半导体分析仪原理

仪器信息网半导体分析仪原理专题为您提供2024年最新半导体分析仪原理价格报价、厂家品牌的相关信息, 包括半导体分析仪原理参数、型号等,不管是国产,还是进口品牌的半导体分析仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合半导体分析仪原理相关的耗材配件、试剂标物,还有半导体分析仪原理相关的最新资讯、资料,以及半导体分析仪原理相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

半导体分析仪原理相关的仪器

  • SPM600 系列半导体参数分析仪是一款专用于半导体材料光电测试的系统。其功能全面,提供多种重要参数测试。系统集成高精度光谱扫描,光电流扫描以及光响应速率测试。40μm 探测光斑,实现百微米级探测器的绝对光谱响应度测量。超高稳定性光源支持长时间的连续测试,丰富的光源选择以及多层光学光路设计可扩展多路光源,例如超连续白光激光器,皮秒脉冲激光器,半导体激光器,卤素灯,氙灯等,满足不同探测器测试功能的要求。是半导体微纳器件研究的优选。功能:■ 光谱响应度■ 单色光/变功率IV;■ 不同辐照度IT曲线(分辨率200ms)■ 不同偏压下的IT曲线■ LBIC,Mapping■ 线性度测试■ 响应速率测试■ 瞬态光电压(载流 子迁移率)■ 瞬态光电流(载流子扩散长度)光源选项卓立汉光根据样品光谱相应范围选择适合的光源,如EQ 光源,氙灯光源,氙灯溴钨灯复合光源。EQ光源特点:■ 光谱范围宽:190-1700nm宽光谱范围;■ 光源本身发光点小,百微米级别;■ 紫外波段亮度高;■ 寿命长,理论寿命可达9000h;■ 体积小,重量轻;散热好;氙灯光源特点:■ 光谱范围宽:250-1700nm宽光谱范围;■ 光源本身发光点较小,mm级别;■ 总功率大,亮度高;适合紫外-可见-近红外光谱测试;■ 灯泡更换简单,成本低;氙灯卤素灯双光源特点:■ 光谱范围:250-2500nm■ 适合紫外、可见、近红外,且可见、近红外波段光谱平滑■ 灯泡更换简单,成本低。数采选项测试案例
    留言咨询
  • SPM300系列半导体参数测试仪设备概览基于拉曼光谱法的半导体参数测试仪,具有非接触、无损检测、特异性高的优点。可以对半导体材料进行微区分析,空间分辨率< 800nm (典型值),也可以对样品进行扫描从而对整个面进行均匀性分析。设备具有智能化的软件,可对数据进行拟合计算,直接将载流子浓度、晶化率、应力大小或者分布等结果直观的展现给用户。系统稳定,重复性好,可用于实验室检验或者产线监测。① 光路接口盒:内置常用激光器及激光片组,拓展激光器包含自由光及单模光纤输入;② 光路转向控制:光路转向控制可向下或向左,与原子力、低温、探针台等设备连用,可升级振镜选项③ 明视场相机:明视场相机代替目镜④ 显微镜:正置科研级金相显微镜,标配落射式明暗场照明,其它照明方式可升级⑤ 电动位移台:75mm*50mm 行程高精度电动载物台,1μm 定位精度⑥ 光纤共聚焦耦合:光纤共聚焦耦合为可选项,提高空间分辨率⑦ CCD- 狭缝共聚焦耦合:标配CCD- 狭缝耦合方式,可使用光谱仪成像模式,高光通量⑧ 光谱CCD:背照式深耗尽型光谱CCD相机, 200-1100nm 工作波段,峰值QE > 90%⑨ 320mm 光谱仪:F/4.2高光通量影像校正光谱仪, 1*10-5 杂散光抑制比SPM300系列半导体参数测试仪主要应用SPM300系列半导体参数测试仪选型表型号描述SPM300-mini基础款半导体参数分析仪,只含一路532nm 激光器,常规正置显微镜,光谱仪,高精度XYZ 位移台SPM300-SMS532多功能型半导体参数分析仪,含532nm 激光器,常规正置显微镜,光谱仪,高精度XYZ 位移台,可升级耦合最多4 路激光器SPM300-OM532开放式半导体参数测试仪,含532nm 激光器,定制开放式显微镜,光谱仪,高精度XYZ 位移台,可升级耦合最多4 路激光器系统参数项目详细技术规格光源标配532nm,100mW 激光器,其他激光可选,最多耦合4 路激光,可电动切换,功率可调节光谱仪320mm 焦距影像校正光谱仪,光谱范围90-9000cm-1,光谱分辨率2cm-1空间分辨率1μm样品扫描范围标配75mm*50mm,最大300mm*300mm显微镜正置显微镜,明场或者暗场观察,带10X,50X,100X 三颗物镜;开放式显微镜可选载流子浓度分析测试范围测试范围1017 ~ 1020 cm-3,重复性误差5%应力测试可直观给出应力属性(拉力/ 张力),针对特种样品,可直接计算应力大小,应力均匀性分析(需额外配置电动位移台), 应力解析精度0.002cm-1晶化率测试可自动分峰,自动拟合,自动计算出晶化率,并且自动计算晶粒大小和应力大小测试案例举例
    留言咨询
  • 半导体参数分析仪概述:SPA-6100半导体参数分析仪是武汉普赛斯自主研发、精益打造的一款半导体电学特性测试系统,具有高精度、宽测量范围、快速灵活、兼容性强等优势。产品可以同时支持DC电流-电压(I-V)、电容-电压(C-V)以及高流高压下脉冲式I-V特性的测试,旨在帮助加快前沿材料研究、半导体芯片器件设计以及先进工艺的开发,具有桌越的测量效率与可靠性。基于模块化的体系结构设计,SPA-6100半导体参数分析仪可以帮助用户根据测试需要,灵活选配测量单元进行升级。产品支持Z高1200V电压、100A大电流、1pA小电流分辨率的测量,同时检测10kHz至1MHz范围内的多频AC电容测量。SPA-6100半导体参数分析仪搭载普赛斯自主开发的专用半导体参数测试软件,支持交互式手动操作或结合探针台的自动操作,能够从测量设置、执行、结果分析到数据管理的整个过程,实现高效和可重复的器件表征 也可与高低温箱、温控模块等搭配使用,满足高低温测试需求。产品特点:30μV-1200V;1pA-100A宽量程测试能力;测量精度高,全量程下可达0.03%精度;内置标准器件测试程序,直接调用测试简便;自动实时参数提取,数据绘图、分析函数;在CV和IV测量之间快速切换而无需重新布线;提供灵活的夹具定制方案,兼容性强;免费提供上位机软件及SCPI指令集;典型应用:纳米、柔性等材料特性分析;二极管;MOSFET、BJT、晶体管、IGBT;第三代半导体材料/器件;有机OFET器件;LED、OLED、光电器件;半导体电阻式等传感器;EEL、VCSEL、PD、APD等激光二极管;电阻率系数和霍尔效应测量;太阳能电池;非易失性存储设备;失效分析;系统技术规格半导体电学特性测试系统CV+IV测试仪订货信息模块化构成:低压直流I-V源测量单元-精度0.1%或0.03%可选-直流工作模式-Z大电压300V,Z大直流1A或3A可选-最小电流分辨率10pA-四象限工作区间-支持二线,四线制测试模式-支持GUARD保护低压脉冲I-V源测量单元-精度0.1%或0.03%可选-直流、脉冲工作模式-Z大电压300V,Z大直流1A或3A可选,Z大脉冲电流10A或30A可选-最小电流分辨率1pA-最小脉宽200μs-四象限工作区间.-支持二线,四线制测试模式-支持GUARD保护高压I-V源测量单元-精度0.1% -Z大电压1200V,Z大直流100mA-最小电流分辨率100pA-一、三象限工作区间-支持二线、四线制测试模式-支持GUARD保护高流I-V源测量单元-精度0.1%-直流、脉冲工作模式.-Z大电压100V,Z大直流30A,Z大脉冲电流100A-最小电流分辨率10pA-最小脉宽80μs-四象限工作区间支持二线、四线制测试模式-支持GUARD保护电压电容C-V测量单元-基本精度0.5%-测试频率10hZ~1MHz,可选配至10MHz-支持高压DC偏置,Z大偏置电压1200V-多功能AC性能测试,C-V、 C-f、 C-t硬件指标-IV测试半导体材料以及器件的参数表征,往往包括电特性参数测试。绝大多数半导体材料以及器件的参数测试,都包括电流-电压(I-V)测量。源测量单元(SMU),具有四象限,多量程,支持四线测量等功能,可用于输出与检测高精度、微弱电信号,是半导体|-V特性测试的重要工具之-。SPA-6100配置有多种不同规格的SMU,如低压直流SMU,低压脉冲SMU,大电流SMU。用户可根据测试需求灵活配置不同规格,以及不同数量的搭配,实现测试测试效率与开支的平衡。灵活可定制化的夹具方案 针对市面上不同封装类型的半导体器件产品,普赛斯提供整套夹具解决方案。夹具具有低阻抗、安装简单、种类丰富等特点,可用于二极管、三极管、场效应晶体管、IGBT、SiC MOS、GaN等单管,模组类产品的测试 也可与探针台连接,实现晶圆级芯片测试。探针台连接示意图
    留言咨询

半导体分析仪原理相关的方案

半导体分析仪原理相关的论坛

  • 【分享】气体分析仪的各种分析原理

    测量气体成分的流程分析仪表。在很多生产过程中,特别是在存在化学反应的生产过程中,仅仅根据温度、压力、流量等物理参数进行自动控制常常是不够的。例如,在合成氨生产中,仅控制合成塔的温度、压力、流量并不能保证最高的合成率,必须同时分析进气的化学成分,控制氢气和氮气的最佳比例,才能获得较高的生产率。又如在锅炉的燃烧控制中除需控制燃料与助燃空气的比例外,还必须在线分析烟道的化学成分,据此改变助燃空气的供给量,使炉子获得最高的热效率。此外,在排出有害气体的工厂中,也必须采用气体分析仪对有害气体进行连续监视,以防止危害工人健康或污染环境或引起爆炸等恶性事故。由于被分析气体的千差万别和分析原理的多种多样,气体分析仪的种类繁多。常用的有热导式气体分析仪、电化学式气体分析仪和红外线吸收式分析仪等。1、热导式气体分析仪  一种物理类的气体分析仪表。它根据不同气体具有不同热传导能力的原理,通过测定混合气体导热系数来推算其中某些组分的含量。这种分析仪表简单可靠,适用的气体种类较多,是一种基本的分析仪表。但直接测量气体的导热系数比较困难,所以实际上常把气体导热系数的变化转换为电阻的变化,再用电桥来测定。热导式气体分析仪的热敏元件主要有半导体敏感元件和金属电阻丝两类。半导体敏感元件体积小、热惯性小,电阻温度系数大,所以灵敏度高,时间滞后小。在铂线圈上烧结珠形金属氧化物作为敏感元件,再在内电阻、发热量均相等的同样铂线圈上绕结对气体无反应的材料作为补偿用元件(图1)。这两种元件作为两臂构成电桥电路,即是测量回路。半导体金属氧化物敏感元件吸附被测气体时,电导率和热导率即发生变化,元件的散热状态也随之变化。元件温度变化使铂线圈的电阻变化,电桥遂有一不平衡电压输出,据此可检测气体的浓度。热导式气体分析仪的应用范围很广,除通常用来分析氢气、氨气、二氧化碳、二氧化硫和低浓度可燃性气体含量外,还可作为色谱分析仪中的检测器用以分析其他成分。

  • 【资料】气体检测仪与分析仪的原理和区别

    气体检测仪是一种气体泄露浓度检测的仪器仪表工具,主要是指便携式/手持式的,相对比较简易。常用的传感器原理有催化燃烧、电化学、PID光离子化、半导体技术。 气体分析仪是测量气体成分的流程分析仪表。在很多生产过程中,特别是在存在化学反应的生产过程中,仅仅根据温度、压力、流量等物理参数进行自动控制常常是不够的。例如,在合成氨生产中,仅控制合成塔的温度、压力、流量并不能保证最高的合成率,必须同时分析进气的化学成分,控制氢气和氮气的最佳比例,才能获得较高的生产率。又如在锅炉的燃烧控制中除需控制燃料与助燃空气的比例外,还必须在线分析烟道的化学成分,据此改变助燃空气的供给量,使炉子获得最高的热效率。此外,在排出有害气体的工厂中,也必须采用气体分析仪对有害气体进行连续监视,以防止危害工人健康或污染环境或引起爆炸等恶性事故。由于被分析气体的千差万别和分析原理的多种多样,气体分析仪的种类繁多。常用的有热导式气体分析仪、电化学式气体分析仪和红外线吸收式分析仪等。

  • 半导体晶片温度控制中制冷原理说明

    半导体晶片温度控制是目前针对半导体行业所推出的控温设备,无锡冠亚半导体晶片温度控制采用全密闭循环系统进行制冷加热,制冷加热的温度不同,型号也是不同,同时,在选择的时候,也需要注意制冷原理。  半导体晶片温度控制制冷系统运行中是使用某种工质的状态转变,从较低温度的热源汲取必需的热量Q0,通过一个消费功W的积蓄过程,向较热带度的热源发出热量Qk。在这一过程中,由能量守恒取 Qk=Q0 + W。为了实现半导体晶片温度控制能量迁移,之初强制有使制冷剂能达到比低温环境介质更低的温度的过程,并连续不断地从被冷却物体汲取热量,在制冷技巧的界线内,实现这一过程有下述几种根基步骤:相变制冷:使用液体在低温下的蒸发过程或固体在低温下的消溶或升华过程向被冷却物体汲取热量。平常空调器都是这种制冷步骤。气体膨胀制冷:高压气体经绝热膨胀后可达到较低的温度,令低压气体复热可以制冷。气体涡流制冷:高压气体通过涡流管膨胀后可以分别为热、冷两股气流,使用凉气流的复热过程可以制冷。热电制冷:令直流电通过半导体热电堆,可以在一端发生冷效应,在另一端发生热效应。  半导体晶片温度控制在运行过程中,高温时没有导热介质蒸发出来,而且不需要加压的情况下就可以实现-80~190度、-70~220度、-88~170度、-55~250度、-30~300度连续控温。半导体晶片温度控制的原理和功能对使用人员来说有诸多优势: 因为只有膨胀腔体内的导热介质才和空气中的氧气接触(而且膨胀箱的温度在常温到60度之间),可以达到降低导热介质被氧化和吸收空气中水分的风险。  半导体晶片温度控制中制冷原理上如上所示,用户在操作半导体晶片温度控制的时候,需要注意其制冷的原理,在了解之后更好的运行半导体晶片温度控制。

半导体分析仪原理相关的耗材

  • 半导体致冷器
    半导体致冷器(TE)也叫热电致冷器,是一种热泵,它的优点是没有滑动部件,应用在一些空间受到限制,可靠性要求高,无致冷剂污染的场合。半导体致冷器的工作运转是用直流电流,它既可致冷又可加热,通过改变直流电流的极性来决定在同一致冷器上实现致冷或加热,这个效果的产生就是通过热电的原理。 半导体致冷器是利用半导体材料的珀尔帖效应制成的。所谓珀尔帖效应,是指当直流电流通过两种半导体材料组成的电偶时,其一端吸热,一端放热的现象。重掺杂的N型和P型的碲化铋主要用作TEC的半导体材料,碲化铋元件采用电串联,并且是并行发热。TEC包括一些P型和N型对(组),它们通过电极连在一起,并且夹在两个陶瓷电极之间;TEC组件每一侧的陶瓷电极的作用是防止由TEC电路引起的激光器管芯的短路;TEC的控制温度可达30℃-40℃,当有电流从TEC流过时,电流产生的热量会从TEC的一侧传到另一侧,在TEC上产生&Prime 热&Prime 侧和&Prime 冷&Prime 侧,这就是TEC的加热与致冷原理。是致冷还是加热,以及致冷、加热的速率,由通过它的电流方向和大小来决定。在实际应用中,TEC通常安装在热沉和组件外壳之间。其冷侧与激光器芯接触,起到致冷作用,它的热侧与散热片接触,把热量散到外部去,这也只是一种最普遍的情况。在对激光器工作温度的稳定性要求较高的场所,一般都采用双向温控,即在常温和高温时对激光器制冷,在低温环境中则制热;半导体致冷器在电流方向逆转时,原来的冷端和热端的位置就互换;则贴近激光器芯的一则就变成了热端,对激光器芯加热。
  • 佰氟达半导体清洗设备配件耐高温PFA阀门
    半导体清洗设备配件中的耐高温PFA阀门,无疑是保障整个清洗流程稳定运行的关键一环。PFA阀门,以其卓越的高温耐受性能,成为半导体清洗设备中不可或缺的组成部分。在半导体制造过程中,清洗环节对设备配件的性能要求极高,特别是在高温环境下,阀门必须能够保持稳定的工作状态,确保清洗效果达到预期。  PFA阀门以其独特的材料特性,在高温环境下展现出优异的性能。PFA,即全氟烷氧基聚合物,具有出色的耐高温、耐腐蚀和耐磨损等特性,使得阀门在高温、高压、强腐蚀的半导体清洗环境中能够长期稳定运行。此外,PFA阀门还具有良好的密封性能,能够有效防止清洗液泄漏,确保清洗过程的安全性和可靠性。  在半导体清洗设备中,耐高温PFA阀门的应用广泛。它不仅能够满足设备对高温清洗的需求,还能确保清洗过程中不会产生有害物质,从而保障半导体产品的质量和安全。同时,PFA阀门的维护成本相对较低,使用寿命长,有助于降低设备运行成本,提高生产效率。  总之,半导体清洗设备配件中的耐高温PFA阀门,以其卓越的性能和广泛的应用领域,为半导体制造业的发展提供了有力保障。随着半导体技术的不断进步和清洗工艺的日益完善,耐高温PFA阀门将在未来的半导体制造过程中发挥更加重要的作用,推动整个行业的持续发展和创新。
  • 半导体清洗设备配件PFA扩口直通接头
    半导体清洗设备配件中的PFA扩口直通接头,无疑是现代高科技产业中不可或缺的一环。其优异的性能与广泛的应用,使得它在半导体制造过程中占据了举足轻重的地位。  PFA扩口直通接头以其独特的材料特性和设计优势,满足了半导体清洗设备对高精度、高洁净度和高耐腐蚀性的严苛要求。它的扩口设计不仅提高了接头的连接强度,还增强了其密封性能,有效防止了清洗液的泄漏。而直通式的结构则减少了流体在管道中的阻力,提高了清洗效率。  此外,PFA材料本身具有极佳的化学稳定性和耐高温性,能够抵抗各种强酸、强碱和有机溶剂的侵蚀,保证了接头在长期使用过程中的稳定性和可靠性。这种材料还具有良好的自润滑性,降低了接头在运转过程中的摩擦系数,延长了使用寿命。  在半导体清洗设备的运行过程中,PFA扩口直通接头发挥着至关重要的作用。它不仅能够确保清洗液的顺畅流通,还能够有效防止杂质和颗粒物的进入,从而保证了半导体器件的清洗质量和生产效率。  随着半导体技术的不断发展,对清洗设备及其配件的要求也越来越高。PFA扩口直通接头作为半导体清洗设备中的重要配件,其性能的提升和创新将直接影响到整个半导体产业的发展。因此,我们应该继续加大对该领域的研发力度,推动PFA扩口直通接头技术的不断进步,为半导体产业的繁荣发展贡献力量。

半导体分析仪原理相关的资料

半导体分析仪原理相关的资讯

  • 【有奖直播课】TOC分析仪和硼分析仪在半导体行业中的应用
    小碳小碳又和大家见面啦!我们的#小碳微课堂#第五期将于8月28日(本周五)开课。本期直播课,我们还将从报名观众中随机抽取10名幸运儿,送出一份小礼品,快来报名吧!(报名时,请准确填写您的邮寄地址。获奖名单将于9月初在微信公众号中公布,敬请留意。)TOC分析仪和硼分析仪在微电子/半导体行业中的应用时间:2020年8月28日周五,14:00形式:网络直播课注册报名后可随时回看费用:免费微电子/半导体超纯水系统旨在降低水中的潜在污染物,这些污染物可能造成电子器件细微缺陷,从而降低产品质量和生产率。芯片尺寸的缩小和线宽的降低,对超纯水系统提出了更高要求,甚至需要将有机污染物控制到小于1 ppb。而为了准确检测如此微量的指标,要求所用的分析技术能够检出所有有机物组分,并且读值不受背景电导、pH和溶氧值变化的影响。总有机碳(TOC)分析仪为半导体超纯水检测需求提供了一种量化指标,可用于检测污染物,并适用于故障排除,或改进水系统和特种化学品的处理过程。此次直播课程中,我们将与您分享以下议题,欢迎收看:●微电子/半导体行业超纯水系统中TOC监测的重要性●TOC检测方法评审和Sievers® 分析仪的解决方案●TOC应用在超纯水系统中的监测点和目的●硼分析仪的介绍●TOC对废水排放和生产化学品溶液纯度的监测讲师介绍王延弘项目渠道经理Sievers分析仪王延弘经理是苏伊士水务技术与方案-Sievers分析仪的项目渠道经理,具有20余年水处理工艺系统设计的工作经验,熟悉制药和半导体用水处理系统中的预处理、反渗透、EDI、TOC等关键设备和仪器的性能,具有9年TOC分析仪的操作、使用和维护经验。报名方式扫下列二维码,进行会议注册,注册成功后,直播时登录直播链接,验证注册时的手机号,即可收看课程。若您未收到微信提醒,直播时可通过苏伊士Sievers分析仪的微信公众号菜单:最新资讯-小碳微课堂进入课程直播。如您当天无法收看直播,课程结束后您也可以登录直播链接,验证注册时的手机号,收看课程回放。
  • 十五种分析仪器助力半导体工艺检测
    p style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 半导体器件生产中,从半导体单晶片到制成最终成品,须经历数十甚至上百道工序。为了确保产品性能合格、稳定可靠,并有高的成品率,根据各种产品的生产情况,对所有工艺步骤都要有严格的具体要求。因而,在生产过程中必须建立相应的系统和精确的监控措施,首先要从半导体工艺检测着手。 /span /p p style=" text-align: justify text-indent: 2em " 半导体工艺检测的项目繁多,内容广泛,方法多种多样,可粗分为两类。第一类是半导体晶片在经历每步工艺加工前后或加工过程中进行的检测,也就是半导体器件和集成电路的半成品或成品的检测。第二类是对半导体单晶片以外的原材料、辅助材料、生产环境、工艺设备、工具、掩模版和其他工艺条件所进行的检测。第一类工艺检测主要是对工艺过程中半导体体内、表面和附加其上的介质膜、金属膜、多晶硅等结构的特性进行物理、化学和电学等性质的测定。其中许多检测方法是半导体工艺所特有的。 /p p style=" text-align: justify text-indent: 2em " 工艺检测的目的不只是搜集数据,更重要的是要把不断产生的大量检测数据及时整理分析,不断揭示生产过程中存在的问题,向工艺控制反馈,使之不致偏离正常的控制条件。因而对大量检测数据的科学管理,保证其能够得到准确和及时的处理,是半导体工艺检测中的一项重要关键。同时半导体检测也涉及大量的科学仪器,针对于此,对一些半导体检测的仪器进行介绍。 /p h3 style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/zc/537.html" target=" _self" 椭偏仪 /a /h3 p style=" text-align: justify text-indent: 2em " 椭偏仪是一种用于探测薄膜厚度、光学常数以及材料微结构的光学测量仪器。由于测量精度高,适用于超薄膜,与样品非接触,对样品没有破坏且不需要真空,使得椭偏仪成为一种极具吸引力的测量仪器。 /p p style=" text-align: justify text-indent: 2em " 目前,椭偏仪是测量透明、半透明薄膜厚度的主流方法,它采用偏振光源发射激光,当光在样本中发生反射时,会产生椭圆的偏振。椭偏仪通过测量反射得到的椭圆偏振,并结合已知的输入值精确计算出薄膜的厚度,是一种非破坏性、非接触的光学薄膜厚度测试技术。在晶圆加工中的注入、刻蚀和平坦化等一些需要实时测试的加工步骤内,椭偏仪可以直接被集成到工艺设备上,以此确定工艺中膜厚的加工终点。 /p h3 style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/zc/1677.html" target=" _self" span style=" text-indent: 2em " 四探针测试仪 /span /a /h3 p style=" text-align: justify text-indent: 2em " 四探针测试仪是用来测量半导体材料(主要是硅单晶、锗单晶、硅片)电阻率,以及扩散层、外延层、ITO导电箔膜、导电橡胶方块电阻等的测量仪器。 /p p style=" text-align: justify text-indent: 2em " 测量半导体电阻率方法的测量方法主要根据掺杂水平的高低,半导体材料的电阻率可能很高。有多种因素会使测量这些材料的电阻率的任务复杂化,包括与材料实现良好接触的问题。特殊的探头设计用于测量半导体晶片和半导体棒的电阻率。这些探头通常由诸如钨的硬质金属制成,并接地到探头。在这种情况下,接触电阻很高,必须使用四点共线探针或四线绝缘探针。两个探针提供恒定电流,另外两个探针测量整个样品一部分的电压降。通过使用所测电阻的几何尺寸来计算电阻率。 /p h3 style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 薄膜应力测试仪 /span br/ /h3 p style=" text-align: justify text-indent: 2em " 薄膜应力作为半导体制程、MEMS微纳加工、光电薄膜镀膜过程中性能测试的必检项,其测试的精度、重复性、效率等因素为业界所重点关注。对应产品目前业界有两种主流技术流派:1)以美国FSM、KLA、TOHO为代表的双激光波长扫描技术(线扫模式),尽管是上世纪90年代技术,但由于其简单高效,适合常规Fab制程中进行快速QC,至今仍广泛应用于相关工厂。2)以美国kSA为代表的MOS激光点阵技术,抗环境振动干扰,精于局部区域内应力测量,这在研究局部薄膜应力均匀分布具有特定意义。线扫模式主要测量晶圆薄膜整体平均应力,监控工序工艺的重复性有意义。但在监控或精细分析局部薄膜应力,激光点阵技术具有特殊优势,比如在MEMS压电薄膜的应力和缺陷监控。 /p h3 style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 热波系统 /span br/ /h3 p style=" text-align: justify text-indent: 2em " 热播系统主要用来测量掺杂浓度。热波系统通过测量聚焦在硅片上同一点的两束激光在硅片表面反射率的变化量来计算杂质粒子的注入浓度。在该系统内,一束激光通过氩气激光器产生加热的波使硅片表面温度升高,热硅片会导致另一束氦氖激光的反射系数发生变化,这一变化量正比于硅片中由杂质粒子注入而产生的晶体缺陷点的数目。由此,测量杂质粒子浓度的热波信号探测器可以将晶格缺陷的数目与掺杂浓度等注入条件联系起来,描述离子注入工艺后薄膜内杂质的浓度数值。 /p h3 style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " ECV设备 /span /h3 p style=" text-align: justify text-indent: 2em " ECV又名扩散浓度测试仪,结深测试仪等,即电化学CV法测扩散后的载流子浓度分布。电化学ECV可以用于太阳能电池、LED等产业,是化合物半导体材料研究或开发的主要工具之一。电化学ECV主要用于半导体材料的研究及开发,其原理是使用电化学电容-电压法来测量半导体材料的掺杂浓度分布。电化学ECV(CV-Profiler, C-V Profiler)也是分析或发展半导体光-电化学湿法蚀刻(PEC Etching)很好的选择。 /p h3 style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 少子寿命测试仪 /span /h3 p style=" text-align: justify text-indent: 2em " 载流子寿命就是指非平衡载流子的寿命。而非平衡载流子一般也就是非平衡少数载流子(因为只有少数载流子才能注入到半导体内部、并积累起来,多数载流子即使注入进去后也就通过库仑作用而很快地消失了),所以非平衡载流子寿命也就是指非平衡少数载流子寿命,即少数载流子寿命。例如,对n型半导体,非平衡载流子寿命也就是指的是非平衡空穴的寿命。 /p p style=" text-align: justify text-indent: 2em " 少子寿命是半导体材料和器件的重要参数。它直接反映了材料的质量和器件特性。能够准确的得到这个参数,对于半导体器件制造具有重要意义。少子寿命测试仪可以直接获得长硅的质量参数。 /p h3 style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/zc/34.html" target=" _self" 拉曼光谱 /a /h3 p style=" text-align: justify text-indent: 2em " 拉曼光谱是一种散射光谱。拉曼光谱分析法是基于印度科学家C.V.Raman在1928年所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息并应用于分子结构研究的一种分析方法。 /p p style=" text-align: justify text-indent: 2em " 拉曼光谱在材料科学中是物质结构研究的有力工具,在相组成界面、晶界等课题中可以做很多工作。半导体材料研究中,拉曼光谱可测出经离子注入后的半导体损伤分布,可测出半磁半导体的组分,外延层的质量,外延层混品的组分载流子浓度。 span style=" text-indent: 2em " & nbsp /span /p h3 style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/zc/31.html" target=" _self" 红外光谱仪 /a /h3 p style=" text-align: justify text-indent: 2em " 红外光谱仪是利用物质对不同波长的红外辐射的吸收特性,进行分子结构和化学组成分析的仪器。红外光谱仪通常由光源,单色器,探测器和计算机处理信息系统组成。根据分光装置的不同,分为色散型和干涉型。对色散型双光路光学零位平衡红外分光光度计而言,当样品吸收了一定频率的红外辐射后,分子的振动能级发生跃迁,透过的光束中相应频率的光被减弱,造成参比光路与样品光路相应辐射的强度差,从而得到所测样品的红外光谱。 /p p style=" text-align: justify text-indent: 2em " 红外光谱法操作简单,不破坏样品,使其在半导体分析的应用日趋广泛。半导体材料的红外光谱揭示了晶格吸收、杂质吸收和自由载流子吸收的情况,直接反映了半导体的许多性质,如确定红外透过率和结晶缺陷,监控外延工艺气体组分分布,测载流子浓度,测半导体薄层厚度和衬底表面质量。 /p h3 style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " 二次粒子质谱 /span /h3 p style=" text-align: justify text-indent: 2em " 二次粒子质谱是借助入射粒子的轰击功能,将样品表面原子溅出,由质谱仪测定二次粒子质量,根据质谱峰位的质量数,可以确定二次离子所属的元素和化合物,从而可精确测定表面元素的组成。这是一种常用的表面分析技术。其特点是高灵敏度和高分辨率。 /p p style=" text-align: justify text-indent: 2em " 利用二次离子质谱对掺杂元素的极高灵敏度的特点,对样品的注入条件进行分析,在生产中可以进行离子注入机台的校验,并确定新机台的可以投入生产。同时,二次离子质谱对于CVD沉积工艺的质量监控尤其是硼磷元素的分布和生长比率等方面有不可替代的作用。通过二次离子质谱结果的分析帮助CVD工程师进行生长条件的调节,确定最佳沉积工艺条件。对于杂质污染的分析,可以对样品表面结构和杂质掺杂情况进行详细了解,保证芯片的有源区的洁净生长,对器件的电性质量及可靠性起到至关重要的作用。对掺杂元素退火后的形貌分析研究发现通过改变掺杂元素的深度分布,来保证器件的电学性能达到设计要求。可以帮助LTD进行新工艺的研究对于90nm/65nm/45nm新产品开发起到很大作用。 /p h3 style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " X射线光电子能谱仪 /span br/ /h3 p style=" text-align: justify text-indent: 2em " X射线光电子能谱仪以X射线为激发源。辐射固体表面或气体分子,将原子内壳层电子激发电离成光电子,通过分析样品发射出来的具有特征能量的光电子,进而分析样品的表面元素种类、化学状态和电荷分布等信息,是一种无损表面分析技术。 /p p style=" text-align: justify text-indent: 2em " 这种技术分析范围较宽,原则上可以分析除氢以外的所有元素,但分析深度较浅,大约在25~100 Å 范围,不过其绝对灵敏度高,测量精度可达10 nm左右,主要用于分析表面元素组成和化学状态,原子周围的电子密度,特别是原子价态及表面原子电子云和能级结构。 /p h3 style=" text-align: justify text-indent: 2em " X射线衍射 /h3 p style=" text-align: justify text-indent: 2em " 当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有X射线衍射分析相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关,每种晶体所产生的衍射花样都反映出该晶体内部的原子分配规律。这就是X射线衍射的基本原理。 /p p style=" text-align: justify text-indent: 2em " 半导体制造中的大部分材料是多晶材料,比如互连线和接触孔。XRD能够将多晶材料的一系列特性量化。这其中最重要的特性包括多晶相(镍单硅化物,镍二硅化物),平均晶粒大小,晶体织构,残余应力。 /p h3 style=" text-align: justify text-indent: 2em " 阴极荧光光谱 /h3 p style=" text-align: justify text-indent: 2em " 阴极荧光谱是利用电子束激发半导体样品,将价带电子激发到导带,之后由于导带能量高不稳定,被激发电子又重新跳回价带,并释放出能量E≤Eg(能隙)的特征荧光谱。CL谱是一种无损的分析方法,结合扫描电镜可提供与形貌相关的高空间分辨率光谱结果,是纳米结构和体材料的独特分析工具。利用阴极荧光谱,可以在进行表面形貌分析的同时,研究半导体材料的发光特性,尤其适合于各种半导体量子肼、量子线、量子点等纳米结构的发光性能的研究。 /p p style=" text-align: justify text-indent: 2em " 例如,对于氮化镓单晶,由于阴极萤光显微镜具有高的空间分辨率并且具有无损检测的优点,因此将其应用于位错密度的检测已经是行业内广泛采用的方法。目前也制定了相应的标准。 /p h3 style=" text-align: justify text-indent: 2em " a href=" https://www.instrument.com.cn/zc/1016.html" target=" _self" 轮廓仪 /a /h3 p style=" text-align: justify text-indent: 2em " 轮廓仪是一种两坐标测量仪器,仪器传感器相对被测工件表而作匀速滑行,传感器的触针感受到被测表而的几何变化,在X和Z方向分别采样,并转换成电信号,该电信号经放大和处理,再转换成数字信号储存在计算机系统的存储器中,计算机对原始表而轮廓进行数字滤波,分离掉表而粗糙度成分后再进行计算,测量结果为计算出的符介某种曲线的实际值及其离基准点的坐标,或放大的实际轮廓曲线,测量结果通过显示器输出,也可由打印机输出。 /p p style=" text-align: justify text-indent: 2em " 而利用先进的3D轮廓仪可以实现对硅晶圆的粗糙度检测、晶圆IC的轮廓检测、晶圆IC减薄后的粗糙度检测。 /p h3 style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em font-size: 16px " AOI (自动光学检测) /span br/ /h3 p style=" text-align: justify text-indent: 2em " AOI的中文全称是自动光学检测,是基于光学原理来对焊接生产中遇到的常见缺陷进行检测的设备。AOI是新兴起的一种新型测试技术,但发展迅速,很多厂家都推出了AOI测试设备。当自动检测时,机器通过摄像头自动扫描PCB,采集图像,测试的焊点与数据库中的合格的参数进行比较,经过图像处理,检查出PCB上缺陷,并通过显示器或自动标志把缺陷显示/标示出来,供维修人员修整。 /p p style=" text-align: justify text-indent: 2em " 运用高速高精度视觉处理技术自动检测PCB板上各种不同贴装错误及焊接缺陷。PCB板的范围可从细间距高密度板到低密度大尺寸板,并可提供在线检测方案,以提高生产效率,及焊接质量。通过使用AOI作为减少缺陷的工具,在装配工艺过程的早期查找和消除错误,以实现良好的过程控制。早期发现缺陷将避免将坏板送到随后的装配阶段,AOI将减少修理成本将避免报废不可修理的电路板。 /p h3 style=" text-align: justify text-indent: 2em " span style=" text-indent: 2em " ATE测试机 /span /h3 p style=" text-align: justify text-indent: 2em " 广义上的IC测试设备我们都称为ATE(AutomaticTest Equipment),一般由大量的测试机能集合在一起,由电脑控制来测试半导体芯片的功能性,这里面包含了软件和硬件的结合。 /p p style=" text-align: justify text-indent: 2em " 在元器件的工艺流程中,根据工艺的需要,存在着各种需要测试的环节。目的是为了筛选残次品,防止进入下一道的工序,减少下一道工序中的冗余的制造费用。这些环节需要通过各种物理参数来把握,这些参数可以是现实物理世界中的光,电,波,力学等各种参量,但是,目前大多数常见的是电子信号的居多。ATE设计工程师们要考虑的最多的,还是电子部分的参数比如,时间,相位,电压电流,等等基本的物理参数。就是电子学所说的,信号处理。 /p p style=" text-align: justify text-indent: 2em " 此外,原子力显微镜、俄歇电子能谱、电感耦合等离子体质谱仪、X光荧光分析、气相色谱等都可以用于半导体检测。而随着半导体制程工艺的进步,工艺过程中微小的沾污、晶格缺陷等都可能导致电路的失效等,半导体的工艺检测也凸显的越来越重要。 /p
  • 分析仪器助力半导体腾飞——“半导体材料及器件研究与应用进展”主题网络研讨会成功举办
    p    span style=" font-family: & quot times new roman& quot " strong 2018年6月12日,“半导体材料及器件研究与应用进展”主题网络研讨会在仪器信息网“网络讲堂”栏目成功举办。本次会议旨在为全国在半导体及器件领域或有意在本领域从事研发、教学、生产的科技人员提供一个学术与技术交流的平台,以促进我国半导体材料及器件领域的科技创新和产业发展。 /strong /span /p p span style=" font-family: & quot times new roman& quot "   半导体材料(semiconductor material)是一类具有半导体性能、可用来制作半导体器件和集成电路的电子材料。近年来半导体材料迅猛发展,特别是宽禁带化合物半导体在材料生长、器件与电路设计、制造工艺及其应用等方面具有最新进展。 /span /p p span style=" font-family: & quot times new roman& quot "   本次会议邀请了来自 span style=" font-family: 宋体, SimSun color: rgb(255, 0, 0) " 华进半导体、赛默飞、雷尼绍、HORIBA、牛津、华东师范大学 /span 六家机构从事半导体研究及应用的专家学者,对目前科学仪器在半导体应用领域的研究进展进行了介绍了。各项报告内容简介如下: /span /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/9f4a0912-662e-44eb-a670-f31943137df6.jpg" title=" 先进封装工艺与可靠性-刘海洋.jpg" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / /p p span style=" font-family: & quot times new roman& quot "    span style=" font-family: 宋体, SimSun color: rgb(31, 73, 125) " i 华进半导体研发部高级工程师刘海燕介绍了数种半导体材料与部件的封装工艺及其各自特点,着重讲解了目前处于前沿领域的扇出型封装工艺,代表的类型有eWLB、INFO POP、大板级。华进半导体目前正在开发晶圆级、大板级扇出封装技术,现已制备出部分样品,并申请了相关专利。此外还补充介绍了Low k芯片封装工艺。华进公司的主要业务包括设计仿真、封装工艺、测试验证、技术转移等领域。 /i /span /span /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/460a9fdb-85d5-4566-a742-3dbbc89e87dd.jpg" title=" ICP-MS在半导体行业原材料及高纯化学品分析中的应用-朱中正.jpg" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / /p p span style=" font-family: & quot times new roman& quot "   span style=" font-family: 宋体, SimSun color: rgb(31, 73, 125) " i  赛默飞的应用工程师朱中正介绍了ICP MS(电感耦合等离子体质谱仪)在半导体行业的应用和最新进展。半导体行业中,对痕量金属元素进行常规且准确的分析是十分重要的工作。随着半导体器件尺寸的不断缩小,杂质的存在对其性能的影响逐渐增加。报告重点介绍了赛默飞公司的四级杆ICP-MS和SQ-ICP-MS的结构、工作机理、主要优势以及局限性。 /i /span /span /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/776571c0-f293-46a7-b115-c43a17856c0f.jpg" title=" 雷尼绍拉曼光谱技术在半导体领域的一些应用-王志芳.jpg" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / /p p span style=" font-family: & quot times new roman& quot "    i span style=" font-family: 宋体, SimSun color: rgb(31, 73, 125) " 雷尼绍的高级应用工程师王志芳介绍了雷尼绍公司的拉曼光谱在半导体领域的一些应用工作。她首先为观众进行了拉曼光谱基础知识的讲解,拉曼光谱具有无损无创、原位检测、快速简便的使用特点,可应用于材料科学、生命科学、分析科学等多个领域。在半导体领域,拉曼光谱可对SiC、GaN、MoS sub 2 /sub 等半导体材料进行性能表征,可检测的性能特征有:晶型分布鉴定、应力表征缺陷分析、鉴定和发现污染物、电子迁移率分布、块材生长过程等。 /span /i /span /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/d979950b-1148-45f7-8de4-41a3357cc646.jpg" title=" 光谱分析在半导体材料领域的应用-孙正飞.jpg" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / /p p span style=" font-family: & quot times new roman& quot "   i span style=" font-family: 宋体, SimSun color: rgb(31, 73, 125) "  HORIBA公司仪器事业部的应用工程师孙正飞分享了光谱分析技术在半导体材料领域的应用,主要应用的分析手段有光致发光光谱、拉曼光谱、辉光放电GD、椭偏仪TF,并着重介绍了前两者的工作机理和应用方向。光致发光光谱可测定半导体材料的组分、识别其中的掺杂元素、测试材料/器件的发光效率、研究位错缺陷 拉曼光谱可分析半导体化学组成、结构、构象、形态、浓度、应力、温度、结晶度等特征。 /span /i /span /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/563d8427-33a1-40e8-ab1e-751277616320.jpg" title=" 能谱及EBSD在半导体行业中的应用-马岚.pptx.jpg" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / /p p span style=" font-family: & quot times new roman& quot "    span style=" font-family: 宋体, SimSun color: rgb(31, 73, 125) " i 牛津仪器纳米分析部的应用科学家马岚介绍了EDS能谱和EBSD(电子背散射衍射Electron Backscattered Diffraction)在半导体行业的应用。SEM-EDS可对样品进行成分检测、定性分析。针对扫描电镜及有窗能谱测试结果不准确的问题,提出了建议解决办法,通过对三种不同样品图像结果的分析,得出适当降低工作电压可提高电镜和能谱的空间分辨率。鉴于有窗能谱对10nm以下尺度空间分辨率的局限性,有窗能谱Extreme应运而生,在低电压下具有优良的表现。EBSD目前在半导体相关行业的应用还处于起步阶段,但由于其技术优势,会越来越多的应用在半导体的研发当中。可用于观测样品中晶粒的取向。 /i /span /span /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/b562f762-930a-494d-bec6-5ffda980fba0.jpg" title=" 相变存储器及存储材料-成岩.jpg" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / /p p span style=" font-family: & quot times new roman& quot "    i span style=" font-family: 宋体, SimSun color: rgb(31, 73, 125) " 华东师范大学电镜中心的成岩老师向观众分享了半导体存储领域的新秀—相变存储器,介绍了其发展、结构、原理、材料等研究内容。DRAM和Flash占据了存储器市场95%以上的份额,旧的存储器存在一定的性能缺陷以及存储速度和存储性能之间的矛盾,开发新型存储架构势在必行。IBM开发的SCM(Storage Class Memory)使用高速、非易失性、字节可访问、存储密度高的新型存储级内存介质构建外部大容量存储器,为计算机系统延续了数十年的内外存架构提供了新的选择,应用相变存储技术的PCRAM将高速、随机访问和非易失在同一存储介质上实现。透射电子显微镜可应用于对相变存储材料Ge sub 2 /sub Sb sub 2 /sub Te sub 5 /sub 的结构进行观测,发现其具有两级相变过程,可由非晶转变为面心立方结构,再转变为六方相结构。 /span /i /span /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201806/insimg/0881776f-607b-4fdd-8408-b0ca4a572b4e.jpg" title=" 赞助厂商.png" / /p p style=" text-align: center " strong span style=" font-family: & quot times new roman& quot " 赞助厂商 /span /strong /p p span style=" font-family: & quot times new roman& quot "   每场报告结束后,观众对报告内容踊跃提问和发言,老师也对观众们提出的部分问题进行了答疑,会议为关注和研究半导体材料应用的工作者们提供了一个交流和学习的良好平台。 /span /p

半导体分析仪原理相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制