光学准直仪原理

仪器信息网光学准直仪原理专题为您提供2024年最新光学准直仪原理价格报价、厂家品牌的相关信息, 包括光学准直仪原理参数、型号等,不管是国产,还是进口品牌的光学准直仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光学准直仪原理相关的耗材配件、试剂标物,还有光学准直仪原理相关的最新资讯、资料,以及光学准直仪原理相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

光学准直仪原理相关的仪器

  • 蓝菲光学继传统的漫射均匀光源在世界范围内取得的成功之上,进一步丰富产品线,推出了高平行度、高照度、宽光谱、可调输出的平行均匀光源CSS(Collimated Solar Simulator)。该光源可通过使用不同的光源组件,在多个谱段和不同色温上模拟太阳辐照度。广泛用于物体光学反射特性分析,材料老化耐久测试,太阳能电池特性分析等应用。蓝菲光学独特的等离子光源具备媲美卤素灯的稳定性,而且可发出最接近太阳真实辐照的5250K色温。利用多光源叠加,可轻松模拟太阳辐照度强度的要求。该平行光源采用紧凑型和轻量化设计,发散角小于3度,可在3米以外的使用距离上形成20cm直径的光斑,光斑内的辐照均匀度高达98%。光源的全部控制通过软件完成,用户可以通过软件控制光源并调整输出强弱。蓝菲光学CSS准直太阳光模拟器产品特点:近似太阳光光谱等同太阳辐照度光版内均匀度可达98%可调辐照度水平工作距离:3米 (可在3米处实现10000lux的照度,近似1个太阳光常数AM1)光谱范围:350-2400nmCSS准直太阳光模拟器光谱曲线:
    留言咨询
  • 特性准直光,光纤到自由空间应用四个焦距选项:2.0 mm、4.6 mm、7.5 mm和11.0 mm三种增透膜非球面透镜选项:350 - 700 nm650 - 1050 nm(CFC2-B和CFC2A-B为600 - 1050 nm)1050 - 1620 nm(CFC2-C和CFC2A-C为1050 - 1700 nm)FC/PC或FC/APC接头与兼容接头一起使用可以达到衍射极限性能调节时对准误差 15 mradThorlabs可调焦的FC/PC和FC/APC准直器在不锈钢外壳内部用弹簧装载了一个镀增透膜的非球面透镜。这些产品用于准直光纤的输出光;对于光纤对光纤的耦合,我们推荐使用FiberPorts或光纤耦合纳米定位平台。这些可调准直器可选FC/PC或FC/APC接头。旋转准直器的外部套筒可以使内部的非球面透镜沿光轴进行非旋转平移,从而调节透镜和光纤端面之间的距离。此距离范围列于下表“Fiber-to-Lens Distance”中。螺纹上的深色环带(如左图所示)表示建议的外部套筒最远位置。准直器调整超出此位置将导致性能下降,以致规格参数不合格。一旦达到所需位置,就可以使用外壳外部的滚花锁紧环将调节器锁定。用法说明,请查看右侧视频。这些准直器设计有非旋转透镜筒。调节机制具有严格的公差,可最大程度地减少光束对准误差。对于2.0 mm焦距准直器,对准稳定性在15 mrad之内;对于4.6 mm和7.5 mm焦距准直器,对准稳定性在5 mrad之内;对于11.0 mm焦距准直器,对准稳定性在1 mrad之内。请查看规格标签或下方表格获取完整规格。我们推荐增透膜单模光纤跳线与可调节准直器配合使用。这些跳线的光纤端面镀有增透膜,可以在光纤和自由空间界面上增加透过率并改善回波损耗。此外我们还提供大量标准光纤跳线。准直器可通过外壳上Ø 15 mm的部分固定在AD15F2准直器转接件中,如下图所示。转接件具有SM1(1.035"-40)外螺纹,可以集成在各种SM1螺纹光机械中。非球面透镜准直器,可调焦,FC/PC(f = 2.0 mm)Item #f(mm)NAaInputMFDbOutput Waist Diameter(1/e2)Max WaistDistancecPointing StabilityDuring CollimationDivergencedFiber-to-LensDistanceeAR CoatingfCompatibleConnectorCFC2-A2.00.53.5 µ m0.36 mmg103.4 mmg 15 mrad0.100°g0.4 - 3.0 mm350 - 700 nm2.1 mm Wide KeyFC/PCCFC2-B2.00.55.0 µ m0.43 mmh88.6 mmh 15 mrad0.143°h0.4 - 3.0 mm600 - 1050 nmCFC2-C2.00.510.4 µ m0.38 mmi38.5 mmi 15 mrad0.298°i0.4 - 3.0 mm1050 - 1700 nm请注意,指定的数值孔径(NA)是准直器中的非球面透镜的数值孔径,而不是整个准直器组件的数值孔径。模场直径(MFD)用于计算输出束腰直径、最大束腰距离和光纤尖端的最小发散角(查看发散角标签)。光束保持准直时束腰与透镜的最大距离全发散角理论值光纤尖端和透镜平面之间的距离Ravg ≤ 0.5%(每面)。这些膜层的性能曲线图请查看AR膜标签。FC/PC接头中的SM450光纤在488 nm处计算所得FC/PC接头中的780HP光纤在850 nm处计算所得FC/PC接头中的SMF-28-J9光纤在1550 nm处计算所得光纤准直器CFC5-A 光学仪器组件
    留言咨询
  • 标准与定制聚合物光学器件-注塑成型镜片成型和模制光学器件我们的工程师与您密切合作,了解应用,评估公差,确定需要制定的质量指标,并构建一个能够始终如一地将光学元件交付给印刷的模具。聚合物与玻璃相比的优势注塑聚合体光学与玻璃光学器件相比,具有许多优势,如下所述:低成本的热塑性塑料,如PMMA(丙烯酸)、环烯烃聚合物“COP”(如Zeonex)、聚碳酸酯、聚酯(如OKP-4)和聚苯乙烯。注塑流程提供大规模的经济效益。具有成本效益的能力,可生产复杂形状(非球面和自由曲面光学元件)。直接在光学元件上安装功能。虽然塑料光学无法在每种应用中使用,设计人员都将通过在非常适合其使用的应用中,使用精心设计的塑料光学器件来获得竞争优势。降低材料成本一般来说,用于定制注塑成型的热塑性塑料比玻璃便宜。 热塑性材料的体积非常大,其颗粒形式是直接注入成型机的形式。与玻璃光学器件不同,热塑性塑料在注塑成型的成型光学器件之前,不会预先成型。规模效益这种树脂不仅比玻璃便宜,而且注塑聚合物光学元件所需的循环时间比使用研磨和抛光技术生产光学元件所需的循环时间要短得多。此外,通常可以制造多腔模具,以在每个成型周期中生产多个镜片。 需要大量零件并具有商业公差的项目是多腔模具的良好候选者。复杂形状可以将非球面添加到光学系统中,以校正某些几何像差,例如球面像差。 此外,根据其与系统孔径光阑或瞳孔的距离,非球面表面会影响彗差、球面像差、散光和畸变。 在光学模具嵌件上可以创建复杂的形状,并在注塑过程中以出色的精度多次复制。此外,自由曲面光学器件的使用正变得越来越流行,特别是在AR/VR和HUD应用中。如果可以优化设计以允许使用注塑成型塑料,则可以大大降低生产自由曲面光学器件的成本。当涉及到光学元件的定制注塑成型时,无论表面类型如何,都使用科学的模具加工技术来开发稳健且可重复的成型周期。 当需要测量零件时,差异就出现了,因为球面很容易用干涉仪测量,但非球面表面需要全息零校正器的额外费用。 非球面和自由曲面光学器件通常使用接触式轮廓仪或坐标测量机 (CMM) 进行测量。 由于这些专业仪器,选择具有适当设备的光学成型商至关重要,并且需要计量专业知识。结合光学和机械特性聚合物光学器件可以很容易地将光学表面与机械安装基准相结合。 在这样做的过程中,光学设计人员正在利用制造业定制注塑成型的方法。 通过添加法兰、凸耳或其他结构等安装特征,设计人员可以减少装配中的组件数量并简化装配过程,并减少 BOM 上的零件数量。聚合物与玻璃的缺点光谱透射:大多数聚合物仅适用于可见光或近红外范围恒定使用温度水平:低于玻璃,一般低于120°C高折射率温度依赖性 (dn/dt):大约是玻璃的 20 倍高热膨胀系数 (dl/dt):几乎是玻璃的 10 倍折射率范围窄,可用材料的阿贝数更多关于材料的机械性能以及光学性能,请下载附件文档查看。注塑成型的塑料光学透镜库存标准产品目录,请点击数据单下载,选择标准品。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。
    留言咨询

光学准直仪原理相关的方案

光学准直仪原理相关的论坛

  • 直读光谱光学系统手动描迹的原理

    直读光谱光学系统手动描迹的原理

    【为什么要进行直读光谱光学系统的描迹功能】: 入射狭缝是分光系统的重要组成部分,由于环境的温度、湿度及震动的影响,引起入射狭缝的漂移,直接影响光谱仪的照度和分辨率。入射狭缝一般为20微米左右,通常安装在一个带有螺杆的驱动装置上,转动鼓轮带动螺杆移动,可将确定入射狭缝的中心位置。【直读光谱光学系统手动描迹的原理】: 转动描迹鼓轮,检测器记录下选定通道的光强,光强呈钟形分布(如图所示)。为定位更准确,不是直接找光强的最大值(Point1),而是选定距离最大值等距离的两点(Point3、Point4),然后计算平均值,确定入射狭缝的中心位置(Point6)。http://ng1.17img.cn/bbsfiles/images/2017/01/201701191700_667443_1841897_3.png

  • 自动奶茶机如何实现精准流量控制-光学流量计

    自动奶茶机如何实现精准流量控制-光学流量计

    在自动奶茶机的应用中,光学流量计是一种实现精准流量控制的重要工具。它利用叶轮切割光通路产生的脉冲信号,通过计算转轮的转动次数来测量水流量的多少。这种测量方式具有以下特点:不含磁铁:光学流量计采用纯光学感应原理,不涉及磁性材料,因此不会对水质产生磁化或磁性干扰,从而更好地保护水质。对水质保护更好:由于其纯光学感应的特性,光学流量计不会对液体造成任何污染或损害,特别适合用于需要高度清洁和保护液体的场合。适合透光率高的液体:光学流量计主要适用于透光率高的液体,如水等。对于透光性较差的液体,其测量结果可能会有所差异。[align=center][img=,531,347]https://ng1.17img.cn/bbsfiles/images/2024/01/202401051556166823_2341_4008598_3.jpg!w531x347.jpg[/img][/align]适用多种场景:[url=https://www.eptsz.com]光学流量计[/url]的应用范围广泛,不仅适用于自动奶茶机等餐饮设备,还可用于工业生产、家庭、医院等领域的水流量测量和控制。总的来说,光学流量计通过纯光学感应原理实现精准的流量控制,具有不含磁铁、对水质保护更好、适合透光率高的液体等特点。在自动奶茶机中,它的应用有助于确保奶茶的精准配比和水流量的稳定控制,提供给消费者更好的饮用体验。同时,其广泛的应用场景也证明了光学流量计在流量控制领域的卓越性能和价值。

光学准直仪原理相关的耗材

  • 光学薄膜测厚仪配件
    教学型光学薄膜测厚仪配件是一款低价台式光学薄膜厚度测量仪,可测量薄膜厚度,薄膜的吸收率/透过率,薄膜反射率,荧光等,也可测量膜层的厚度,光学常量(折射率n和k)。光学薄膜测厚仪配件基于白光反射光谱技术,膜层的表面和底面反射的光VIS/NIR光谱,也是干涉型号被嵌入的光谱仪收集分析,结合多次反射原理,给出膜层的厚度和光学常数(n,k),到货即可使用,仅仅需要用户准备一台计算机提供USB接口即可,操作非常方便。光学薄膜测厚仪配件参数 可测膜厚: 100nm-30微米;波长范围: 300-1000nm 探测器:650像素Si CCD阵列,12bit A/D精度:1%斑点大小:0.5mm 光源:钨灯-汞灯(360-2000nm)所测样品大小:10-150mm, 计算机要求:Windows XP, vista, Win7均可,USB接口;尺寸:320x360x180mm 重量:9.2kg光学薄膜测厚仪配件应用用于薄膜吸收率,透过率和荧光测量,用于化学和生物薄膜测量,传感测量用于光电子薄膜结构测量 用于半导体制造用于聚合物薄膜测量 在线薄膜测量用于光学镀膜测量
  • 海洋光学准直透镜74-DA(200-2000 nm)
    74系列透镜 74系列准直镜是我们研发的多种采样附件中的通用光纤透镜,包括石英透镜(74-UV)、BK-7玻璃透镜(74-UV)和BaF10/FD10玻璃透镜(74-ACR)。 74-UV准直透镜(200-2000 nm) 74-UV是200-2000 nm范围内的石英透镜. 光束经过透镜后,发散角度不超过2° 。74-UV可以在UV-VIS或者VIS-NIR应用中调节光束。 透镜外壁上有一白点作为74-UV的标记。 74-VIS准直透镜(350-2000 nm) 74-VIS是LS-1光源的标准透镜,具有适用于VIS-NIR范围的BK-7透镜。由于散射和不同波长上具有不同折射率,单透镜系统会产生色差。 透镜外壁上有一黄点作为74-VIS的标记。 74-ACR准直透镜(350-2000 nm) 74-ACR有两片光学透镜粘在一起形成消色差双合透镜,可以矫正球面像差和色差。 透镜外壁上有两个黄点作为74-ACR的标记。 74-DA准直透镜(200-2000 nm) 74-DA准直透镜直接拧在SMA905接头上,可以增加光线的透过率。该透镜收集光后,将其聚焦到光谱仪的狭缝上。 特性 黑色氧化表层不锈钢 可连接SMA905接头 (也提供1/4" OD FC) 可调焦距 视场可在收敛到发散之间调节(~45° ) Technical Tips 采用单透镜获得的光束发散角 (&alpha ) 满足tan(&alpha ) = d/f。其中,f透镜焦距,d是狭缝宽度或光纤直径。 海洋光学所指定的光纤视场大约是~25° 。对于某些实验来说,这可能不是一个最佳视场。 但通过准直透镜的调节,可实现大约~ 0° 到 ~45° 的视场角。 调节准直透镜时务必小心,因为透镜聚焦有误将造成采样路径长度的改变。 产品规格 型号 直径 焦距 材料 波长范围 工作温度 连接器 74-UV 5 mm 10 mm f/2 fused silica Dynasil 200-2000 nm 150 C SMA 905, 6.35-mm ferrule, 3/8-24 external thread 74-VIS 5 mm 10 mm f/2 BK-7 glass 350-2000 nm 150 C SMA 905, 6.35-mm ferrule, 3/8-24 external thread 74-DA 5 mm 10 mm f/2 fused silica Dynasil 200-2000 nm 150 C SMA 905, 1/4-36 internal thread, 3/8-24 external thread 74-ACR 5 mm 10 mm f/2 BaF10 and FD10 fused silica 350-2000 nm 150 C SMA 905, 6.35-mm ferrule, 3/8-24 external thread
  • 海洋光学准直透镜74-UV(200-2000 nm)
    74系列透镜 74系列准直镜是我们研发的多种采样附件中的通用光纤透镜,包括石英透镜(74-UV)、BK-7玻璃透镜(74-UV)和BaF10/FD10玻璃透镜(74-ACR)。 74-UV准直透镜(200-2000 nm) 74-UV是200-2000 nm范围内的石英透镜. 光束经过透镜后,发散角度不超过2° 。74-UV可以在UV-VIS或者VIS-NIR应用中调节光束。 透镜外壁上有一白点作为74-UV的标记。 74-VIS准直透镜(350-2000 nm) 74-VIS是LS-1光源的标准透镜,具有适用于VIS-NIR范围的BK-7透镜。由于散射和不同波长上具有不同折射率,单透镜系统会产生色差。 透镜外壁上有一黄点作为74-VIS的标记。 74-ACR准直透镜(350-2000 nm) 74-ACR有两片光学透镜粘在一起形成消色差双合透镜,可以矫正球面像差和色差。 透镜外壁上有两个黄点作为74-ACR的标记。 74-DA准直透镜(200-2000 nm) 74-DA准直透镜直接拧在SMA905接头上,可以增加光线的透过率。该透镜收集光后,将其聚焦到光谱仪的狭缝上。 特性 黑色氧化表层不锈钢 可连接SMA905接头 (也提供1/4" OD FC) 可调焦距 视场可在收敛到发散之间调节(~45° ) Technical Tips 采用单透镜获得的光束发散角 (&alpha ) 满足tan(&alpha ) = d/f。其中,f透镜焦距,d是狭缝宽度或光纤直径。 海洋光学所指定的光纤视场大约是~25° 。对于某些实验来说,这可能不是一个最佳视场。 但通过准直透镜的调节,可实现大约~ 0° 到 ~45° 的视场角。 调节准直透镜时务必小心,因为透镜聚焦有误将造成采样路径长度的改变。 产品规格 型号 直径 焦距 材料 波长范围 工作温度 连接器 74-UV 5 mm 10 mm f/2 fused silica Dynasil 200-2000 nm 150 C SMA 905, 6.35-mm ferrule, 3/8-24 external thread 74-VIS 5 mm 10 mm f/2 BK-7 glass 350-2000 nm 150 C SMA 905, 6.35-mm ferrule, 3/8-24 external thread 74-DA 5 mm 10 mm f/2 fused silica Dynasil 200-2000 nm 150 C SMA 905, 1/4-36 internal thread, 3/8-24 external thread74-ACR 5 mm 10 mm f/2 BaF10 and FD10 fused silica 350-2000 nm 150 C SMA 905, 6.35-mm ferrule, 3/8-24 external thread

光学准直仪原理相关的资料

光学准直仪原理相关的资讯

  • 科众精密仪器-光学接触角测量仪原理
    科众精密-光学接触角测量仪原理 接触角是液体在液固气三态 交接处平衡时所形成的角度,液滴的形状由的表面张力所决定,θ 是固体被液 体湿润的量化指标,但它同时也能用于表面 处理和表面洁净的质量管控,表面张力 液体中的分子受到各个方向 相等的吸引力,但在液体表面的分子受到液体分子的拉力会大于气体分子的拉力,所以 液体就会向内收缩,这种自发性的收缩称之为表面张力 γ。对于清洗性,湿润度,乳化作用和其它表面相关性质而言,γ 是一个相当敏感的指标 悬垂液滴量测法悬垂液滴测量能提供 一个非常简便的方法来量测液体的表面张力 (气液接口) 和两个液体之间的接口张力 (液液接口) ,在悬垂液滴量测法中,表面张力和界面张力值的计算是经由分析悬吊在滴管顶端 的液滴的形状而来,接触角分析可依据液滴的影像做 杨氏议程计算 表面张力和接口张力。这项技巧非常的准确,而且在不同的温度和压力下也可以量测。 前进角与后退角使用在固体基板上的固着液滴可以得到静态的接触角。另外有一种量测方式称之为动态接触角,如果液固气三态接触的边界是处于移动状态,所形成的角度称之为前进角与后退角,这个角度的求取是由液滴形状的来决定。另外,固体样品的表面张力无法被直接量测,要求取这个值,只要两种以上的已知液体, 就可求得固体表面的临界表。以下是通过接触角测量仪测量单位济南大学材料学院设备序号5设备名称接触角测定仪 数量1调研产品(品牌型号)科众KZS-20共性参数1. 接触角测量范围:0~180°,接触角测量分辨率:±0.01°,测量精度±0.1°。2. 表界面张力测量范围和精度:0.01~2000mN/m,分辨率:±0.01mN/m。3. 光学系统:变焦镜头(放大倍率≧4.5倍),前置长焦透镜,通光量可调节。4. 高清晰度高速CCD,拍摄速度可达1220张图像/S,像素最高可达2048 x 1088。5. 光源:软件可调连续光强且无滞后作用的光源。6. 注射体积、速度可以软件进行控制;注射单元精度≤0.1uL;注射液体既可通过软件,亦可通过手动按钮控制液体注射。7. 注射单元调节:注射单元可进行X-、Y-、Z-轴准确调节;8. 整个注射单元支架可以旋转90°调整。9. 滚动角测量:自动倾斜台(整机倾斜),可调节倾斜角度范围≥90°,可测量滚动角。10. 接触角拟合方法:宽高法、椭圆法、切线法、L-Y法11. 动态接触角计算:全自动的动态接触角测量,软件控制注射体积、速率、时间,自动计算前进角和后退角。12. 表面自由能计算:9种可选模型计算固体表面自由能及其分量,分析粘附功曲线、润湿曲线。13. 具有环境控温功能,进行变温测试(0-110 oC), 分辨率0.1K。14. 品牌计算机: i7 4790 /8GB内存/1TB(7200转)硬盘/2G独立显卡/19英寸液晶显示器/DVD刻录光驱。15. 必备易耗品(供应商根据投标产品功能提供)16. 另配附件,要求:进口微量注射器3个,备用不锈钢针6根,一次性针头100根、适合仪器功率的稳压电源(190-250V)1台、配置钢木结构实验台( C型钢架、钢厚≥1.5mm,长2m、宽0.75m,板材采用三聚氰胺板,铝合金拉手,铰链采用国际五金标准,抽屉三阶式静音滑轨、抽屉负重≥25KG,含专用线盒,可安装5孔或6孔插座,优质地脚)。17. 售后服务:自安装调试验收完毕后之日起24个月内免费保修;每年提供至少一次的免费巡检。
  • 爱色丽支持光学可变防伪油墨标准制定及油墨色彩测量仪器
    防伪油墨作为一种防伪产品的基材,已经广泛应用于国家有价证券、证件证书、普通印刷品和商品包装等领域,其应用范围非常广泛。为了进一步规范防伪油墨的生产、使用及检测,保障国门安全、社会金融安全和产品监督管理的稳定性,爱色丽全力支持将于2023年12月实施的【光学可变防伪油墨】国家标准。这一标准的实施对于保障生产厂商、使用厂商和消费大众的合法权益,维护国家的安全和稳定,具有重要意义。爱色丽的参与和支持,旨在提升产品质量的稳定性和可控性,使得防伪油墨在多领域的应用更加规范和安全。一、测量参数光学可变防伪油墨通过光学原理,使印样随观察角度不同而呈现不同颜色。这一特定材料制作的油墨需要通过以下几个参数来进行测量和评估:外观色:使用单角度色差仪测量颜色差异。同角最大反射波长:标准和样品在波峰位置的匹配度。同角色差:标准和样品分别在30°和90°观察角度的颜色差异值。异角色差:同一试样在30°和90°观察角度的颜色差异值。二、防伪油墨标准制定具体方案参数:外观色试验步骤:1. 均匀取标样墨和试样墨,各自调适均匀,以相同条件用250目丝网版在无荧光印样纸上分别制作印样,墨层厚度为10μm~20m,干燥后待用。2. 将上述印样裁切成50mmX60mm的长方形,分别取标样1份,试样3份。3. 按GB/T19437-2004中4.1的规定进行仪器校准,检测标样色值,包括亮度L、绿色到红色的分量a、蓝色到黄色的分量b,作为颜色标准。在试样中选取避免透印干扰的测量点进行测量,得到ΔE,测量3次取平均值。测量设备:eXact系列色差仪。eXact系列色差仪是印刷和包装应用中用于测量色彩数据的行业标杆。其作为45:0便携式分光测色仪具有简单的用户界面和直观的触摸屏显示,因此是繁忙印刷车间的理想印刷机工具。通过无线操作以及不受限制的校准、规格和数据捕获,操作人员可以在车间内的任意地方使用eXact来测量和存储数据,无需电源。由于存储位于设备上,因此可以快速访问作业预设置和色彩库。参数:技术指标和耐性指标指标要求:- 技术指标:达到油墨的基本要求。- 耐性指标:符合各种耐受测试性能。测量参数:光谱和DE*。试验步骤(以耐性试验为例):1. 均匀取标样墨和试样墨,各自调适均匀,以相同条件用250目丝网版在无荧光印样纸上分别制作印样,墨层厚度为10μm~20m,干燥后待用。2. 将上述印样裁切成50mmX60mm的长方形,抽取4份样品,其中1份作为标样,3份作为试样。3. 将试样和GB/T730-2008规定的1级蓝色羊毛标样用黑色板纸衬白色书写纸各遮盖一半,放入日晒仪中,根据所使用的日晒仪要求确定环境温度和环境相对湿度,进行暴晒。当1级蓝色羊毛标样的变化程度相当于GB/T250-2008中“评定变色用灰色样卡”的3级时停止暴晒,取出试样放入暗处30分钟后,使用多角度分光光度计,测量试样30°、90°观察角度下的色值L、a、b,与标样30°、90°观察角度下的色值进行对比,记录试样ΔE1、ΔE2及异角色差,计算3份试样平均值,记录试验结果。测量设备:MAT系列多角度色差仪。爱色丽MA-T系列多角度色差仪包含6、12个测量角度,而且该色差仪价格实惠,是一款适用于特殊效果涂料的汽车测色仪,兼具彩色成像和多角度测量,体现完整色彩、光亮和粗糙特性。EFX QC是爱色丽MA-T系列汽车测色仪中附带的一个软件包,基于云计算的软件简化了各个分布式供应链交流容差和测量的过程。新的可视化工具支持实时性能监控,并为故障排除提供可行性建议,从而减少浪费和返工。通过严格的检测和标准化流程,光学可变防伪油墨将更好地服务于各类防伪需求。爱色丽将继续在这一领域发挥重要作用,为维护国家和社会的安全与稳定贡献力量。三、关于爱色丽“爱色丽彩通 ”总部位于美国密歇根州,成立于1958年。作为全球知名的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。如果您需要更多信息,请关注官方微信公众号:爱色丽彩通
  • 张福根专栏|激光粒度仪应用导论之原理篇
    p style=" text-indent: 2em " strong 编者按: /strong 如今激光粒度的应用越来越广泛,技术和市场屡有更迭,潮起潮落,物换星移,该如何全方位掌握激光粒度仪的技术和应用发展,如何更好地让激光粒度仪成为我们科研、检测工作中的好战友呢?仪器信息网有幸邀请在中国颗粒学会前理事长,真理光学首席科学家,从事激光粒度仪的研究和开发工作近30年的张福根博士亲自执笔开设专栏,以渊博而丰厚的系列文章,带读者走进激光粒度仪的今时今日。 /p p style=" text-indent: 2em text-align: center " strong 激光粒度仪应用导论之原理篇 /strong /p p style=" text-indent: 2em " 当前,激光粒度仪在颗粒表征中的应用已经非常广泛。测量对象涵盖三种形态的颗粒体系:固体粉末、悬浮液(包括固液、气液和液液等各类二相流体)以及液体雾滴。应用领域则包含了学术研究机构,技术开发部门和生产监控部门。第一台商品化仪器诞生至今已经50年,作者从事该方向的研究和开发也将近30年。尽管如此,由于被测对象——颗粒体系比较抽象,加上激光粒度仪从原理到技术都比较复杂,且自身还存在一些有待完善的问题,作者在为用户服务的过程中,感觉到对激光粒度仪的科学和技术问题作一个既通俗但又不失专业性的介绍,能够帮助读者更好地了解、选择和使用该产品。本系列文章的定位是通俗性的。但为了让部分希望对该技术有深入了解的读者获得更多、更深的有关知识,作者在本文的适当位置增加了“进阶知识”。只想通俗了解激光粒度仪的读者,可以略过这些内容。 /p p style=" text-indent: 2em " 首先应当声明,这里所讲的激光粒度仪是指基于静态光散射原理的粒度测试设备。当前还有一种也是基于光散射原理的粒度仪,并且也是以激光为照明光源,但是称为动态光散射(Dynamic light scattering,简称DLS)粒度仪。前者是根据不同大小的颗粒产生的散射光的空间分布(认为这一分布不随时间变化)来计算颗粒大小,而后者是在一个固定的散射角上测量散射光随时间的变化规律来分析颗粒大小;前者适用于大约0.1微米以粗至数千微米颗粒的测量,而后者适用于1微米以细至1纳米(千分之一微米)颗粒的测量。激光粒度仪在英文中又称为基于激光衍射方法(Laser diffraction method)的粒度分析技术。 /p p style=" text-indent: 2em " span style=" color: rgb(0, 176, 240) " 【进阶知识1】严格地说,把激光粒度仪的原理说成是“衍射方法”是不准确,甚至带有误导性的。从物理上说,光的衍射和散射是有所区别的。“光的衍射”学说源自光的波动性已经被实验所证实,但是还没从理论上认识到光是一种电磁波这一时期,大约是19世纪上半叶。在更早的时候,人们认为光的行进路线是直线,就像一个不受外力作用的粒子作匀速直线运动那样。这一说法历史上被称为“光的粒子说”。后来人们发现光具有波动形。那个时候人们所知道的波只有水波,所以“衍”字是带水的。“光的衍射”描述的是光波在传播过程中遇到障碍物时,会改变原来的传播方向绕到障碍物后面的现象,故衍射又称做“绕射”。描述衍射现象的理论称为衍射理论。衍射理论在远场(即在远离障碍物的位置观察衍射)的近似表达称为“夫朗和费衍射(Fraunhofer diffraction)”。衍射理论不考虑光场与物质(障碍物)之间的相互作用,只是对这一现象的维像描述,所以是一种近似理论。它只适用于障碍物(“颗粒”就是一种障碍物)远大于光的波长(激光粒度仪所用的光源大多是红光,波长范围0.6至0.7微米),并且散射角的测量范围小于5° 的情形。 /span /p p style=" text-indent: 2em " 麦克斯韦(Maxwell)在19世纪70年代提出电磁波理论后,发现光也是一种电磁波。光的衍射现象本质上是电磁场和障碍物的相互作用引起的。衍射理论是电磁波理论的近似表达。严谨的电磁波理论认为,光在行进中遇到障碍物,与之相互作用而改变了原来的行进方向。一般把这种现象称作光的散射。用电磁波理论能够描述任意大小的物体对光的散射,并且散射光的方向也是任意的。不论是早期还是现在,用激光粒度仪测量颗粒大小时,都假设颗粒是圆球形的。如果再假设颗粒是均匀、各向同性的,那么就能用严格的电磁波理论推导出散射光场的严格解析解(称为“米氏(Mie)散射理论”)。 /p p style=" text-indent: 2em " 现在市面上的激光粒度仪绝大多数都采用Mie散射理论作为物理基础,因此把现在的激光粒度仪所用的物理原理说成是衍射方法是不准确的,甚至会被误认为是早期的建立在衍射理论基础上的仪器。 /p p style=" text-indent: 2em " 世界上第一台商品化激光粒度仪是1968年设计出来的。尽管当时Mie理论已经被提出,但是受限于当时计算机的计算能力,还难以用它快速计算各种粒径颗粒的散射光场的数值。所以当时的激光粒度仪都是用Fraunhofer衍射理论计算散射光场,这也是这种原理被说成激光衍射法的缘由。这种称呼一直延用到现在。不过现在国际上用“光散射方法”这个词的已经逐渐多了起来。 /p p style=" text-indent: 0em text-align: center " img src=" http://img1.17img.cn/17img/images/201808/insimg/d07b19f0-4c57-4748-9d53-229c65c56d4e.jpg" title=" 图1:颗粒光散射示意图.jpg" / /p p br/ /p p style=" text-indent: 0em text-align: center " 颗粒光散射示意图 /p p style=" text-indent: 2em " 激光粒度仪是基于这样一种现象:当一束单色的平行光(激光束)照射到一个微小的球形颗粒上时,会产生一个光斑。这个光斑是由一个位于中心的亮斑和围绕亮斑的一系列同心亮环组成的。这样的光斑被称为“爱里斑(Airy disk)”,而中心亮斑的尺寸是用亮斑的中心到第一个暗环(最暗点)的距离计算的,又称为爱里斑的半径。爱里斑的大小和光强度的分布随着颗粒尺寸的变化而变化。一种传统并被业界公认的说法是:颗粒越小,爱里斑越大。因此我们可以根据爱里斑的光强分布确定颗粒的尺寸。当然,在实际操作中,往往有成千上万个颗粒同时处在照明光束中。这时我们测到的散射光场是众多颗粒的散射光相干叠加的结果。 /p p style=" text-indent: 2em " strong & nbsp 编者结: /strong 明了内功心法,下一步自然会渴望于掌握武功招式。本文深入浅出地介绍激光粒度仪的原理,激光粒度仪的结构自然是读者们亟待汲取的“武功招式”。欲得真经,敬请期待张福根博士系列专栏——激光粒度仪应用导论之结构篇。 /p p style=" text-indent: 0em text-align: right " (作者:张福根) /p

光学准直仪原理相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制