减少成本和复杂性。此外,没有场景会模糊不清,图像的清晰度只由光圈部分决定。它也能被用于拍摄其它光谱范围的照片,比如说红外线或者毫米波。 LCD显示屏上让光线通过的一些开口是随意打开的。光孔的不同排列能够拍摄不同的场景。快照拍摄的越多,影像就越丰富。它也可能使用正常照片所需要数据的一小部分就创建出一张完整的照片。研究团队拍摄了大量的物体,包括书本和睡觉的猫,只使用了他们记录数据的25%。研究团队在论文中写到:“无透镜压缩成像的结构是值得推荐的,它能够在减少尺寸、成本以及复杂性的同时,构建出简单、可靠的成像设备。”研究团队声称,使用这种结构的设备能够被用于监测,或者可以用于提取特性,比如说移动物体的速度等。

  • 金相显微镜中,凸透镜的五种成象规律

    1. 在金相显微镜中,当物体位于透镜物方二倍焦距以外时,则在象方二倍焦距以内、焦点以外形成缩小的倒立实象;   2. 当物体位于透镜物方二倍焦距上时,则在象方二倍焦距上形成同样大小的倒立实象; 这种成像对金相显微镜的光路尤为重要。  3. 当物体位于透镜物方二倍焦距以内,焦点以外时,则在象方二倍焦距以外形成放大的倒立实象;   4. 当物体位于透镜物方焦点上时,则象方不能成象;这同样是影响金相显微镜成像的重要因素。  5.当物体位于透镜物方焦点以内时,则象方也无象的形成,而在透镜物方的同侧比物体远的位置形成放大的直立虚象。

透镜成像原理相关的耗材

  • 成像级 PCV 柱面透镜
    成像级 PCV 柱面透镜&bull 光束整形的等级规范&bull 结合成像级 PCX 柱面透镜使用可环形化光束&bull 负焦距通用规格基底:N-BK7倒角:Protective bevel as needed中心厚度容差 (mm):±0.1表面质量:40-20Power (P-V) @ 632.8nm:1.5λIrregularity (P-V) @ 632.8nm:λ/4母线楔角:5准线楔角:5 产品介绍TECHSPEC® 成像级 PCV 柱面透镜通常用于单轴发散平行光。由于严格控制规格和大量折扣,所以这些镜头是为系统集成而设计的。TECHSPEC® 成像级 PCV 柱面透镜有严格控制的楔形和倾斜规格,结合我们的 TECHSPEC® 成像级 PCX 柱面透镜,能理想应用于环形化椭圆光束。订购信息Dia. (mm)EFL (mm)基底 涂层尺寸 (mm)产品编码12.70 +0.0/-0.025-25.00 N-BK7 Uncoated34-61812.70 +0.0/-0.025-50.00 N-BK7 Uncoated34-61912.70 +0.0/-0.025-100.00 N-BK7 Uncoated34-62012.70 +0.0/-0.025-25.00 N-BK7 NIR I (600-1050nm) 34-67912.70 +0.0/-0.025-50.00 N-BK7 NIR I (600-1050nm)34-68012.70 +0.0/-0.025-100.00 N-BK7 NIR I (600-1050nm)34-68112.70 +0.0/-0.025-25.00 N-BK7 NIR II (750-1550nm)34-63812.70 +0.0/-0.025-50.00 N-BK7 NIR II (750-1550nm)34-63912.70 +0.0/-0.025-100.00 N-BK7 NIR II (750-1550nm)34-64012.70 +0.0/-0.025-25.00 N-BK7 VIS 0° (425-675nm)34-659 12.70 +0.0/-0.025-50.00 N-BK7 VIS 0° (425-675nm)34-66012.70 +0.0/-0.025-100.00 N-BK7 VIS 0° (425-675nm)34-66125.40 +0.0/-0.025-25.00 N-BK7 Uncoated34-62125.40 +0.0/-0.025 -50.00 N-BK7 Uncoated34-62225.40 +0.0/-0.025-75.00 N-BK7 Uncoated34-62325.40 +0.0/-0.025-100.00 N-BK7 Uncoated34-62425.40 +0.0/-0.025-25.00 N-BK7 NIR I (600-1050nm)34-68225.40 +0.0/-0.025-50.00 N-BK7 NIR I (600-1050nm)34-68325.40 +0.0/-0.025-75.00 N-BK7 NIR I (600-1050nm)34-68425.40 +0.0/-0.025-100.00 N-BK7 NIR I (600-1050nm)34-68525.40 +0.0/-0.025-25.00 N-BK7 NIR II (750-1550nm)34-64125.40 +0.0/-0.025-50.00 N-BK7 NIR II (750-1550nm)34-64225.40 +0.0/-0.025-75.00 N-BK7 NIR II (750-1550nm) 34-64325.40 +0.0/-0.025-100.00 N-BK7 NIR II (750-1550nm)34-64425.40 +0.0/-0.025-25.00 N-BK7 VIS 0° (425-675nm)34-66225.40 +0.0/-0.025-50.00 N-BK7 VIS 0° (425-675nm) 34-66325.40 +0.0/-0.025-75.00 N-BK7 VIS 0° (425-675nm)34-66425.40 +0.0/-0.025-100.00 N-BK7 VIS 0° (425-675nm)34-665-25.00 N-BK7 Uncoated 12.7 x 12.734-758 -50.00 N-BK7 Uncoated 12.7 x 12.734-759-25.00 N-BK7 NIR I (600-1050nm) 12.7 x 12.735-004 -50.00 N-BK7 NIR I (600-1050nm) 12.7 x 12.735-005-25.00N-BK7 NIR II (750-1550nm) 12.7 x 12.735-016-50.00 N-BK7 NIR II (750-1550nm) 12.7 x 12.735-017-25.00 N-BK7 VIS 0° (425-675nm) 12.7 x 12.734-992-50.00 N-BK7 VIS 0° (425-675nm) 12.7 x 12.734-993-50.00 N-BK7 Uncoated 25.4 x 25.434-760-75.00 N-BK7 Uncoated 25.4 x 25.434-761-50.00 N-BK7 NIR I (600-1050nm)25.4 x 25.435-006-75.00 N-BK7 NIR I (600-1050nm) 25.4 x 25.435-007-50.00 N-BK7 NIR II (750-1550nm) 25.4 x 25.435-018-75.00 N-BK7 NIR II (750-1550nm) 25.4 x 25.435-019-50.00 N-BK7 VIS 0° (425-675nm) 25.4 x 25.434-994-75.00 N-BK7 VIS 0° (425-675nm) 25.4 x 25.4 34-995
  • 双凸透镜
    双凸透镜:应用于常规的1:1成像、扩束和光束中继传输。正凸透镜能对真实物体的虚拟成像以及0.2至5良好的正共轭图像比(取决于波长)。双凸透镜也可用于较低f值的对焦应用,当以单位共轭比使用时,其表现为最佳形式的单重透镜。覆盖波长从193nm到1550nm,透镜材料是N-BK7或熔融石英。有高面形精度(λ/10)和表面质量(10-5)。双凸透镜支持定制焦距、尺寸和各类型的增透膜。
  • 成像级 PCX 柱面透镜
    &bull 非常适用于光束整形应用&bull 严格控制的光学公差和几何公差&bull 可选矩形和圆形尺寸通用规格基底:N-BK7 倒角:Protective bevel as needed中心厚度容差 (mm):±0.1表面质量:40-20Power (P-V) @ 632.8nm:1.5λ Irregularity (P-V) @ 632.8nm:λ/4产品介绍TECHSPEC® 成像级 PCX 柱面透镜不仅拥有严格控制的公差,还提供适用于批量集成的批量定价。与能在两个维度上聚焦光的球面透镜不同,柱面透镜只能在一个维度上聚焦光束。可选适用于激光应用的增透膜,从而最大限度地减少杂散光,并最大限度地提高系统的光通量。 我们的TECHSPEC成像级 PCX 柱面透镜拥有严格控制的几何特性,以确保从设计到制造始终保持其高性能。 典型应用包括将激光二极管椭圆光束变圆,形成片光用于测量系统,或将激光线投射到表面上。注意: 有关负焦距柱面透镜,请参见我们的TECHSPEC® 成像级 PCV 柱面透镜。订购信息Dia. (mm)EFL (mm)基底涂层尺寸 (mm)产品编码12.70 +0.0/-0.02550.00N-BK7Uncoated34-60612.70 +0.0/-0.02575.00N-BK7Uncoated34-60712.70 +0.0/-0.025100.00N-BK7Uncoated34-608 12.70 +0.0/-0.02550.00N-BK7VIS 0° (425-675nm)34-64812.70 +0.0/-0.02575.00 N-BK7VIS 0° (425-675nm)34-64912.70 +0.0/-0.025100.00N-BK7VIS 0° (425-675nm) 34-65012.70 +0.0/-0.02550.00N-BK7NIR I (600-1050nm)34-668 12.70 +0.0/-0.02575.00N-BK7NIR I (600-1050nm)34-66912.70 +0.0/-0.025100.00N-BK7NIR I (600-1050nm)34-67012.70 +0.0/-0.02550.00N-BK7NIR II (750-1550nm)34-62712.70 +0.0/-0.02575.00N-BK7NIR II (750-1550nm)34-62812.70 +0.0/-0.025100.00N-BK7NIR II (750-1550nm)34-62925.40 +0.0/-0.02550.00N-BK7Uncoated34-61125.40 +0.0/-0.02575.00N-BK7Uncoated34-61225.40 +0.0/-0.025100.00N-BK7Uncoated34-61325.40 +0.0/-0.025150.00N-BK7Uncoated34-61425.40 +0.0/-0.02550.00N-BK7NIR II (750-1550nm)34-63125.40 +0.0/-0.02575.00N-BK7NIR II (750-1550nm) 34-63225.40 +0.0/-0.025100.00N-BK7NIR II (750-1550nm)34-63325.40 +0.0/-0.025 150.00N-BK7NIR II (750-1550nm)34-63425.40 +0.0/-0.02550.00N-BK7 VIS 0° (425-675nm)34-65225.40 +0.0/-0.02575.00N-BK7VIS 0° (425-675nm) 34-65325.40 +0.0/-0.025100.00N-BK7VIS 0° (425-675nm)34-65425.40 +0.0/-0.025 150.00N-BK7VIS 0° (425-675nm)34-65525.40 +0.0/-0.02550.00N-BK7NIR I(600-1050nm)34-67225.40 +0.0/-0.02575.00N-BK7NIR I (600-1050nm)34-67325.40 +0.0/-0.025100.00N-BK7NIR I (600-1050nm)34-67425.40 +0.0/-0.025150.00N-BK7NIR I (600-1050nm)34-67550.00N-BK7Uncoated12.7 x 12.734-75250.00N-BK7VIS 0° (425-675nm)12.7 x 12.734-98650.00N-BK7NIR I (600-1050nm)12.7 x 12.734-99850.00N-BK7NIR II (750-1550nm)12.7 x 12.735-01025.00N-BK7Uncoated 25.4 x 25.434-75350.00N-BK7Uncoated25.4 x 25.434-754 75.00N-BK7Uncoated25.4 x 25.434-75525.00N-BK7VIS 0° (425-675nm)25.4 x 25.434-98750.00N-BK7VIS 0° (425-675nm)25.4 x 25.434-98875.00N-BK7VIS 0° (425-675nm)25.4 x 25.434-98925.00N-BK7NIR I (600-1050nm)25.4 x 25.434-99950.00N-BK7NIR I (600-1050nm)25.4 x 25.435-00075.00N-BK7NIR I (600-1050nm)25.4 x 25.435-00125.00N-BK7NIR II (750-1550nm)25.4 x 25.435-01150.00N-BK7NIR II (750-1550nm)25.4 x 25.435-01275.00N-BK7 NIR II (750-1550nm)25.4 x 25.435-013

透镜成像原理相关的资料

透镜成像原理相关的资讯

  • 原理革新!超透镜分辨率提升一个量级
    超透镜能够超越传统光学成像分辨率的极限,实现亚波长级别的微观结构和生物分子的更好观测。然而,超透镜的本征损耗一直是该领域长期存在的关键科学问题,限制了成像分辨率的进一步提升。  近日,来自香港大学、国家纳米科学中心和英国帝国理工学院等机构的研究人员密切合作,提出了多频率组合复频波激发超透镜成像理论机制,通过虚拟增益来抵消本征损耗,成功提高了超透镜的成像分辨率约一个量级。该研究成果于8月18日在《科学》杂志上在线发表。  “超透镜”概念最早由英国帝国理工学院教授John Pendry于2000年首次提出。根据理论预测,超透镜将具有突破传统光学成像分辨率极限的能力。随后,为实现超透镜构想,中国科学院外籍院士、香港大学教授张翔团队率先提出了新型银-聚合物超透镜的实验方案,极大推动了超透镜技术的发展和应用。此后,各国科学家纷纷加大研究投入,超透镜迅速成为光学领域的热门课题,并被广泛应用于生物医学、光纤通信、光学成像等场景。合成复频波方法提升超透镜成像质量的原理示意图(研究团队供图)  目前,基于极化激元材料和超构材料的超透镜已被广泛验证可以实现亚衍射成像,但其本征损耗的严重限制了其分辨率进一步提升,从而也限制了其应用发展。  为了解决这一重大挑战,由香港大学教授张霜、张翔、国家纳米科学中心研究员戴庆以及John Pendry组成国际科研团队开展联合攻关。  在最新发表的论文中,张霜介绍:“针对光学损耗提出一种实用的解决方案,即借助多频率组合的复频波激发来获得虚拟增益,进而抵消光学体系的本征损耗。”  作为验证,他们把这一方案运用到超透镜成像机制,理论上实现了成像分辨率的显著提升。最后,进一步借助微波频段双曲超构材料的超透镜实验进行了论证,获得与理论预期一致的良好成像效果。  戴庆团队基于长期对原子制造技术下的高动量极化激元的积累,创制了基于合成复频波的碳化硅声子极化激元超透镜。“我们最终实现了超透镜成像分辨率约一个量级的提升,相信这将对光学成像领域产生巨大影响。”戴庆表示。  科研人员介绍,合成复频波技术是一种克服光子学系统本征损耗的实用方法,不仅在超透镜成像领域有卓越的表现,还可以扩展到光学的其他领域,包括极化激元分子传感和波导器件等。该方法还可以针对不同的系统和几何形状进行定制化应用,为提高多频段光学性能、设计高密度集成光子芯片等方向提供了一条潜在的途径。  “这是一个优美而普适的方法,可以拓展到其它波动体系来弥补损耗问题,如声波、弹性波以及量子波等。”张翔说。  香港大学博士后管福鑫、国家纳米科学中心特别研究助理郭相东和香港大学博士生曾可博为本文共同一作。张霜、张翔、戴庆和John Pendry为本文共同通讯作者。
  • 基于折叠数字型超构透镜的片上光谱仪
    近日,哈尔滨工业大学(深圳)徐科教授、宋清海教授课题组,提出一种基于像素编码的片上数字型超构透镜,因其灵活的设计自由度而具备强大的光场调控能力。该工作以折叠级联的方式构建了高度紧凑的色散元件,结合重构算法实现了片上集成的高分辨率光谱仪。文章提出的数字型超构透镜可显著提升面内光束聚焦、准直和偏转能力。所设计的级联折叠型超构透镜组能够很好地解决传统色散光谱仪尺寸和分辨率互为矛盾的问题。结合重构算法,该器件以100 μm ×100 μm的紧凑尺寸在近红外波段超过35 nm的波长范围内实现了0.14 nm的分辨率,并且可以完成任意光谱的重构和解析。该光谱仪完全通过标准硅光工艺制造,在系统级集成和CMOS兼容性方面具有优势。所提出的超构透镜结构还可移植到氮化硅或其他光子集成平台,以轻松扩展到可见光或中红外波长等波段,为成像、光学计算等其他应用提供有力的光场调控方案。该研究成果以“Folded digital meta-lenses for on-chip spectrometer”为题于2023年4月11日在线发表在《Nano Letters》上。随着物联网、消费电子等应用领域的不断发展,对光谱仪的小型化提出了更高的要求。近40年里,光谱仪的微型化技术经历了从基于分立器件技术到集成光学技术的发展,逐渐趋于低成本和片上集成化。近年来,受到自由空间超构表面波前调控的启发,基于超构波导的一些平面内衍射光网络正在成为片上光波操纵的有力工具。目前已报道的片上超构系统都是基于各单元长度不等的传输阵列,结构规则简单但设计自由度受限,导致系统集成度和功能的局限性。如何突破设计自由度的限制,是提升片上超构表面光场调控能力以及拓展应用的关键。借助超构表面强大的光学操控能力,有望突破传统片上光谱仪分辨率和器件尺寸相互制约的矛盾。为了解决设计自由度受限的问题,文章提出了一种基于像素编码的数字型超构表面。基本思想为求解超构表面目标相位分布。为降低算力消耗,我们将目标区域划分为多个单元,通过逆向设计对每个单元图案分别进行编码,在平面任意区域实现任意相位响应。与数字型超构波导在局部区域内的原位控制不同,本文提出的数字型超构表面可以整体操纵面内波衍射及其在整个平板区域内的传播。这种特性使该结构能够设计连续大相位梯度的高色散数字型超构透镜,允许光束在紧凑的尺寸内实现聚焦、准直和大角度弯曲等类似几何光学透镜的功能。具体设计原理如图1所示。图1. 基于数字型超构表面的超构透镜逆向设计原理。(a)超构透镜在1550 nm处的光弯曲 (θ=45°)和聚焦(f = 19.5 μm)的射线光学演示。(b)透镜的理想相位轮廓曲线(φ),可视为45°弯曲相位曲线 (φ1)和聚焦相位曲线(φ2)的叠加。I:计算的绝对相位,II:对应的菲涅耳相位。(c)每个单元的优化器件图案和对应的理想相位曲线(φ)。(d) 计算出的理想相位掩模(黑色实线)与所设计超构透镜的模拟相位响应(红色虚线)之间的比较。(e)所设计单个超构透镜的模拟光场分布。(f)模拟超构透镜的焦点AI不同波长下沿x'轴的偏移。插图为不同波长下焦点的横截面光场分布图。要实现更高的波长分辨率,需要累积色差和增加光程。为了验证设计效果,本文设计并制备了一种基于五层折叠超构透镜的光谱仪,器件尺寸仅为100 μm×100 μm。该器件的模拟光场和实测结果如图2所示。图2(a)中的五层超构透镜功能不同,透镜I用于准直扩束输入光同时转折光路,透镜II-IV则承担着累积色散和波长分束的作用。受到读出波导间距的限制,此时该器件直接读出的分辨率约为1 nm (图2(d))。为了进一步提高光谱仪性能以及器件的制备容差,在色散分光的基础上引入了光谱重构算法。图2. 基于五层折叠超构透镜的光谱仪。(a)五层折叠超构透镜光谱仪在1550 nm处的模拟光场分布。(b)器件尺寸为100 μm×100 μm的光谱仪显微镜图像。插图:超构透镜和输出波导阵列的局部电镜图像。(c)器件实测的输出强度与输入波长的映射图。(d)两个相邻输出通道11和12的透射光谱,通道间距约为1 nm。(e)谱相关函数C(δλ)的半高半宽δλ为0.108 nm,与光谱仪的估计分辨率相对应。为了体现光谱仪的性能,构造了几种不同类型的预编程光谱来测试光谱仪的性能。重构光谱见图3。结果表明,结合重构算法后,该光谱仪的光谱分辨率提升至0.14 nm(图3(a)),整体工作带宽覆盖1530 nm-1565 nm,且性能在边带依旧保持稳定(图3(c))。此外,对于同时具有宽高斯背景和窄带单峰特征的复杂频谱(图3(d)),本文提出的片上光谱仪依旧能与商用光谱仪保持良好的一致性。图3. 使用基于五个折叠超构透镜的片上光谱仪进行光谱重建(实线表示重建光谱,虚线表示商用光谱仪测试结果)。(a)两条相隔约0.14 nm的窄光谱线的重建光谱。(b)距离约20.61 nm的双峰重建光谱。(c)在工作带宽上分别重建7处不同波长的窄带光谱。(d)宽带光源入射的重建光谱。此文提出的基于数字型超构透镜的片上光谱仪在超过35 nm的波长范围内实现了0.14 nm的分辨率。整体尺寸仅为100 μm ×100 μm,最小特征尺寸为120 nm,可通过标准硅光工艺大规模制造。该设计方案具有可移植性,使用氮化硅或其他集成平台,基于超构透镜的光谱仪可以扩展到可见光或中红外波长。目前器件的数据读出依赖于片外功率计,可以通过集成片上光电探测器阵列来改善。此外,片上数字型超构透镜作为一种功能强大的片上光场调控器件,在成像、光计算等领域也有应用潜力。
  • 沈阳自动化所提出AFM和扫描微透镜关联显微镜的跨尺度成像新方法
    近日,中国科学院沈阳自动化研究所在基于微透镜成像研究方面取得新进展,提出一种将原子力显微镜(AFM)与基于微透镜的扫描光学显微镜相结合的无损、快速、多尺度关联成像方法。相关研究成果(Correlative AFM and Scanning Microlens Microscopy for Time-Efficient Multiscale Imaging)发表在Advanced Science上。  在半导体器件制造中,半导体晶圆的错误检测、缺陷定位和分析对于质量控制和工艺效率至关重要。因此,为了提高芯片特征结构的检测分辨率和效率,需要发展新的大范围、高分辨、快速成像技术。  为此,依托于沈阳自动化所的机器人学国家重点实验室微纳米自动化团队提出了一种新的关联成像方法。科研人员将微透镜与AFM探针耦合,通过在面向样品的微透镜表面上沉积扫描探针,将基于微透镜的光学成像和AFM两者的优势结合,实现了三种成像模式——微透镜快速高通量扫描光学成像、表面精细结构AFM成像和微透镜AFM同步成像。  实验结果表明,微透镜的引入提高了传统AFM光学系统的成像分辨率,成像放大率提高了3-4倍,有效地缩小了传统光学成像与AFM之间的分辨率差距。与单一AFM成像模式相比,成像速度提高了约8倍。高通量、高分辨率AFM和扫描超透镜关联显微镜为实现微米到纳米级分辨率的跨尺度快速成像提供了新的技术手段。  研究工作得到国家自然科学基金国家重大科研仪器研制项目(基于微球超透镜的跨尺度同步微纳观测与操作系统)和机器人学国家重点实验室自主项目的支持。AFM和扫描微透镜关联成像示意图半导体芯片成像结果

透镜成像原理相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制