碰撞反应气的原理

仪器信息网碰撞反应气的原理专题为您提供2024年最新碰撞反应气的原理价格报价、厂家品牌的相关信息, 包括碰撞反应气的原理参数、型号等,不管是国产,还是进口品牌的碰撞反应气的原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合碰撞反应气的原理相关的耗材配件、试剂标物,还有碰撞反应气的原理相关的最新资讯、资料,以及碰撞反应气的原理相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

碰撞反应气的原理相关的仪器

  • 简介碰撞气发生器是专门设计用于与现有的Peak氮气发生器结合使用的一款装置,提供纯度高达99.999%,流量高达200cc/min的超高纯度氮气。在不影响“母”发生器的纯度和压力的情况下产生高品质的氮气。碰撞气发生器消除了钢瓶的使用需求,为实验室提供了更可持续的超高纯氮气的用气选择。将现有的Peak氮气发生器中分出一路氮气,经过碰撞气发生器进一步净化,即可向碰撞池提供流量高达200cc/min,纯度高达99.999%的氮气。应用 质谱碰撞池 特点双纯度 - 可在原有发生器的基础上为碰撞池提供超高纯氮气超高纯 - 99.999%, 流量最高可达200 cc/min与Peak氮气发生器搭配使用,以实现双纯度系统无需额外的氮气钢瓶HMI屏幕 - 可监控碰撞气发生器的运行情况,报警提示,便于维护年度维护 - 尽可能缩短停机时间,可以与“母”发生器同时进行维护消除了实验过程中气体耗尽的风险与Peak氮气发生器系统兼容12个月全面现场维护
    留言咨询
  • Cadex 是全世界实验室碰撞测试系统技术领域的领跑者,其头盔测试系统能为您提供详细的测试方案.如根据Snell, DOT, ECE22, ASTM, EN1077, EN1078, ANSI, BSI 6658, CSA, Nocsae等標准要求,进行相应的碰撞能量吸收测试,固定係统测试,稳定性测试,头盔突起物和表面摩擦力测试,面罩及护目镜的光学测试,头部防护及身体各部位护具测试及各种各类的弹道砲击系统测试等。自公司成立于1994年后,Cadex迅速的確立了其在碰撞测试系统(如头盔碰撞系统)及相关技术领域研发及应用方面的领导地位.总公司位于加拿大魁北克省,公司杰出的设计人员,工程师及技术人员队伍能协诚为来自世界各地的客户提出的不同的市场及项目要求作出快速而高效的反应和提供满意的解决方案。设备用于检测头盔和其他个人防护设备。系统按照多个测试标准进行相应的测试,提供详细的测试方案:碰撞能量吸收测试固定系统测试稳定性测试头盔突起物和表面摩擦力测试面罩及护目镜的光学测试头部防护及身体各部位护具测试各类的弹道炮击系统测试等等
    留言咨询
  • 颗粒碰撞噪声检测仪,粒子碰撞噪声检测仪,微粒碰撞噪声检测仪,PIND,4511,FELIX产品型号:4511A(22mm台面)4511L(50mm台面)4511M4(100mm台面)4511M6(150mm台面)4511L-R及4511M4-R(宽脉冲) 美国SD公司的颗粒碰撞噪声检测仪用于电子元器件封装后,对器件内多余粒子碰撞噪声检试验,目的在于检测器件封装腔体内存在的自由粒子,是一种非破坏性实验。 用来测试电器零件从而提高电器零件的可靠性。用于检测集成电路、晶体管、电容器、航空/航天/军事领域的继电器等电子元器件封装内的多余物松散颗粒。 工作原理:颗粒碰撞噪声检测(Particle Impact Noise Detection P.I.N.D.)是一种对多余物检验的有效手段。其原理是利用振动台产生一系列指定的机械冲击和振动,通过冲击使被束缚在产品中的颗粒(即多余物)松 动,再通过一定频率的振动,使多余物在系统内产生位移。活动的多余物在产品中发生位移的过程,是多余物相对产品壳体的滑动和撞击的一个随机组合过程。在这个过程中,将产生应力弹性波和声波。这两种波在产品壳体中传播并形成混响信号,这个混响信号被定义为位移信号。采用压电传感器拾取到位移信号后,经前置放大器放大,位移信号由检测装置的主机采集、处理并显示。检测人员可以依据显示的信号波形判定出信号性质,以此得出检测结论。 选型说明:每种型号的颗粒碰撞噪声检测仪都包括:控制器,振动台,传感器,灵敏度测试单元,软件,示波器,电缆,耗材及相关文件。其型号选择主要根据被测件的重量和外型尺寸而定,我们的标准配置采用的是M230振动台可测负载重量,全频率范围内为200克,换能器台面直径为22mm~150mm,换能器因在其中心区域50%面积处灵敏度,故实际台面选择时换能器面积要略大于被测件 扁平面面积。 设备用途:用于电子元器件封装后,对器件内多余粒子碰撞噪声检测试验,目的在于检测器件封装腔体内存在的自由粒子,是一种非破坏性实验。用来测试电器零件从而提高电器零件的可靠性。 适用领域:用于检测集成电路、晶体管、电容器、航空、航天及相关军事领域的继电器等电子元器件封装内的多余物松散颗粒。
    留言咨询

碰撞反应气的原理相关的方案

碰撞反应气的原理相关的论坛

  • 碰撞池与反应池

    碰撞/反应池基本上有桶状的池体构成,两端留有空以方便粒子进出。池体内维持比周围真空腔内的压力稍高的增压状态。池内装有多级杆,也有池内装有离子透镜。池体一般位于离子透镜和主分析器之间。池中常用的气体有强反应气,如CH4,NH3,弱反应气H2,碰撞气he,xe,混合气体如H2/He或NH3/he(以he为主)。碰撞/反应池常常用反应池或碰撞池命名,用来强调和区分池体内进行化学反应过程特征。另一种对两种池体结构的主要不同处的论述是他们对排斥不希望的副反应产物离子的手段不同,一个利用质量歧视效应,另一个利用能量歧视效应。反应池内一般使用四级杆,此使用可变的带通,强调有一定的化学反应专一性。池内增压较高,离子动能较弱。使用强反应气NH3CH4或弱反应气H2O2。碰撞池池体内一般使用高级多级杆(六级杆或八级杆),强调对正离子的高功率引导功能,强调池体的动能歧视功能,一般增压较小。常使用的气体为碰撞气体He,及弱反应气体和混合气体。当前强反应气体混合气体被用于碰撞池后,使严格按池体内的化学反应过程来定义的池体命名方式模糊起来。

  • 【原创】ICP-MS主流产品对比-分帖之五 碰撞反应池

    5 碰撞反应池可能各家厂商的产品都有一些自己的特点,然而如果不是碰撞反应池技术的出现,几乎各家的[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]都没有什么大区别了。从PE公司在6100上推出DRC以来,各家公司都注意到了碰撞反应池是ICP/MS上的一个重要技术,但受到专利的影响,各家的碰撞反应技术各不相同,成为最有区别的一部分。碰撞反应池的位置在离子透镜之后,四级杆之前。并不是所有仪器都有,但这四家仪器厂商都有的主流产品都配备了碰撞反应池。首先介绍PE的DRC。之所以先介绍PE,是因为在这四家公司里PE公司最早推出反应池技术的。当时是在Elan 6100上推出的,其名称叫动态反应池DRC(Dynamic Reaction Cell)。这是一个专利技术。现在的主流产品是DRC-e和DRC II。连仪器型号都直接用该技术命名,可见碰撞反应池对于现行产品的影响有多大。DRC和其它碰撞反应最大的不同就是这个反应池是一个四级杆设计。Thermo是六级杆、Agilent是八级杆,Varian是个接口。四级杆设计和其它设计不同就在于四级杆能够进行质量甄别,也就是可以让一定范围里的质量数通过。这就是PE说它的DRC仪器是[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url]-MS的原因。而限于专利,其它厂商都没有这个功能。DRC-e可以使用包括甲烷、氧气、氢气和氦气在内的任何一种气体,DRC II还可以用氨气、氧化氮等强反应气。由于其反应原理,被测离子在DRC中受影响小。厂商说对灵敏度不受影响,但从实际数据来看,灵敏度也会有明显的下降,但其下降幅度比其它厂家低得多。PE的DRC需要针对不同质量数和干扰进行特别的设置,也就是说其气体类型和参数设置针对性比较强,在多元素测量中有些困扰。最近,PE公司对于条件通用化进行了比较多的研究。总之,PE公司的DRC技术是独一无二的质量甄别反应技术。在消除干扰,降低本底方面有着突出的效果。Thermo公司的碰撞反应池的名称叫碰撞池技术CCT(collision cell technology),采用了一个六级杆来完成这个工作。Thermo公司一般采用氦气和氢气混合气(氢气7%)来作为反应碰撞气。Thermo公司的技术文献也有报道用氧气的,不知道有没有实际应用。Agilent公司的碰撞反应池技术叫八级杆反应系统ORS(Octopole Reaction System),7500CX通常是排一路氦气,7500CS通常排2路,一路氦气,一路氢气,据Agilent公司介绍7500CS也可选排第3路气,用氨气。用氨气不知道在半导体行业有没有实际应用。但一般使用,Agilent都只使用氦气,在半导体行业,用氦气和氢气。上面提到,由于专利的限制,Thermo没办法做四级杆反应池,只好做六级杆,六级杆无法进行质量甄别,只是保证离子传输以及提供一个碰撞反应的场所。Thermo的CCT也是有专利的。Agilent公司没办法做四级、六级,只好做八级杆,同样也有专利。Varian公司来得最晚,再做十级杆的话,那就太复杂了。不过,Varian公司还是有一些创新能力的(90度离子透镜的设计就可以看出来),在锥口设计了一个碰撞反应接口CRI(Collision Reaction Interface),来完成碰撞反应去干扰。具体是在锥口开了夹层,使气体从锥口冲出,达到碰撞反应的目的。在样品锥和截取锥上都采用了这样的设计。虽然这三家的设计和理念有所不同,但其去干扰的原理基本一致。主要是通过样品产生的离子流和氢气或氦气或两者混合气进行碰撞和反应。氦气是惰性气体,主要起到碰撞作用,氢气是弱反应气,主要通过反应来去除干扰。由于不能做质量甄别,必须使用反向电场进行能量甄别,以消除大量的副产物干扰离子。在能量甄别中,被测离子中大部分也会被甄别掉。所以,在碰撞反应模式下,灵敏度会大大下降,不同质量数和碰撞反应条件下,下降的幅度不同,有时候甚至高达几十倍。虽然这三家的碰撞反应原理差不多,但具体使用还是有些不同。Thermo基本使用氦气为主的氦氢混合气,其理念是提供一个通用气和条件,适合绝大部分样品去干扰的要求。所以,气体里面又有碰撞气——氦气,又有反应气——氢气。氦气和氢气对于不同的样品和干扰有着不同的影响。比如:80Se的测量,有40Ar40Ar的干扰。如果要去除这个干扰,需要用氢气,氦气效果不佳。但全部用氢气的话,反应又难以控制。所以Thermo采用了这个混合气的办法。Thermo公司会向用户展示CCT在80上的低本底计数,说明其CCT去除干扰的能力。然而,即使如此,氢气的副作用还是很明显。其副产物产生的影响难以控制。Agilent公司通常推荐用氦气,100%的。这样的好处是氦气是靠碰撞,不会产生新的干扰。也就是说,干扰只会减少,不会生成新的、未知的干扰。当然,只靠氦气是不能解决问题。比如上面提到的80上的40Ar40Ar干扰。所以,Agilent的7500CX在使用ORS时80上的计数是很高的。Agilent认为一般条件下,测量硒可以用78或82,而不是80。但氦气不能较完全地去除干扰则是可以定论的。所以,Agilent公司在需要去除Ar干扰、进行低含量水平检测时,还是要用到氢气,这在7500CS上就留了氢气的气路。Varian公司在CRI上可以用氢气或氦气,可以切换。Varian公司的资料说到由于CRI只是一个接口,不是一个“池”,所以气体切换非常快。从实践来看,从通气和不通气的切换确实很快,但从氢气和氦气之间的切换却非常慢,比PE公司换气速度还慢。估计是Varian仪器内部气路的设计问题。另外,正是由于没有一个“池”,在锥口这样一个狭小的空间完成碰撞反应,其气流量要比Thermo和Agilent公司的要大的多。气流量大,对被测离子的灵敏度影响也越大,结果就是,Varian的ICP/MS在非碰撞反应模式下灵敏度远远高于其它三家,但在碰撞反应模式下,其灵敏度大大下降,和其它三家基本在同一水平上。

碰撞反应气的原理相关的耗材

  • 碰撞球
    配件编号:3600931产品名称:OFFSET IMPACT BEAD ASSEMBLY 碰撞球 产品规格:个仪器厂商:ThermoFisher/赛默.飞世尔价格:面议 库存:是
  • 底装式焦炭反应器
    特别推荐:专用检测焦炭反应性耐高温电炉恒温区工具,型号:C3;A4-05底装式焦炭反应器通配型号:KF-2008H,KF-2010H用户答疑:关于我公司生产的焦炭反应器试验次数可达60次之多,部分用户可能会感到疑惑,因为现在正使用的焦炭反应器中,套管使用20余次基本报废,而焦炭反应器筒体也至多35-45次也成报废产品,为什么我们生产的有如些之多呢?解释如下:1、我公司生产的焦炭反应器筒体及套管均采用挤拉无缝管制成,受热膨胀均衡,高温下不易破裂;而其他厂家则采用焊接管型制成,焊接处容易爆裂;2、我公司生产的焦炭反应器整体厚度均达到国标以上优质品要求,既不影响试验反应,也为试验人员提供了满意的产品;详见以下技术参数!3、真正的品质,是用实践试验中用户的口碑得来的,我们让用户说话,让事实说话,我公司相信在未来的行业中,我们能说“东晶产品,用过的人都说好!”,用户能说“东晶产品,我放心!”一、简介:焦炭反应器(符合国家标准GB/T4000-2008要求)采用进口耐高温合金钢材质,最高可耐温度1400度,根据国标要求试验温度为1100度,具有耐高温、耐氧化、抗腐蚀等优点;我公司生产的焦炭反应器采用无缝管制造,受热均衡,寿命长,一般正常使用达到60次以上,比焊接制成的反应器寿命增一倍左右。特别声明:很多厂家在使用现在焦炭热反应设备时都同时意识到焦炭反应器的使用寿命普遍不高,但由于国内各厂家生产的配件都略有不同,部分企业是根据国家标准生产,有些企业则采用异常制作,考虑到不能通用的问题;因此我公司在此承诺,凡有兴趣想更换配件厂家,追求更高要求、更高标准的生产企业,可直接与我公司沟通洽谈,我公司将根据贵公司的实际要求,对现有焦炭反应器进行设计、制造、并半价提供试用,直至达到双方协商满意要求再付清余款。二、焦炭反应器技术参数(符合国家标准):型 号:A4-05材 质:耐高温合金钢,GH23/GH44;反应器内径:Φ80×2.2mm;反应器长度:500mm;(现在好多厂家为了节约成本,采用1.2-1.5mm板材,而且是焊接管型制成,焊接处容易爆裂);
  • 聚四氟冷凝回收装置HF分离器特氟龙反应器精馏装置蒸馏瓶
    四氟减压蒸馏装置氟化氢、氢氟酸装置型号:NJ-ZH-XJ品牌:南京滨正红二、接收瓶多种选择目前接收瓶装置我们有两种可选,第1种是选用四氟反应瓶作为反应接收器,如果考虑到费用和透明度的话第二种可选择FEP或PFA的样品瓶作为接收瓶,其中第二种方案的连接处需要配套接头。三、冷凝管的材料、设计、用途冷凝管是一种用作促成冷凝作用的实验室设备,市场上多数是玻璃的,通常由一里一外两条玻璃管组成,其中较小的玻璃管贯穿较大的玻璃管。它是利用热交换原理使冷凝性气体冷却凝结为液体的一种玻璃仪器。有直形、球形、蛇形三种,规格以长度(mm)表示,目前我们 采用的是聚四氟冷凝管,其基本原理和玻璃是一样的,冷凝管内可以加上填充物,如四氟圆球,增加冷凝回流的面积,可以和烧瓶直接连接做冷凝回流装置,也可以和四氟转接头连接,冷凝回收到接收瓶中。用途冷凝管用于蒸馏液体或有机制备中,起冷凝或回流作用。回流装置和蒸馏是两个经常用到冷凝管的实验装置。使用范围:蒸汽的温度大于140摄氏度,用空气冷凝管,温度小于140摄氏度,用直形冷凝管。冷凝管通常使用于欲在回流状况下做实验的烧瓶上或是欲搜集冷凝后的液体时的蒸馏瓶上。蒸气的冷凝发生在内管的内壁上。内外管所围出的空间则为行水区有吸收蒸气热量并将这热量移走的功用。进水口处通常有较高的水压,为了防止水管脱落,塑胶管上应以管束绑紧。当在回流状态下使用时,冷凝管的下端玻璃管要插入一个橡皮塞,以便能塞入烧瓶口中,承接烧瓶内往上蒸发的蒸气。四、恒压漏斗(恒压滴液漏斗、恒压漏斗)恒压分液漏斗是分液漏斗的一种。它和其他分液漏斗一样,都可以进行分液、萃取等操作。与其他分液漏斗不同的是,恒压分液漏斗可以保证内部压强不变,一是可以防止倒吸,二是可以使漏斗内液体顺利流下,三是减小增加的液体对气体压强的影响,从而在测量气体体积时更加准确。 恒压滴液漏斗包括斗体,盖在斗体上口的斗盖。斗体的下口安装一两通通结构的活塞,活塞的两通分别与两下管连接。实验操作过程利于控制,减少劳动强度,当需要分离的液体量大时,只需搬动活塞的三通便可将斗体内的两种液体同时流至下管,无需更换容器便可一次完成。

碰撞反应气的原理相关的资料

碰撞反应气的原理相关的资讯

  • 基于碰撞反应池多接收等离子体质谱的K-Ca-Fe同位素高精度分析
    以Nu Sapphire为代表的最新一代含碰撞池CC-MC-ICP-MS,配有传统MC-ICP-MS的高能通道(6kV加速电压)和基于碰撞池技术的低能通道(4kV加速电压),其中六级杆碰撞反应池使用氢气和氦气,能够有效去除各种含氩基团对41K+、40Ca+和56Fe+等造成的干扰(图1),因此可以在低分辨模式下对K、Ca及Fe同位素开展高精度分析,可有效降低样品测试含量,有利于珍贵样品和低含量样品分析。   中国科学院地质与地球物理研究所成矿元素与同位素分析实验室于2021年4月安装了Nu Sapphire,实验室人员李文君、高炳宇、王静和苏本勋等通过系统优化新一代碰撞反应池(CC)-MC-ICP-MS(Nu Sapphire)的低能路径参数,使用低分辨+碰撞反应池技术,相继建立K、Ca及Fe同位素分析测试方法。 图1 碰撞反应池多接收等离子体质谱工作原理(以K为例)   K同位素:K溶液上机浓度降低至200 ng/g,δ41K的长期精度小于0.04‰ (2SD);在标样-样品间插法的测试分析中,样品和标样的K浓度匹配可扩大至20%,大大提高分析效率;10种地质标样的K同位素分析结果与文献报导一致(图2),并首次报道了锰结核(NOD-P-1)和铁建造(FeR-2,FeR-4)的K同位素组成,为铁、锰样品的实验室数据比对提供新的依据。 图2 地质标样与文献中δ41K值的比对   Ca同位素:实现了40Ca、42Ca和44Ca的同时测定,将Ca测试浓度降低至100 ng g-1,δ44/40Ca的长期精度与TIMS相似(2SD 图4 地质标样与文献中δ56Fe的比对   以上研究成果发表于Science China Earth Sciences和Journal of Analytical Atomic Spectrometry上。本研究受中国科学院地质与地球物理研究所实验技术创新基金(批准号:TEC 202103)和中国科学院青年创新促进会共同资助。   1. Li W, Cui M, Pan Q, et al. High-precision potassium isotope analysis using the Nu Sapphire collision cell (CC)-MC-ICP-MS[J]. Science China Earth Sciences, 2022, 65(8): 1510-1521. DOI: 10.1007/s11430-022-9948-6. [李文君*, 崔梦萌, 潘旗旗, 王静, 高炳宇, 刘善科, 袁梦, 苏本勋*, 赵野, 滕方振, 韩贵琳. 碰撞反应池MC-ICP-MS(Nu Sapphire)高精度钾同位素分析. 中国科学: 地球科学, 2022, 52(9): 1800-1812.]   2. 高炳宇*, 苏本勋*, 李文君, 袁梦, 孙剑, 赵野, 刘霞. High-precision analysis of calcium isotopes using the Nu Sapphire collision cell (CC)-MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2022. DOI: 10.1039/D2JA 00150k.   3. 王静*, 唐冬梅, 苏本勋*, 袁庆晗, 李文君, 高炳宇, 陈开运, 包志安, 赵野. High-precision iron isotopic measurements in low resolution using collision cell (CC)-MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2022, 37(9): 1869-1875. DOI: 10.1039/D2JA00084A.
  • ICP-MS技术漫谈V--碰撞/反应池CCT技术之于icpTOF:复杂基体高时间分辨率测量中充分非必
    ICP-MS技术漫谈系列前篇回顾ICP-MS技术漫谈I: CeO+/Ce+ 和 BaO+/Ba+分不清楚?ICP-MS技术漫谈II icpTOF飞行时间质谱仪“免疫系统” – Notch Filter陷波技术ICP-MS技术漫谈III ICP-MS 谱图多原子离子干扰区分所需质量分辨率ICP-MS技术漫谈IV 无海平面,何来山峰海拔高度:论icpTOF全谱原始数据(包含基线信号)记录之重要性ICP-MS技术漫谈V 本文CCT模式TOFWERK ICPTOF 自1980年首次推出以来,电感耦合等离子体质谱ICP-MS技术已在多个领域(如地质学、环境科学、材料科学、法医学、考古学、生物学及医学等),成为一种成熟且广泛应用的多元素及同位素分析方法。ICP-MS以其卓越的灵敏度、低检出限、宽线性动态范围和多同位素检测能力而著称,同时还能与多种样品处理/进样技术(如色谱、电热蒸发、(单)微液滴生成和激光剥蚀等)耦合使用。同有机质谱类似,质谱干扰也是影响ICP-MS准确测量多种元素的主要挑战。这些干扰主要来源于单价或双价的原子及分子离子,其产生与等离子体、样品组成、ICP操作条件及相关样品的物理化学特性有关。目前,处理这些干扰的策略包括利用多极离子导引器与上游质量分析器内通入气体进行的离子-分子反应或产生动能差异,以及采用超高分辨率磁扇区ICP-MS技术以区分多原子干扰物。 使用有选择性的化学反应来减少对目标元素的干扰并将产生的附加干扰物的离子转移到未被占用的质荷比(m/z)通道,是一种有效的解决质谱干扰问题的方法。例如,引入氢气H₂ 作为反应气体能显著减弱由氩离子(Ar⁺ )及基于氩的多原子离子所引起的背景干扰,使得能够在其丰度最高的同位素峰上检测到钙(Ca)、铁(Fe)或硒(Se)。此过程中主要的反应产物为H₃ ⁺ ,不会引入额外的干扰信号,从而提高了分析的准确性和灵敏度。这种方法通过改变干扰物质的质荷比来“清理”分析信号,使得原本由于干扰而无法检测的元素或同位素得以准确测定。 本文中,研究人员探讨了电感耦合等离子体-飞行时间质谱(ICP-TOF-MS)结合碰撞/反应池技术(CCT)在高时间分辨率分析中的应用优势,特别是在使用多样的样品引入技术,包括高速激光剥蚀和微液滴生成。通过在CCT中采用氢气(H₂ )作为反应气和氦气(He)作为碰撞气,研究着重于多元素测定的能力,特别是在抑制基于氩的背景离子、提高多同位素灵敏度和优化激光剥蚀定量分析方面。这些CCT中的气体分子和离子束发生化学反应或者物理碰撞,从而实现清除某些特定的同位素,或者将多原子离子解离。 使用H₂ 作为反应气体时,能够显著降低氩离子(Ar⁺ )和氩分子离子(Ar₂ ⁺ )的信号,使得钙(Ca)和硒(Se)的丰度最高的同位素得以检测。此外,降低Ar⁺ 信号时还允许在进行飞行时间分析前,无需陷波技术(notch filter)来选择性减弱特定质荷比(m/z)信号值,从而改善了质荷比40和80附近同位素的传输效率。 研究发现,以不超过4mL/min的流量引入氢气、氦气或两者混合气体,可以通过碰撞诱导聚焦机制将离子检测灵敏度提升1.5至2倍,并且质量分辨率也提高了16%。使用CCT后,钙(40Ca)的检出限(LOD)提高了超过三个数量级,硒(80Se)的检出限(LOD)提高了一个数量级。对于NIST SRM610标准中的多种元素,检出限均提高了2到4倍,同时在大多数元素上保持了定量准确性(小编注:如果应用偏重于轻质量数元素分析,可以通过关闭CCT模式来达到最优效果)。 实验还表明,当采用微液滴样品引入技术时,碰撞池中的He缓冲气体量会导致单个微液滴信号的宽度增加至数十至数百微秒。但是,高速激光剥蚀产生的单气溶胶羽流事件的持续时间未受碰撞效应影响,表明在100 Hz的激光剥蚀频率下,即使开启CCT,也不会对成像效果产生显著影响。这些发现强调了CCT在提高ICP-TOF-MS性能和分析精度方面的潜力,尤其是对于高时间分辨率的多元素分析。01实验参数和设置 实验是在瑞士TOFWERK AG公司生产的icpTOF仪器上进行的,该仪器与多种样品引入系统相结合使用。icpTOF装备有陷波滤波器,位于碰撞/反应单元(CCT)下游,用于精确调控飞行时间(TOF)谱图中多达四个特定质荷比(m/z)的高信号强度。通过调整频率和振幅,可以选择性地衰减特定m/z离子信号,同时这也会影响到相邻的m/z。在进行激光剥蚀(LA)实验时,通常只需衰减氩离子(Ar+)的信号,以避免信号饱和导致探测器损坏。表1:在不同实验设置的情况下,ICP-TOFMS的运行参数和碰撞/反应池的设置。碰撞/反应单元操作:碰撞/反应单元使用的氦气(99.999%纯度,由瑞士Dagmersellen的PanGas AG提供)和氢气(99.9999%纯度,同样由PanGas AG提供)或这些气体的混合物进行加压。气体的流量通过质量流量控制器进行精确控制,使用Micro Torr气体净化器(由加利福尼亚的SAES Pure Gas, Inc.提供)来去除气体中的杂质。在需要进行离子束衰减的实验中,调整陷波滤波器的操作参数以确保背景信号的总强度维持在500 kcps以下。激光剥蚀导入:激光剥蚀实验在NIST SRM610、NIST SRM612和USGS BCR-2G标准样品上进行。使用的是193nm ArF准分子激光剥蚀系统(GeoLasC,由德国哥廷根的Lambda Physik提供)。高分散LA实验在一个充满氦气的单体积圆柱形剥蚀室中进行,使用44μm直径的圆形激光光斑和10Hz的激光剥蚀频率,单脉冲信号的持续清洗时间为1.5-2秒(FW0.01M)。低分散LA实验在一个双体积管状样品池中进行,使用5μm直径的圆形光斑和100Hz的激光频率,单脉冲信号的持续清洗时间小于10毫秒(FW0.01M)。所有实验都采用线扫描模式,扫描速度分别为5μm/s(高分散)和50μm/s(低分散)。通过调节操作参数,实验每天都能在保持相近的铀(238U)和钍(232Th)的灵敏度以及低氧化物生成率的同时,获得最高的238U+灵敏度。高分散LA-ICP-TOFMS数据的采集时间分辨率为1秒,而低分散LA-ICP-TOFMS数据的采集时间分辨率为1毫秒。在后处理中,对TOF质谱进行了重新校准和基线去除。微液滴导入:微液滴导入实验使用的是德国Microdrop Technologies GmbH公司的商用微滴生成器(MD-K-150-020和MDE-3001,配备30微米直径喷头)。在50Hz的条件下产生直径为25到30微米不等的液滴,并通过氦气和氩气传输到ICP。多元素标准溶液由单元素标准溶液制备而成(由德国达姆施塔特的Merck AG和美国弗吉尼亚克里斯琴斯堡的Inorganic Ventures提供),每个元素的最终浓度通常为100 ng/g。02实验结果使用氢气作为反应气体以衰减背景信号:本研究的激光剥蚀NIST SRM610实验是在仪器参数优化后进行的。实验使用高色散LA-ICPTOFMS装置,并在反应池中通入不同流量的氢气。除了氢气流量和陷波滤波器的设置外,三个实验中的ICP-TOFMS操作参数和碰撞/反应池设置保持恒定。图1报告了气体背景信号强度的平均值。当通入氢气流量大于1.5mL/min以上,m/z=40的信号是无需使用陷波滤波器进行衰减的。气体背景信号分析虽然仅反映了仪器在不引入样品时的背景信号情况,但这种分析并不完全代表分析特定样品时的背景信号水平,因为样品基质可能会提升基线信号。尽管存在这一局限性,此类测量对于估计激光剥蚀实验中的背景信号强度仍然非常有用,特别是低背景信号对于实现更佳的检出限(LOD)至关重要。在不引入氢气的条件下,背景信号主要由Ar+离子及其相关的氩基分子离子(例如Ar2+、ArN+和ArO+)贡献,同时H2O+、N2+和O2+也展现出显著的峰值。ICP-TOFMS的丰度灵敏度特性导致这些背景离子增加了质谱的基线水平。通过向CCT中增加氢气流量,Ar+信号可以显著衰减至每秒几百次的强度水平。特别是当氢气流量达到5 mL/min时,Ar2+的信号可以降低超过四个数量级,达到每秒几个的强度水平。这一衰减效果涉及到的反应主要是氢原子的转移,例如Ar+转变为ArH+,使得在质谱中m/z=37和m/z=41位置的信号变得占主导地位。在更高的氢气流量下,ArH+通过质子转移的方式进一步减少。图1:分析m/z小于100的范围内的平均背景信号强度与通入氢气流量的关系。左右两图为同样的数据但被绘制在线性y轴(a)和对数y轴(b)上。当没有氢气流过反应池时,使用陷波滤波器来衰减m/z=40处的信号强度。当H2气体以2.5mL/min和5mL/min则不需要信号衰减。 图2a和c展现了在高色散LA-ICP-TOFMS条件下,特定同位素(27Al、55Mn、89Y、141Pr、238U)的灵敏度与氢气和氦气流量之间的关系。这些同位素覆盖了广泛的m/z范围。对于氢气和氦气,灵敏度随气体流量增加先升高后降低,显示出相似的趋势。特别是,对于55Mn,在气体流量为1 mL/min时,其灵敏度达到最大值,与不通气的标准条件相比,分别增加了28%(氢气)和84%(氦气)。对于27Al,在氢气流量为0.5 mL/min时灵敏度最高,而对于238U,在氢气流量为1.5 mL/min时灵敏度最高,相较于不通气的标准条件,它们的灵敏度分别提高了11%(27Al)和2%(238U)。在通入氦气时,27Al和238U的灵敏度分别在氦气流量为0.5 mL/min和3.5 mL/min时达到峰值,相比不通气的标准条件,它们分别提高了3%(27Al)和73%(238U)。灵敏度的提升主要归因于碰撞聚焦效应。随着m/z增大,较高的气体浓度下灵敏度的下降趋势减缓,这与低质量离子的速度减慢和散射过程加快有关。 同位素238U+/232Th+的信号强度比随气体流量的增加而稳步上升,在通入氢气和氦气时分别从1.25增加到1.36和从1.31增加到1.47。这表明在通入气体时,Th+的减少速度超过U+。这可能是由于Th+与气体中的杂质反应或散射过程。然而,鉴于U和Th的碰撞截面和动能相似,散射过程的影响可能较小。Th+相对于U+更快的减少可能与其与气体中水分子的反应有关。 同时,137Ba++/137Ba+的信号强度比随着气体流量的增加先上升后下降,这一趋势在通入氢气和氦气时均被观察到。这表明Ba++的透射率最初随气体流量的增加而提高,可能是由于双电荷离子在进入碰撞/反应池前在静电离子光学器件中获得较高的动能。然而,随着气体流量的进一步增加,Ba++离子的反应速率可能超过了Ba+,导致其离子信号强度的连续下降。图2:灵敏度和选定的离子强度比与通入反应池的氢气H2流量的关系(a)。钙的同位素的检出限与通入反应池的氢气流量的关系(b)。在低于1.5mL/min的氢气流量设置时,每种氢气流量设置都会相应调整陷波滤波器上的设置,以保持尽可能高的灵敏度,同时防止检测器饱和。对于H2气体流量大于1.5mL/min,则未启用陷波滤波器。灵敏度和选定的离子强度比与通过碰撞池的氦气He流量的关系(c)。质量分辨率和灵敏度与通过碰撞池的氦气流量的函数关系(d)。在此实验期间,陷波滤波器设置保持不变,m/z=40处的信号强度必须始终衰减。所有实验均在NIST SRM610上进行,使用直径44微米的圆形光斑和10Hz的激光频率。实验采用线扫描模式进行,扫描速度为5µ m/s。03检出限和氢气气体流量的关系及同位素的选择 图2b展示了多个Ca同位素(40Ca, 42Ca, 43Ca和44Ca)的检出限随着通过反应池的氢气流量变化的情况。在氢气流量为3mL/min时,40Ca的检出限数值最佳,达到0.33mg/kg,这一检出限比CCT模式下其他Ca同位素的检出限好一个数量级以上。与无氢气流的标准条件相比,检出限提升超过了三个数量级,这主要归因于氢气对Ar+信号的选择性衰减,从而显著提升了检出限。随着氢气流量的进一步增加,检出限的上升归结于灵敏度降低。 此外,研究中还观察到Se同位素(特别是80Se)在氢气流量为3.5mL/min时达到了最佳检出限0.95mg/kg,相比于标准条件下可获得的检出限(针对77Se为4.1mg/kg)提高了约四倍。对于238U和89Y,当氢气流量分别达到5mL/min和3.5mL/min时,观察到检出限降低了四倍,这表明通过调整氢气流量,可以显著改善某些特定元素的检出限。 对于27Al,在无氢气通入的条件下其检出限数值最低,但即使在低氢气流量下,27Al的信号也可能因碰撞而衰减。当通入3.5mL/min的氢气时,27Al的检出限恶化了两倍,这表明氢气流量的增加对某些元素的检测性能有负面影响。 这些观察结果说明,在通过反应池的氢气流量对检出限有着显著的影响,不同元素和同位素受氢气流量影响的程度各不相同。通过优化氢气流量,可以在不牺牲其他性能的前提下,针对特定元素达到更低的检出限。对于更多细节和氢气流量与灵敏度及背景信号之间的相关性分析,建议参考原始研究的辅助材料。04质量分辨率和丰度灵敏度与He气体流量的函数关系 图2d的结果表明,通过向碰撞池中添加氦气(He)作为碰撞气体,可以略微提高特定同位素的质量分辨率。这一发现对于改善质谱分析的准确性和分辨能力具有重要意义。质量分辨率的提高允许更好地区分质量相近的同位素,从而降低了分析中的误差和不确定性。例如,141Pr和238U的质量分辨率分别在氦气流量为5mL/min和6mL/min时提高了16%和13%。这种效果是由于碰撞导致离子动能的离散度减小,从而使得同位素峰更加尖锐。 与使用氦气相似,实验中也观察到使用氢气(H2)作为反应气体时,同样可以提高质量分辨率。例如,在氢气流量为2.5mL/min时,238U的质量分辨率提高了4%。这进一步证明了通过调整碰撞/反应池中的气体种类和流量,可以有效地优化质谱分析的性能。 在进行了ICP-TOFMS操作参数和碰撞/反应池设置的优化后,特别是在优先考虑峰形而非灵敏度的情况下,238U的质量分辨率可以超过4000。尽管这种优化导致238U的灵敏度降低了7%,但显著提高的质量分辨率对于解决复杂样品分析中的同位素重叠问题至关重要。 此外,通过监测209Bi+在m/z=209和m/z=210处的强度,研究人员还探讨了丰度灵敏度的变化。发现通过将氦气流量提高至3mL/min,可以提高丰度灵敏度。这是因为增加的氦气流量导致重质量侧的质谱峰底部变宽,尽管这种效果在质量分辨率的测定中未能得到充分体现。这一发现强调了在实际应用中,对碰撞/反应池中气体流量和种类的精细调节对于优化质谱分析性能的重要性。 钙的定量与氢气气体流量和同位素选择的关系:图3a和b的研究报告通过使用高色散LA-ICP-TOFMS技术在NIST SRM612和USGS BCR-2G样品中测定钙(Ca)元素含量,并探讨了通过反应池的氢气(H2)流量对测定结果的影响。这项研究选择NIST SRM610和29Si+作为参考样品和内标,因为NIST SRM610与NIST SRM612成分相似,适用于校准,而对于USGS BCR-2G的定量,使用NIST SRM610进行校准则被视为非基质匹配的方法。 研究发现,在没有氢气流的标准条件下,能够测定的Ca浓度主要基于44Ca+的强度,而40Ca+、42Ca+和43Ca+的信号未能检测到高于背景水平。当在NIST SRM612中测定Ca时,发现无论选择哪种同位素,准确度和精确度都遵循相似的趋势,并且在氢气流量低于2.5mL/min时得到提升。这表明低氢气流量有助于提高钙定量的准确度和精确度,而较高的氢气流量则因碰撞引起的信号损失而导致逆向趋势。 此外,2.5mL/min的氢气流量被发现能够实现最准确的Ca测量,基于40Ca强度测得的Ca浓度与GeoReM数据库中的参考值相比,偏差仅为1.3%。在USGS BCR-2G标准样品中,较小的氢气流量同样能够提高Ca定量的准确度和精确度。 然而,Ca离子的强度可能会受到MgO+、MgOH+、AlO+和AlOH+等多原子离子的干扰,尤其是在USGS BCR-2G样品中钙浓度高的情况下。这些干扰主要影响低丰度同位素42Ca+、43Ca+和44Ca+,并且随着H2气体流量增加,其影响也随之增大。研究指出,在NIST SRM和USGS BCR-2G样品中,较高的氢气流量可能有助于减少Ca+/Ar+比率的差异和K+信号的拖尾现象, 但为何在较高H2气体流量下基于40Ca+的定量结果更为准确仍然不明确, 这项研究不仅展示了LA-ICP-TOFMS技术在测定特定元素含量时的应用潜力,也强调了优化氢气流量在提高测定准确度和精确度中的重要性。通过调整反应池中的氢气流量,可以有效地减少多原子离子的干扰,从而实现更准确和精确的元素定量分析。 在2.5mL/min的氢气流量下,研究对NIST SRM612和USGS BCR-2G样品中多种元素的定量能力进行了测试。选择这一氢气流量是基于它能够有效平衡背景信号的衰减和由于碰撞引起的信号损失。结果表明,在没有氢气流量的标准条件下与2.5mL/min氢气流量条件下,大多数元素的定量结果之间没有显著差异。实验数据显示,在无氢气和2.5mL/min氢气条件下,分别有43%和36%的测试元素的浓度落在NIST SRM612的首选值不确定度范围内。同时,大约70%的元素在两种条件下与NIST SRM612的首选值相对偏差小于5%。对于USGS BCR-2G样品,62%(无氢气流)和69%(2.5mL/min氢气流)的元素浓度落在首选值的不确定度范围内,且在这两种实验条件下,大约62%的元素与USGS BCR-2G首选值的相对偏差小于5%。 然而,对于磷(P)、钾(K)和钪(Sc)等某些元素,随着氢气流量的增加,其定量准确性有所降低。这一趋势在两种标准参考材料中均被观察到。分析光谱数据时发现,31P、39K和
  • 流变和拉曼光谱的再次碰撞——UV胶的固化
    流变和拉曼光谱的再次碰撞UV胶的固化流变学已成为UV固化动力学研究中较为常用的表征方法。流变学中的参数—动态弹性模量G'对形态结构极其敏感,能够很好的反映体系在辐射固化交联过程中双键密度和内部结构发生的变化,因此实时监测G'的变化可以从体系结构的角度反映固化程度。UV固化本质是一种化学反应,材料暴露在特定的UV辐射下会引发自由基反应,导致机械结构发生明显变化。因此UV固化还可以通过拉曼光谱进一步监测,这些化学变化将会通过特征峰的生成或降低(缓慢或快速变化)反映在拉曼光谱中。流变仪与拉曼光谱相结合,可以同时获得材料的化学结构和物理性质的信息,将这些信息关联起来以获得在材料加工、反应机理方面更加深入的洞悉。UV固化系统和拉曼光谱仪均可通过安东帕MCR系列流变仪软件进行触发,从而能够同步监测整个UV固化过程中的粘弹性力学行为和光谱数据。流变&拉曼联用Omnicure S1500紫外固化系统,配备5mm光纤。Cora5001拉曼光谱仪,配备特制的联用拉曼探头——HT fiber probe 785。MCR流变仪,使用帕尔贴罩(H-PTD)和25mm石英玻璃平板。UV固化系统和拉曼仪均连接至MCR流仪中,从而UV辐射源和拉曼光谱仪都可以通过流变仪进行自动触发,保障原位测量的同步性。独特接口设计UV源与特制的联用拉曼探头实验结果图1:UV胶固化反应过程中的损耗模量(红色)和储能模量(黑色)变化曲线流变测量的结果如图1所示。从测量结果可以看出,样品最初表现出粘弹性流体响应,其损耗模量(G')大于储能模量(G')。随后,在UV辐射下激发了固化反应,从而可以观察到模量的快速变化。两个模量的变化曲线的交叉点意味着样品从液体主导状态转变为固体主导状态。然而,在5s的UV辐射时间结束后,固化反应继续进行,这可以从模量的持续增加中观测到。图2:950cm-1和1150cm-1的峰强随固化时间的变化图2为两个拉曼特征峰(950 cm-1和1050 cm-1)的峰强变化曲线。所选的这两个特征峰具备一定代表性,因为大多数其他特征峰的行为与其中一个相似。在5s的UV辐射下,两个特征峰都出现了峰强的骤降。在UV辐射结束后,950 cm-1的峰强迅速达到稳定水平,标志着相应基团化学变化的结束;而1050 cm-1的峰强是逐渐下降的,这与之前图1所示的模量逐渐增大相呼应;其余特征峰强度的变化率都处于上述两个特征峰之间。拉曼光谱中的整体化学信号变化与流变性能变化趋势相吻合,两种技术可以相互印证。然而,拉曼光谱中展示的信息非常丰富,不同特征峰的强度变化曲线代表不同化学基团的反应特性,因此,可以获得每一个感兴趣的化学基团的变化信息。拉曼光谱的这一特性,不仅是样品整体流变特性的补充,还为深入了解不同反应基团的特性提供了可能性。实验结论安东帕的流变-拉曼联用设备已被证明对监测复杂的反应机理非常有益。MCR系列流变仪还可以与不同激发波长的Cora5001拉曼光谱仪,以及不同的UV固化系统(不同波长、汞灯、LED光源)相结合,且流变仪可使用多种型号(如珀耳帖或电加热),为各种应用提供最大的灵活性。想要了解完整的本次应用报告,请点击下载。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制