基因测序仪工作原理

仪器信息网基因测序仪工作原理专题为您提供2024年最新基因测序仪工作原理价格报价、厂家品牌的相关信息, 包括基因测序仪工作原理参数、型号等,不管是国产,还是进口品牌的基因测序仪工作原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合基因测序仪工作原理相关的耗材配件、试剂标物,还有基因测序仪工作原理相关的最新资讯、资料,以及基因测序仪工作原理相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

基因测序仪工作原理相关的仪器

  • 日立DS3000紧凑型基因分析仪 上世纪90年代初,三大科学计划之一的 “人类基因组计划”启动,并于2001年完成了人类基因组草图,而这一伟大工程,正是基于“Sanger法”的DNA测序技术。 随着科学技术的不断发展,一代测序受检测效率的限制,无法应对大量基因组测序的需要,因此二代测序、三代测序技术,甚至四代高通量测序技术不断涌现。但一代测序因其极高的准确率,直到今天仍然在科研、法医、疾控、食药及临床领域等广泛使用,也是高通量测序验证过程中的重要环节,因此,被称为基因检测的金标准。制药,食品,科研等研究机构均需要通过测序来进行基因分析,为了满足该需求,日立研发了紧凑型基因分析仪“DS3000”,现已全新上市。 日立DS3000秉承日立高新多年来研究开发的毛细管技术与激光辐射技术,作为小型CE测序仪不仅外形“紧凑”,还实现了“高性能”及“高速处理”,可轻松完成片段与测序分析。此外,本产品还采用了环境友好型设计,通过减少在产品使用时排出的CO2排放量,为客户提供可降低环境负荷的产品。DS3000采用4通道毛细管,一次性可处理32个样本,可同时进行6色荧光检测。支持短串联重复序列分析、微卫星不稳定性检测、突变分析和测序分析等用途。 产品特点:1. 操作简便-结构紧凑&触摸屏设计设备采用GUI的触摸屏显示设计,宽400 mm×长600 mm×高600 mm,结构紧凑,节省空间。触摸屏采用扁平化设计,界面布局直观,加强操作的便捷与实用性。 -卡槽式包装耗材耗材包装采用卡槽式设计,安装简便。-流程高效1. 简化的操作流程,安装方法和步骤说明清晰易懂,无论是初次使用仪器的新手,还是不定期使用仪器的用户,均可轻松完成操作。 2. 配备远程监控系统:DS3000配备远程监控系统,支持“远程设备访问”,可以在Web端监测设备状态,设置检测条件,显示分析结果及生成报告等。进一步提升了操作的便利性,实现高效的工作流程。3. 方便普适,用户可使用任何电脑:可使用用户端网络及电脑输出报告,进行二次解析等。 2. 系统智能-智能耗材管理耗材使用情况实时监控,根据参数,系统能够自动计算出耗材剩余使用次数,提高耗材管理效率。-检测结果智能判断校准检测通过波形及数值表现每道毛细管的信号强度,样本检测根据质量参数设置,自动判断检测结果合格与否,一目了然。 3. 性能优异-创新无泵注胶系统——无需清洗泵,无需排气泡DS3000 采用无泵注胶系统,并成功研发出可移动密封式注射型聚合物,经久耐用,在填充聚合物时无需排气泡,避免了不必要的浪费,同时免除了以往的清洗步骤,有助于缩短维护时间并降低成本。由此可降低用户维修频率,操作性能得到极大提升。 -创新设计光源——使用寿命更长DS3000采用全新设计的激光二极管光源 (LD光源),受模拟脉冲信号控制,DS3000仅在检测时打开光源,与以往光源相比,延长了实际亮灯时间。 日立DS3000基因分析仪作为一款小型的集成化台式DNA分析仪,“紧凑”而“高效”,可以帮助生命科学专家在各种规模实验室进行Sanger测序和DNA片段分析工作。 (此产品仅供科研使用)
    留言咨询
  • SOLiD&trade 5500测序系统适合每位研究人员的按测序通道计费的测序5500 系列基因分析系统 &mdash &mdash 可扩展且精确的新一代测序系统。5500 系列基因分析系统以每个测序通道为基础,无论是一块还是两块 FlowChip,每块 FlowChip 都有可编址且可灵活配置的通道,从而可支持广泛的应用。超精确检测模块 (ECC)进一步提高了这种已经领先行业的连接型测序的准确性。主要优点:► 即时测序 可立即测序,无需等待,对于未使用的测序芯片通道,不会造成无谓的试剂浪费► 经济高效的测序,可个性化配置的测序通道 在符合您资金要求的情况下,同时运行各种测序应用► 出众的低频变异检测,适用于全外显子组测序或定向重测序 利用高达 99.99% 的行业领先的测序准确性,在疾病研究中实现低频变异的检测► 为您的 RNA 应用带来重复性、可靠性和高品质 可信赖的 Ambion 产品、实验方案和无与伦比的准确性► 在多重样本分析中,使用多达 96 个条形码,实现可靠性和一致性 利用稳定的操作流程和达到最佳平衡的条形码实现经济高效的多重样本分析► 利用最佳分析解决方案,提高工作效率和自由度 利用全面的数据分析解决方案,提升您的研究成果Life Technologies 始终致力于不断简化测序流程,不断改善 SOLiD&trade 系统流程中耗费劳力的步骤,并使其自动化。这些解决方案能让您优化您的资源,并进一步加快您的研究。AB Library Builder&trade 系统可简化核酸的纯化以及 DNA 片段文库的构建。模块化的 SOLiD&trade EZ Bead&trade 系统可实现模板微珠的制备自动化,以便在 SOLiD&trade 系统上进行测序。对于那些正在寻找高通量自动化方案的研究人员来说,有高通量液体处理 XYZ 机器平台开发的操作流程集合提供。Life Tech新浪微博Life Tech优酷视频
    留言咨询
  • AB Library Builder&trade 系统简化DNA片段文库的构建AB Library Builder&trade 系统通过提供一个经过验证的、半自动化的 DNA 片段文库制备解决方案,从而简化了新一代测序的文库制备工作。这个方案适用于SOLiD&trade 4系统和5500系列基因测序系统。这个系统的设计旨在增加外显子组和靶向重测序应用中的运行通量,并减少与文库制备相关的劳力。利用该系统进行上游的DNA纯化,还可以进一步简化流程。主要优点► 自动化 &mdash &mdash 手动操作时间减少一半► 可扩展 &mdash &mdash 每次运行可制备多至 13 个文库,每天可制备多达 26 个文库► 经过验证 &mdash &mdash 集成的解决方案,为 SOLiD&trade 4 系统和5500 系列基因分析系统上的文库制备而优化系统特性自动化的流程AB Library Builder&trade 系统将 DNA 片段文库制备中最耗费劳力的部分实现自动化,使手动操作时间减少至少一半以上。AB Library Builder&trade 系统将 DNA 片段文库构建中从核酸片段化后到切口平移前的这一部分流程实现完全无人值守的自动化操作,适用于 SOLiD&trade 4 系统或 5500 系列基因分析系统上的外显子组和靶向重测序。可扩展的通量AB Library Builder&trade 系统可满足外显子组和靶向重测序应用中的低至中等通量的 DNA 文库制备需求。它一次最多能处理 13 个样本,一天两次运行能产生最多 26 个文库。在手动制备 8 个文库所需的时间内,AB Library Builder&trade 系统能制备 13 个文库。经过验证的解决方案AB Library Builder&trade 系统是一个集成的解决方案,由预先设定的控制软件、即插即用的试剂槽及仪器组成 &mdash &mdash 所有这些都经过优化和验证,适用于 SOLiD&trade 4 系统和 5500 系列基因分析系统上的 DNA纯化和 DNA 文库制备。简化且经济高效的 DNA 片段文库AB Library Builder&trade 系统实现了更高的DNA片段文库通量,同时减少了制备文库所需的手动操作时间。Life Technologies 始终致力于简化测序流程。采用这种经过验证且自动化的 DNA 片段文库构建和上游DNA 纯化方案,将优化您的资源并进一步加快您的研究。我们也正在开发RNA 和长配对末端文库以及与 Ion Torrent 流程兼容的类似自动化方案。Life Tech新浪微博Life Tech优酷视频
    留言咨询

基因测序仪工作原理相关的方案

基因测序仪工作原理相关的论坛

  • 科普之基因测序原理讨论

    基因测序的基本原理是边合成边测序。在Sanger等测序方法的基础上,通过技术创新,用不同颜色的荧光标记四种不同的dNTP,当DNA聚合酶合成互补链时,每添加一种dNTP就会释放出不同的荧光,根据捕捉的荧光信号并经过特定的计算机软件处理,从而获得待测DNA的序列信息。

  • 低价转让基因测序仪

    公司现有1台ABI3100 测序仪,成色较新,价格优惠,质量保证,可预约试机。电话:13717963569自动化程度高:提供连续,无监控的操作,自动灌胶,上样,电泳分离,检测及数据分析,可连续运行24小时无需人工干预。样品分析量大:可同时对16个样品进行全自动分析,一天可完成数百个样品的测序或片段分析工作先进的荧光检测系统:采光栅分光,CCD摄像机成像技术,实现多色荧光同时检测应用广泛:除了新基因测序或比较测序工作外,可进行多种片段分析,包括微卫星DNA分析,比较基因型分析,单核苷酸多态性(SNP)研究

  • 国产新一代基因测序仪产品样机亮相

    科技日报讯 (记者王怡)中国科学院北京基因组研究所和吉林中科紫鑫科技有限公司4月18日在长春联合召开国产新一代基因测序仪样机观摩研讨会,向与会的国内基因测序领域专家和应用单位代表展示这一合作成果,同时向社会公开征集部分应用单位进行免费测试使用,测试工作将于今年下半年开展。 据了解,新一代基因测序仪样机是目前唯一技术性可以匹敌国际市场主流产品的国产基因测序系统,与国外第二代高通量测序系统相比,已经成功解决“读长较短”这一关键技术难题。该基因测序仪已经达到和部分超越国际主流设备技术指标,其成本低于进口设备1/3以上,应用成本低于进口设备1/5以上,使新一代测序技术真正达到进入广泛应用市场的经济条件,并将彻底解决我国基因测序仪完全依赖进口的局面。截至目前,该系统已获得7个发明专利和1个实用新型专利授权,还有多项专利正在申报。 中科院北京基因组研究所研究员于军介绍,新一代基因测序仪对传染性疾病的预防控制和诊疗,生物恐怖因子、食源性致病因子和转基因成分鉴定,口岸卫生和有害生物防御性检疫,以及针对人类遗传多样性而产生的疾病早期预警和个体化用药相关基因的检测分析等实践应用,提供强有力的技术支持。 据悉,测序仪今年下半年将在医疗、检验检疫、疾病防控、高校、研究院所等20家应用单位进行免费测试使用。已经确认参加测试应用的单位包括中国检验检疫科学研究院、北京出入境检验检疫局、青岛海洋大学等10余家单位。测试工作主要包括对系统性能的优化和改进,以及根据应用领域的不同进行应用产品的共同开发,即在基础试剂产品的平台上衍生出一系列专用型试剂产品,并开发相应的数据分析算法和数据库,实现测序技术实践应用的全面解决方案。来源:中国科技网-科技日报 2014年04月20日

基因测序仪工作原理相关的耗材

  • 齐碳科技 QCell-6k 纳米孔基因测序芯片
    产品介绍 配套齐碳自主研发的QPursue纳米孔基因测序平台,适用于各种核酸分子的测序实验。用户只需将制备好的文库加载至测序芯片,即可开始测序。 通过电场力驱动单链核酸分子穿过纳米尺寸的蛋白孔道,由于不同碱基通过纳米孔道时产生了不同阻断程度和阻断时间的电流信号,根据电流信号识别每条核酸分子上的碱基信息,实现对单链核酸分子的测序。产品特点1、全新打造硅基材生物芯片带来更稳定的测序表现和数据产出;2、全新ASIC电路信号排布方式,密度更高;3、单芯片搭载通道数超6000个,极大提升测序通量;4、集成电路/生物芯片二合一,抗干扰性强,准确率高。 登录齐碳科技官网,查询更多详情信息:http://www.qitantech.com/
  • 齐碳科技 QCell-384 纳米孔基因测序芯片
    产品介绍 配套齐碳自主研发的纳米孔单分子基因测序仪QNome-3841及QNome-3841hex,适用于各种核酸分子的测序实验。用户只需将制备好的文库加载至测序芯片,即可开始测序。 通过电场力驱动单链核酸分子穿过纳米尺寸的蛋白孔道,由于不同碱基通过纳米孔道时产生了不同阻断程度和阻断时间的电流信号,根据电流信号识别每条核酸分子上的碱基信息,实现对单链核酸分子的测序。 登录齐碳科技官网,查询更多详情信息:http://www.qitantech.com/
  • 单细胞测序 5' 转录组和免疫组试剂盒
    达普生物星海单细胞测序 5’转录组和免疫组试剂盒,全面地揭示基因表达的动态变化,以及免疫系统在健康和疾病状态下的反应。产品具有以下特点:【性能优】&bull 较高的细胞回收率:50%&bull VDJ 序列组装效率:50%-80% &bull VDJ 序列配对率:80%【样本多样化】&bull 可兼容人、鼠的组织及免疫细胞&bull 针对抗体发现,推出兔免疫组试剂盒

基因测序仪工作原理相关的资料

基因测序仪工作原理相关的资讯

  • 解读基因测序流动槽、工作流程与文库制备试剂盒
    p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/e1b53786-6e16-4afb-80d3-15282f1c3af7.jpg" title=" 2.jpg" style=" width: 600px height: 446px " width=" 600" vspace=" 0" hspace=" 0" height=" 446" border=" 0" / /p p span style=" font-family: 微软雅黑, Microsoft YaHei "   在今年年初的J.P. 摩根大通医疗保健大会(J.P. Morgan Healthcare Conference)上,Illumina发表了堪称地表上最强的测序仪NovaSeq。全新的测序架构所带来的超高通量,让Illumina的总裁兼CEO Francis deSouza自信地宣示,百元基因组时代的来临已指日可待。从一月产品发布到Q3 财报公布时, Illumina已经出货近200台NovaSeq到客户手中。 br/ & nbsp br/   无可匹敌的超高通量,是吸引许多客户眼球的第一元素。年初S2 流动槽最先上市,一个流动槽每次运行可达到28-33亿数量的reads / clusters。在双S2流动槽同时运行的情况下,使用2x150 bp读长,一次NovaSeq测序可以在一天半内解码16个人类基因体(平均30x覆盖深度)。10月中推出的S4流动槽,更将通量翻了三遍。一个S4流动槽每次运行可达到80-100亿数量的reads / clusters,所以双S4流动槽运行可以在不到两天内解码48个人类基因体(6万亿硷基通量)。S4的强大功能,将加速大规模基因组研究计画,对临床研究提供关键性的突破。如同哥伦比亚大学基因组医学研究所主任David B. Goldstein所言,NovaSeq系列所激发的研究规模和成本,都是一年前无法想像的。这全新系列的可扩展测序机不只帮助基因组医学走向更大规模的研究,也能推动实现如液态活检、肿瘤深度全基因组分析、和大数量单细胞测序等需要高覆盖深度或高强度的测序应用普及化。 br/ & nbsp br/   NovaSeq高通量的可扩展性,满足不同产量的测序应用,也是其受到许多用户青睐的关键。除了可以选择S2 或S4流动槽,以及自由设定单槽或双槽同时运行之外,与S4同时推出的NovaSeq Xp工作流程让NovaSeq系统的灵活度更上一层楼。NovaSeq Xp工作流程的流动槽上样栈与试剂,让用户可以将文库直接上样到流动槽的单个通道中。由于每个通道的文库独立不混杂,用户可以根据通道来划分样本和项目。NovaSeq Xp工作流程带来更大的自由度,例如每个通道使用96个样本索引,每个流动槽一次可以测序384各样本。这样高度的多样本测序(multiplexing)也顺带减低了每个样本DNA所需的起始量。用户可以自由决定使用标准工作流程来混合各种文库类型在一个流动槽裡,或是利用NovaSeq Xp工作流程裡的上样栈实行新颖的样本索引方法,最佳化有效地利用地表上最高通量的测序仪。 br/ & nbsp br/   NovaSeq 6000系统支援所有文库制备方法,例如全基因组测序(WGS)、靶向重测序(targeted resequencing)、RNA测序(RNA sequencing)、和甲基化测序(methylation sequencing)。用户可以在BaseSpace Sequencing Hub上找到NovaSeq产生的范例Illumina文库测序结果。 br/ br/   更多关于NovaSeq系统规格和NovaSeqXp工作流程的细节,可以参考Illumina网站上的白皮书: br/ https://www.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/novaseq-6000-system-specification-sheet-770-2016-025.pdf br/ & nbsp br/   除了NovaSeq S4流动槽和Xp工作流程,Illumina在10月推出的创新产品还包含了Nextera DNA Flex,一款全新的高性能全基因组测序(WGS)文库制备试剂盒。Illumina了解在NGS测序技术不断进步下,文库制备的技术也要跟上脚步,一起加速基因组医学爆发性地前进。目前许多实验室在NGS流程的文库制备阶段仍然遭遇瓶颈。多数文库制备流程以及前后的多个步骤,耗时又耗工。文库制备前需要DNA提取、定量和片段化,而文库制备后的步骤包括文库质量评估、文库浓度定量和归一化。这让许多实验室都要延误不少时间在文库制备流程,才能开始测序过程。 br/ & nbsp br/   Nextera DNA Flex的核心技术为Bead-Linked Transposome (BLT),将Nextera的转座体(transposome)链接在磁珠上。BLT的On-Bead Tagmentation整合了DNA片段化(fragmentation)、片段接头化(adapter ligation)、和文库定量归一化(library normalization)的步骤,减少手动接触点并节省文库制备时间到2. 5小时。搭配Flex Lysis Reagent Kit的细胞裂解试剂,Nextera DNA Flex允许直接加入样本如血液、唾液、乾血纸片、和微生物菌株。直接加入样本进一步省去了样本制备的繁琐步骤,不需要辅助设备和试剂来提取DNA。从而将文库制备的整体周转时间,从样本到上测序机,缩短到三小时以内。Nextera DNA Flex的简约有助于自动化流程的使用。 br/ br/   除了是Illumina产品线中最快且最简化的文库制备流程,Nextera DNA Flex的On-Bead Tagmentation提供了比in-solution tagmentation更均值的DNA片段化反应。当样本DNA起始量超过BLT的饱和点(大约是100ngDNA),过多的DNA便无法被片段化。不同于其他种文库制备方法,这样的化学特性使得Nextera DNA Flex片段化结果不会受到DNA定量的准确度影响。当DNA量介于100-500ng 之间,Nextera DNA Flex制备后的文库片段长度和上样量几乎是固定的。用户可以利用Nextera DNA Flex的广泛样本DNA起始量,灵活支持各种类型的基因组测序,简化日常操作。  br/ & nbsp br/   BLT与样本DNA饱和后带来的均匀文库片段长度和上样量,也提升了基因组测序覆盖度的均一性。不管是人类或非人类基因体,文库DNA片段均匀地覆盖在高与低的GC区域,没有偏好性。这样的通用特性让Nextera DNA Flex应用范围广泛,支持人类或其他大型/複杂基因组以及扩增子和微生物、寄生虫或真菌物种的测序,并且与Illumina各款测序仪完全兼容。用户可以在BaseSpace Sequencing Hub上找到Nextera DNA Flex应用在不同动植物和细菌基因体所产生的文库和在不同Illumina测序仪上的结果。 br/ br/   更多关于Nextera DNA Flex的全新技术BLT原理、快速与整合的流程、以及全基因组测序表现和TruSeq Nano与Nextera XT的比较,请参考Illumina网站上的白皮书: br/ https://www.illumina.com/content/dam/illumina-marketing/documents/products/datasheets/nextera-dna-flex-data-sheet-770-2017-011.pdf br/ br/   另外两份白皮书详尽讨论Nextera DNA Flex的文库制备成果: /span /p p span style=" font-family: 微软雅黑, Microsoft YaHei " br/ /span /p p span style=" font-family: 微软雅黑, Microsoft YaHei " strong 人类基因体 /strong br/ https://www.illumina.com/content/dam/illumina-marketing/documents/products/appnotes/nextera-dna-flex-human-genomes-application-note-770-2017-018.pdf br/ br/ strong 微生物基因体 /strong br/ https://www.illumina.com/content/dam/illumina-marketing/documents/products/appnotes/nextera-dna-flex-small-genomes-application-note-770-2017-019.pdf br/ & nbsp br/   今年十月份发布的这些新产品,NovaSeq S4流动槽、NovaSeq Xp工作流程(预计十二月份开始接受订购)、和Nextera DNA Flex文库制备试剂盒,再度展现Illumina的创新能力,并帮助加速基因组医学迈向大规模、高性能的全基因组研究之路。 br/ /span /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201711/insimg/8ccfe1a5-9088-43fc-b096-b005ae6f42b3.jpg" title=" 1.jpg" / /p p span style=" font-family: 微软雅黑, Microsoft YaHei " strong 作者简介 /strong br/ br/ 庄涵宇博士 br/ Illumina高级经理,生物信息和基因组应用合作 br/ Han-Yu Chuang br/ Senior Manager, Bioinformatics and Genomics Applications Partnerships, Illumina Inc. /span /p
  • 任鲁风:做中国的基因测序仪
    p   “这一个项目我做了7年,这辈子能做几个这样的项目?它就像我的孩子一样,对于自己的孩子,哪怕再难、再苦我都要坚持。” /p p   “做科研就不能怕走弯路,我跌跌撞撞地走了这么多年,只是为了基因测序技术的国产化,哪怕没有资金和支持,我也要坚持做下去,因为这是我的‘孩子’。” /p p   说这话的人是中国科学院北京基因组研究所技术研发中心常务副主任、副研究员任鲁风。多年来,他不断地调整着研究方向,不断地学习不同学科的知识,为的就是研制出中国人自己的基因测序仪。 /p p style=" text-align: center " img title=" 2015810545267550.jpg" src=" http://img1.17img.cn/17img/images/201508/insimg/14b6e2f4-ff1d-4525-b4b3-9fa5b7c70aab.jpg" / /p p style=" text-align: center " 任鲁风 /p p   strong  初试牛刀 /strong /p p   22岁,毕业于南开大学生物系的任鲁风进入天津市某医院从事遗传性耳聋基因方面的基础研究,一个偶然的机会,他与基因结下了不解之缘。 /p p   在那里,他第一次接触到了“基因芯片”,这种在当时还很“时髦”的检测技术,就像给他“注射了一针兴奋剂”。当他得知北京一家公司正在建立基因芯片技术团队时,便毫不犹豫地放弃了在医院刚刚得到的晋升职位和稳定的工作,来到北京寻找他的梦想。 /p p   他的梦想与努力没有被辜负,经过多年心血与集体攻关,2003年由任鲁风主要完成的全球第一款SARS病毒全基因组芯片问世,并荣获了首都“抗击SARS集体一等功”。 /p p   “当时的基因芯片应用涉及了人类、动物、植物及病毒等方面,主要偏重于在基础研究中的应用,其中针对病毒进行鉴别检测的基因芯片是应用研究中主要的方向。”任鲁风向记者介绍说。 /p p   在他看来,在此之前,没有其他分子检测技术能够实现检测靶标的通量概念,基因芯片是第一种可以大规模并行化进行基因靶点检测的实用技术,“如果能够根据其特点应用于恰当的实践领域,将有其广阔的市场前景”。 /p p   可是好景不长,SARS过后,和国内众多新兴产业的轨迹一样,基因芯片产业进入了一个波谷期,公司内部业务调整,使得他不得不再次转行,寻找突破口。 /p p   2004年,他所在的部门裁撤,开始转岗从事基因治疗新药的研发和临床前实验研究工作。“不安分”的他总觉得还是没有找到自己的“归宿”,他始终坚信,没有应用前景的研究只能锁在象牙塔中,直到他进入中科院基因组所。 /p p   碰撞出的基因测序仪 /p p   2008年,中科院北京基因组所时任副所长于军研究员,也是任鲁风的博士生导师,针对生命科学仪器的发展提出了模块化DNA分析系统的概念,即对于DNA进行不同层次的分析时,可以是少数几种分子生物学核心技术的一种或多种的集成。此后,在与中科院半导体所的科研交流中,双方一拍即合,提出了研发当时技术复杂度最高,同时也是未来预期应用最广泛的第二代高通量基因测序仪的思路。 /p p   这个多学科碰撞出的火花,让当时刚刚进入测序技术研究领域的任鲁风激动不已。“进入研究组后,我才发现,原来我对基因组学、基因测序的了解是那么的浅显。”任鲁风说。 /p p   研究小组提出用不同学科领域的技术解决生命科学领域应用的问题。经过生物学和物理学两个看似完全不相干的团队历时半年的相互交流学习,任鲁风和同事们了解了半导体材料和相关的光电技术,也向他们普及了基因检测的相关知识。最终,联合研究组确定了研发基因测序仪所采取的技术路线。 /p p strong   再难也要做下去 /strong /p p   “2008年的时候,当时买一台类似的测序仪要花400万元,中科院给我们两年半时间,用406万元经费开发出一台测序仪,说实话当时我也觉得挺难的。”回忆起当年情景,任鲁风感慨万千。 /p p   “第一年走的弯路非常多,在摸索技术路线时,我们发现了很多问题。到2009年9月,项目要进行中期汇报时,我们才刚刚在仪器研发和技术开发方面入了门。当时非常焦虑,但是再难也要走下去。”任鲁风说。 /p p   从2009年9月到2011年4月验收结题,实际上他们只花了一年半时间便完成了这台基因测序仪原理样机的研发。个中曲折,已不能尽数。 /p p   功夫不负有心人。2011年3月,第一台基因测序仪原理样机搭建完成并功能实现,同年4月通过了中科院专家组的现场验收。 /p p   基因测序仪原理样机的研发成功不仅仅给了研究组信心,同样也为基因组所的学术方向结构完整性提供了有力的支持。在基因组所的“一三五”发展规划中,测序技术研发占据了非常重要的地位。任鲁风在当年博士毕业留所,自信满满地带领新成立的DNA测序技术研究开发中心团队进入下一个攻坚阶段——工程样机的开发工作,但却遇到了极大的困难,差点导致夭折。 /p p   工程样机的开发工作涉及到对仪器系统的全面重新设计,对各个部件都需要从工程化角度评估和测试,需要远远高于原理样机研发时所需要的经费。因为种种原因,这个项目虽然得到了研究所最大程度的支持,但一两百万元的经费对于这项工程来说实在是杯水车薪,争取国家项目资助又因为种种原因未获成功,开发工作一度陷入断粮状况。“最少的时候直接参与开发工作的只剩两三个人,我不得不争取一些小的项目咬牙支撑这个项目走下去。”任鲁风回忆起工程样机开发阶段的艰难也会有些唏嘘。 /p p   峰回路转,2013年10月,项目组与紫鑫药业达成协议,共建中科紫鑫公司实现基因测序仪项目产业化。科研项目的产业化转化所带来的资金和发展契机让任鲁风看到了希望。 /p p   “直到2015年1月,中科紫鑫已经完成了20多台机器,准备投放到遴选出的试用用户手里,让他们做免费的试用,我需要业内的评价。”任鲁风说。 /p p   国产自主知识产权的基因测序技术对国家的意义、国家在国际上的战略地位以及对精准医学的发展意义重大。任鲁风告诉记者,“我们的机器上市之后,国外的垄断企业一定会大幅度降价,对我国整体基因产业发展也会有更多的推进作用。” /p p   “这一个项目我做了7年,这辈子能做几个这样的项目?它就像我的孩子一样,对于自己的孩子,哪怕再难、再苦我都要坚持。”任鲁风说。 /p
  • 浅议基因测序技术的代际
    编者按 NGS技术,到底是下一代测序,还是二代测序?NGS到底包含了哪些技术?关于NGS的定义,一直困扰着业内外人士。曾参与“国际人类基因组单体型图计划中国卷”项目 、“炎黄一号” 等多个重大科研项目的基因测序专家王威博士,近期发表了文章《浅议基因测序技术的代际》,文中清晰地解释了测序技术代际问题。小编特将该文转载,欢迎各位交流探讨。 正文: 相对于较早出现的Sanger双脱氧核苷酸测序技术(简称Sanger测序),2005年后出现的NGS测序技术,使得基因组研究进入高通量时代,促进了基因组学科学研究及技术转化应用。 在基因组学领域,NGS通常是next-generation sequencing的缩写,意为下一代或者新一代测序技术,亦有人称之高通量测序技术(High-throughput sequencing,HTS)、二代测序技术(second-generation sequencing)。至于到底哪些测序技术属于NGS,并无明确统一的界定,目前主要有两种观点,存在些许差别。 01 对NGS的最初种理解 自动化的Sanger测序技术,以Sanger技术为起点,新出现的技术被称为下一代测序技术(简称NGS)1。 这些新技术涉原理,依赖不同的模板制备方法(例如乳液PCR、DNA纳米球、桥式扩增 、单分子模板)、序列测定方法(焦磷酸测序、基于可逆终止化学测序、基于连接反应的测序、磷酸连接荧光核苷酸或实时测序)、基因组比对与组装方法等。 这种观点认为目前的大规模并行测序技术都属于NGS,包括Roche/454测序、Illumina/Solexa测序、Life的SOLiD与ION系列以及华大基因的BGISEQ/MGISEQ系列等;此外,持这种观点的学者还将Helicos BioScience、Pacific BioSciences以及Oxford Nanopore的单分子及纳米孔测序技术均纳入NGS技术,并未单独将其定义为第三代测序技术1~3。 02 对NGS第二种理解 另一种理解认为 NGS主要是指基于大规模并行测序(massively parallel sequencing,简写MPS)的测序技术4。 大规模并行测序的关键技术诞生于上世纪90年代,于2005年商业化进入市场。这一技术同时对成百上千万的待检测DNA模板分子进行测序,加大了测序反应的效率与通量,使得一次测序实验便能够完成一个或更多的人类基因组序列的测定。尽管不同的大规模并行测序技术原理各不相同,但有一些共同特点,杨焕明老师有非常简洁的总结5:(1)“裸”、“密”并行,每一个分子簇为一个裸露的测序反应,使得测序通量提高了几个数量级;(2)测序通量 的提高,损失了下机的读长(初期只有约20个碱基,现在已有显著提升)。 尽管MPS的标本制备和测序原理不同于Sanger测序,但它与Sanger 测序一样,仍需要对测序分子进行扩增,因而也不可避免的增加引入序列误差的概率和GC偏差,也不能直接分析不同修饰的核苷酸5。 按照这一观点,单分子测序不属于NGS,而是更加新的技术。 03 NGS:Next-generation 还是 Now-generation? 随着MPS成熟稳定,在2008~2010年左右,NGS有了一个新的含义,即Now-generation sequencing6、7,直译为“当代”或者“现代“测序技术。 也就是说,“下一代”测序技术变成了“现代”测序技术。不过,Now-generation sequencing这一说提法并未被广泛使用。因此在多数情况下,NGS主要是指Next-generation sequencing。 在高通量测序技术刚刚问世时,人们并没有预料到测序技术的后续发展如此迅猛。因此,无论是Next-generation 还是Now-generation,其实都是一个比较笼统的提法,本身也意味着变化和发展。这也就不难理解为什么目前对于哪些技术属于NGS会存在不同观点了。 04 关于测序技术的代际 上述话题牵涉出所谓的测序技术代际的问题。然而目前来看似乎并没有统一的认定。 如果按照上文对NGS的理解,目前的代际划分似乎更多的用来区分Sanger 测序与非Sanger 测序。这两类技术在原理和测序通量上都有存在较大差异,但也有相通之处。例如,无论是Sanger双脱氧核苷酸测序,还是高通量测序中的边合成边测序技术,或者是基于连接反应的测序,其原理都依赖核苷酸的聚合反应。 目前测序仪代际划分的分歧点主要围绕“二代测序”和“三代测序”技术。“三代测序”这种提法出现于2008~2009年,当时主要是指有别于NGS的新型测序技术。一些学者认为单分子测序、实时测序以及核心方法有别于已有技术的方法,应是三代测序技术的定义性特征。目前,三代测序通常是指无需DNA扩增的单分子测序技术4。这种技术从原理与特点来看,有其自身优势(比如测序能够获得较长的读长,有望解决单倍体基因组组装和结构变异识别),是测序技术发展的重要思路。 有学者指出,目前测序技术代际划分,也许更多的是出于商业上的考虑,因为人们通常习惯性的认为技术代际升级代表了技术的演化。例如,Pacific BioSciences 公司在其发表的论文中,将单分子实时测序技术与NGS进行了区分,被归入三代测序技术8,其用意是不言而喻的。 单分子测序技术早在2003年就有概念性的论文发表9。2008年,Helicos BioSciences推出了单分子测序仪,随后Pacific BioSciences与Oxford Nanopore也推出了各自商业化的测序仪。不过,也许是由于单分子测序对技术体系要求更高,这项技术的发展远不如当初人们预想得那般迅猛,直至今日尚未达到NGS这样的市场规模。这期间,Helicos BioScience已于2012年破产,尽管其技术符合目前对三代测序技术的界定。 随着更多的应用,单分子技术也陆续暴露出一些技术问题。例如,在近期的一篇论文中,研究人员对利用长读长测序技术组装的人类基因组进行分析,发现与短读长组装相比,长读长组装的蛋白编码区域含有更多的错误10。尽管有学者指出,新的生物信息学工具已经能够改善纳米孔测序的组装结果,有望从Oxford Nanopore和PacBio的测序数据中获得高质量的序列11。但是,真正的长读长技术,只有达到或超越现有技术的性能和准确度时,才有实用意义。 从测序技术应用角度来看,某些应用也许并不需要长读长的单分子测序技术。例如,基于外周血游离DNA测序的无创产前检测,因目标DNA本身就是一百多个碱基的短片段,采用NGS就能够比较好的进行检测与分析,且成本也在逐渐下降。此外,通过一些间接技术手段,比如华大智造近期推出的stLFR测序12,也能够在全基因组范围内提供基因组长片段信息,包括分型、突变及基因组结构变异。 单分子测序技术从原理上具备潜力与优势,值得进一步研发完善。但是未来能否达到预期的市场规模,甚至成为主流测序技术,还需要经过实践检验。技术发展代际内的升级相对比较频繁,而代际间的升级则相对缓慢,只有核心原理有创新并且跨越式超越前一代的技术,也许才更适合被定义为新一代技术。 总之,目前测序技术代际划分较为模糊,且测序技术目前仍处于快速发展中。其中,SANGER与 NGS均引领了基因组技术,推动了基因组学科技进步。前者为人类基因计划(HGP)做出了主要贡献,目前仍在是很多生物学与医学实验室的常规技术;后者则是当前基因组研究与应用的主流技术,直接为基因组测序的广泛应用扫清了经济上的障碍,使其不仅能更好的服务于科研,也正在成为医学界以及其他应用领域的重要工具。单分子技术则是测序技术发展的重要方向,开始崭露头角,但成熟与完善尚需时日。以上这些测序技术,均有各自的特点,也有其适合的应用范围与应用场景。 附笔: 写这篇小文的初衷,是近期因为有朋友提出过此类问题,也有人常将测序技术类比IT技术的发展。因此在这里分享自己的观点,也期望与持不同意见的朋友交流探讨。 特别感谢两位曾经参与过水稻基因组计划等早期基因组大项目的同事张建国博士与李胜霆博士,在春节假期期间分享了各自的观点,并协助完善本文。 目前测序技术的代际划分并没有统一的认定。即使一个人,其观点也会随时间与认知的改变而发生某些变化。在2008年前后,我们单位的NGS平台刚刚进入规模化稳定运行阶段。也正是那个时候,出现了“三代技术”。业内不少人都认为这类单分子技术很快将取代NGS。但事实并非如此。我曾经的观点认为单分子测序技术属于三代技术,而目前则倾向于将其归入NGS。 关于测序技术的代际,可以看看IT的代际。百度上是这样划分的:初代计算机被称为电子管计算机,第二代计算机被称为晶体管计算机,第三代计算机成为中小规模集成电路计算机,第四代计算机成为大规模和超大规模集成电路计算机,第五代计算机,指具有人工智能的新一代计算机。IT的代际划分主要源自技术原理的革新(第五代感觉主要是软件上的革新),是认识计算机发展史和技术原理的需要,具有客观存在的价值。新一代在性能上全面超越前一代。 从认识论的角度来讲,大家习惯于根据技术划分代际,代际升级代表了技术的演化。只有核心原理新并且跨越式超越前一代的技术才能被称为新一代。新一代的出现首先是从技术原理上提出,有希望和潜力超越现有技术,然后从商业角度宣传,有一些最终行不通的被淘汰,能发展成熟超越前一代的才会真正成为新一代。也有可能方向是对的,但是技术暂时跟不上,会经历曲折的发展。这种代际认识在回顾历史的时候最清楚。 王威 博士 华大智造副总裁,医学遗传学研究员,科学技术委员会成员。 先后参与、负责完成“国际人类基因组单体型图计划中国卷”项目 (简称 HapMap 计划) 北京区域的基因分型任务、初个中国人基因组图谱的绘制工作 (简称“炎黄一号”) 等多个重大科研项目。主要从事基因组医学新技术开发、推广与应用。

基因测序仪工作原理相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制