伽马射线光谱仪原理

仪器信息网伽马射线光谱仪原理专题为您提供2024年最新伽马射线光谱仪原理价格报价、厂家品牌的相关信息, 包括伽马射线光谱仪原理参数、型号等,不管是国产,还是进口品牌的伽马射线光谱仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合伽马射线光谱仪原理相关的耗材配件、试剂标物,还有伽马射线光谱仪原理相关的最新资讯、资料,以及伽马射线光谱仪原理相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

伽马射线光谱仪原理相关的仪器

  • 小型机载伽马射线光谱仪简介:D230A是一种轻型伽马射线光谱仪,专为小载荷无人机设计。研发的目的就是使其重量最小化而灵敏度最大化。D230A的主要应用是机载伽马射线。两种探测器的光谱分别积累和保存,扫描速率从1秒到1分钟可调。此外,在监测过程中,两种探测器最终形成的是一个互补的综合光谱。D230A是由位于前面板卡槽里的一个小型锂电池供电。充满电的电池可维持至少4小时的操作,并可快速更换。技术参数:探测器: 两个BGO晶体,体积104cm3,直径51 x 51 mm (2”x2”),双碱阴PMT, 灵敏度2x160cps/MBq/m (Cs- 137)。 最大分辨率11.5%FWHM (661 keV)。 或两个NaI/T晶体,体积104cm3,直径51 x 51 mm (2”x2”), 双碱阴PMT,最大分辨率 8% FWHM (661 keV).光谱仪:全数字2x1024通道,40Mhz 数字信号处理器,线性能量校正,反堆积,200 ns分辨率,每个检测器的最大吞吐 量为250 000 cps采样率:用户可选择最小每秒1次。每个光谱同时储存在单独的数据文件和总累积光谱中。能量范围:25 keV - 3000 keV显示:LCD 2 x 20个字符控制器:单按键操作数据存储:最小2x 20000个样本,包括GPS坐标的全光谱。 稳定光谱和系统消息日志。内存大小可扩展GPS:导航至-162 dBm和-148 dBm冷启动,精度2米通信:数据传输,远程控制和诊断:USB 2.0电源:可充电锂离子电池7.2V/2200 mAh (在20摄氏度下最少可工作4小时),外部充电器和电池组尺寸:145 mm x 78 mm x 260 mm重量:3.5 kg(2个BGO)环境:操作温度范围-10oC 到 +50oC IP-40级,无防尘、防水。
    留言咨询
  • 产品简介  法国Damavan imaging提出时间成像是伽马射线成像的新概念,它利用每个闪烁事件的光和时间分布来精确定位空间(X,Y,Z),时间(T)中的每个闪烁事件以及它的能量(E)。  这种新的成像概念可以使每个体素大小(1x1x2mm)的闪烁事件提高一个数量级。  Temporalδ伽马射线成像谱仪是率先使用这个新概念的设备。这款便携式版本的伽马射线成像谱仪带有一个CeBr3头,伽玛射线和可见光成像和主动温度控制。这个版本是专门用于能源300KeV- 2mev探测。Temporalδ伽马射线成像谱仪拥有市面上出色的角度分辨率(6°)和时间分辨率(300ps)。它也非常敏感,可以对自然的无线电元素成像并可以对扩展源进行良好的成像。  性能特点  Temporal δ伽马射线成像谱仪由便携式单元包括一个处理单元和一个探测器单元,可选配CZT配件。   -检测效率高, 1个校准过的探测器模块,由两个32x32毫米的CeBr3晶体组成   -成像能量动态范围宽,探测能量范围可达50KeV - 3MeV,能量分辨率1.5%   -高时间分辨率,时间巧合小于300ps   -高准确度,角分辨率可达1度   -低噪音水平   -高灵敏度 应用领域   -核废料管理   -核设施退役   -放射性化学   -医院的放射性安全   -环境监测、核查和预警   -剂量监测和预警   -安防、安保、海关、警察 技术参数光学成像视场78×104°degres flat field角分辨率10 degrees(full spectrum)6 degrees (energy gated)灵敏度0.03μR/h in 1hour1kBq @1m in 2 hours3μR/h 1mn闪烁晶体CeBr3时间分辨率300 ps @ 511keV能量分辨率7% @ 662keV能量范围100 keV—3 MeV(能谱分析)400keV-3MeV(辐射成像)电池续航4小时外置电池(重1.2kg)计数率限制1 mSv/h重量3.9kg尺寸21x29x16 cm电源110-220V (mains)工作温度-20°C ~ +50°C通讯方式Ethernet to laptopWifi in 2019  图3 Temporal δ参数 *不含CZT配件下的参数 应用案例  Temporalδ提供了一个电子准直的选项,它允许“关闭”一个强光源,只保留图像上的其他光源,因此,即使在强光源附近,也能拍出弱光源的清晰图像。  下面的图片上,你可以看到一个桶的X射线图像和由Temporal δ对相同的桶进行伽马射线成像效果。  1332 KeV (60Co)在X光图像上,你可以看到有两个桶,一个小桶在大桶里面。  在伽玛图像上,所有能量都有3 +1个区域:  -A中正在扩散的强烈放射源;  -B处的轮廓揭示了中小桶结构的扩散;  -C微弱的扩散区域,可能对应于小桶上的玻璃棉(在X射线图像上也可见);  -D高能光子散布在环境中的密集部分上  基于能量1332 KeV的伽马图像显示,右下角(区域A)的强光源对应于60Co。同时也可以在此伽马图像中看到小桶的轮廓,这是在小桶实体上散射了光子。
    留言咨询
  • 伽马射线成像谱仪 400-860-5168转4433
    伽马射线成像谱仪产品介绍: 伽马射线成像谱仪是一款快速,便捷,易用的成像谱仪,可用于核电站常规检测及维护,退役反应堆的检测 紧急情况、突发事故和停机期的检测,还可用于环保领域的核源检测等。光谱性能可与低温冷却检测仪相媲美,实现同位素成像。产品特点:快速,便捷,易用的成像谱仪:快速识别和定位主要同位素 实时能谱、识别和成像 在662keV半高宽能量分辨率优于1%能量量程高达3MeV ,涵盖主要同位素使用像素化CZT探测器,成像效率业界领头准确叠加伽马线成像和光学成像点源和分布源成像从开机到使用2分钟20秒内从天然本底中探测并识別同位素轻巧便捷集成测距仪功能气密防水,易于清洁实时剂量计自动生成检测、成像报告附送年检和软件升级技术参数:尺寸24cmx9cmxl8cm(加支架尺寸:37.5cmxl2cmx21cm)重量3.5kg(加支架重量:5kg)电池使用时间 6小时(23°C的环境下) 3小时(在低于一20°C或高于S0°C的环境下)工作电源100—240V , 47-63HZ工作温度一20°C-S0°C储存温度一20oC-60oC异物防护等级IP6S (更换风扇IP67 )三脚架W _20(加强螺纹)3/8" -16 (仅用支架)冷却系统专用外置散热片和风扇能量分辨率Sl.l% FWHM ( 662 keV的半高宽时)光学成像视扬162°横向,122°纵向辐射成像视扬4ti ( 360。)角度精度全4ti角±1°源定位精度(实时处理)角度分辨率~30°FWHM全4n角(实时处理)-2CTFWHM全4n角(后期处理)成像灵敏度探测,R/hrl37Cs用时少于16秒(能谱)定位~3MR/hrl37Cs用时少于90秒能量量程50keV - 3MeV (能谱)250keV-3MeV (成像)探测器晶体体积19.4cm3 CZT ( CdZnTe )最大计数率自然环境下为〇.5rem/hr ( 5mSv/h「)同位素库3573ENDF同位素库启动时间2分钟显示7” 1280x800HD平板电脑通讯连接通过WiFi ,蓝牙或有线连接其他连接以太网RJ45端口TCP/IP 视图能谱、伽马成像、光学成像、复合成像
    留言咨询

伽马射线光谱仪原理相关的方案

  • X射线激发的时间分辨光谱解析闪烁体能量转移过程
    液体闪烁体探测器被广泛用于中微子和天体粒子检测实验。linear alkylbenzene (直链烷基苯 (LAB))这种液体闪烁体被广泛应用于大规模检测测试中。LAB 是一种极具发展潜力的闪烁体,因为它成本低、闪点高、毒性低,使其比之前常用的有毒和易燃有机闪烁体更易处理。LAB 通常与2,5-二苯基氧佐尔(2,5-diphenyloxazole,PPO) 一起使用,可提高发光效率并将发射光谱延长至到更长的波长。LAB/PPO闪烁体探测系统已用于Daya-Bay1和 RENO2中微子检测实验,也是即将推出的 SNO+3和JUNO4探测器的闪烁体。使用爱丁堡仪器 FLS1000 和 XS1 X射线样品室附件研究了 LAB/PPO 在不同 PPO 浓度下的 X 射线激发发光衰减特性。随着PPO的浓度从1g/L增加到 20 g/L,主要衰变组分的寿命从 7.1ns减少到 1.7 ns。XS1 X射线样品室附件将 FLS1000 PL光谱仪的功能扩展到 X射线领域,为开发新型闪烁体材料创造了强大的表征工具。
  • 微焦点X射线成像系统检测原理
    X射线设备可以满足大多数电子零件的微米及纳米检测需求,在预生产前期,可以对样件进行X射线扫描,及时发现不合格的零件,扫描结果形成检测报告作为客观参考,以此改进生产工艺;在产品召回后期,对于结构复杂的零件,X射线可以进行筛选排查,把不合格的产品剔除,做到最大程度的挽回损失。
  • X射线荧光光谱仪测定浮法玻璃渗锡量
    将熔窑中流出的玻璃液引流到锡槽中,理想的情况是玻璃经平面成型抛光,从而制得高质量低成本的浮法玻璃。然而在生产过程中锡离子也进入玻璃下表面即玻璃渗锡,成为浮法玻璃的固有缺陷。渗锡后玻璃的光散射及渗锡层和玻璃块体的折射率差异增大,且玻璃透光率也降低。经热处理后的玻璃表面2价锡被氧化成4价锡从而引起区域体积变化,形成玻璃缺陷。所以渗锡量是浮法玻璃渗锡过程的一个重要控制参数,通过波长色散X射线荧光光谱仪(WDXRF)建立校准曲线可以测定不同规格类型的浮法工艺玻璃,X射线荧光光谱法可以直接测定玻璃表面的锡层并得到对应的强度信息,进而算出较为通俗的厚度计量单位(ug/cm2),适用于玻璃表面的锡层厚度分析,从而达到快速控制生产的目的。

伽马射线光谱仪原理相关的论坛

  • 【分享】俄提出伽马射线激光器研发新方案

    2011年05月04日 来源: 科技日报 作者: 常丽君  本报讯 长期以来,建造原子核伽马激光器一直是个难题。据美国物理学家组织网5月2日报道,莫斯科大学核物理专家最近提出了一种新方案,并从理论上证明,钍原子核受激产生的伽马辐射也能发出相干“可见”光。相关研究发表在最近出版的《物理评论快报》上。   尽管原子核伽马射线激光也是以受激辐射为基础,但操作起来却和普通激光大不相同。在通常物质中,处于低能级的原子数大于处于高能级的粒子数,为了得到激光,必须使高能级上的粒子数目大于低能级上的原子数目,这种情况称为粒子数反转。在普通激光中,粒子数反转是让高能态电子比低能态电子多。普通激光的光子由原子或离子发出,而伽马射线激光的光子是由原子核发出,也称为原子核光。  原子核光的产生至少要克服两个基本难题:一是积累一定量的同质异能原子核(能长时间保持激发态的原子核),二是缩小伽马射线发射界限。莫斯科大学核物理学院的尤金·塔卡利亚解释说,他们利用钍元素的独特原子核结构,满足了这些要求,与外部激光的光子直接反应的是钍原子核,而不是它的电子。  研究小组使用了一种锂—钙—铝—氟(LiCaAlF6)混合物,并用钍替代了其中一些钙。当足够数量的同质异能钍原子核被外部激光激发后,原子核跟周围的电磁场发生反应,产生了粒子数反转,使整个系统中激发态的原子核多于非激发态原子核。然后,原子核能够发射或吸收光子而不会反冲,能发光而不会损失能量。  塔卡利亚表示,该研究中的原子核伽马射线激光只能发射“可见的”真空紫外光或称视觉范围的伽马射线。其应用之一是,可作为原子核频率的度量标准,即“原子核钟”。此外,该设备还可用以测试许多自然界的基本属性,如衰变指数定律和精细结构常数的变化效应等。(常丽君)

  • 美探索用反物质制造伽马射线激光器 探测微小空间

    美探索用反物质造伽马射线激光器 可对非常微小的空间进行探测 科技日报讯 传统激光器的操作光波可从红外线到X射线一网打尽,而伽马射线激光器则依靠比X射线更短的光波来运行,这就使其能产生波长仅为X射线千分之一的光波,从而能对非常微小的空间进行探测,并在医学成像领域大展拳脚。不过,长期以来,建造伽马激光器一直是个难题。现在,美国科学家让一类名为“电子偶素(positronium)”的物质—反物质混合物作为增益介质,将普通光变成了激光束。 据美国趣味科学网站5月8日报道,在最新一期的《物理评论·原子分子物理》杂志上,马里兰大学联合量子研究所的王逸新(音译)、布兰登·安德森以及查尔斯·克拉克撰文表示,他们发现,当向电子偶素提供特定能量,它将产生在其他能量下无法制造出的激光;而且,要制造出激光束,这种电子偶素必须处于玻色—爱因斯坦凝聚态下。 克拉克解释道,这种奇怪的效应与电子偶素的“性格”有关。每个电子偶素“原子”实际上是一个普通的电子和一个正电子(电子的反物质)。正电子和电子分别带正负电荷。当它们相遇时,会相互湮灭并释放出两个高能光子,这两个光子位于伽马射线范围内,反向移动。 有时,电子和正电子会围绕对方旋转,就像电子围绕着质子旋转组成原子一样。然而,正电子比质子轻,因此电子偶素并不稳定,在不到十亿分之一秒内,电子和正电子会相互碰撞并发生湮灭。 为了制造出伽马射线激光器,科学家们需要使电子偶素的温度非常低,接近绝对零度(零下273摄氏度)。这一冷却过程会让电子偶素进入波色—爱因斯坦凝聚态,这种状态下物质内的所有原子,也就是电子—正电子对,进入同样的量子状态,一举一动整齐划一。 量子状态的一个方面是自旋。电子偶素的自旋数要么为1,要么为0。一束远红外线光脉冲能让电子偶素的自旋数为0。自旋为零的电子偶素会湮灭并产生双方向相干的伽马射线束—激光束。研究人员表示,能做到这一点是因为所有电子偶素“原子”拥有同样的自旋数。如果是自旋为0和自旋为1的电子偶素随机组合,那么,光会朝各个方向散射。 研究人员也计算出,为了让一台伽马射线工作,每立方厘米大约需要1018个电子偶素原子,听起来有点多,但与空气的密度相比还是少很多,同样体积的空气大约有2.5×1019个原子。 在1994年首次提出伽马射线激光器这一概念的贝尔实验室的艾伦·米尔斯表示,研究人员可以借用数学方法,让制造这种激光器所需要的环境更加精确。(刘霞)来源:中国科技网-科技日报 2014年05月10日

伽马射线光谱仪原理相关的耗材

  • 伽马射线计数器
    伽马射线计数器配件是一种专业的闪烁探测器, 专业为X射线和低能伽马射线计数而设计,是理想的科研级高灵敏度X射线探测器。 伽马射线计数器配件采用高质量闪烁晶体YAP:Ce 作为探测物质,能够以高达10^6脉冲/秒的速度快速扑捉探测X射线和低能伽马射线,并且在5keV—150Kev的能量范围具有较高的线性度,在核心的闪烁晶体外围具有高反射铝层保护装置,不仅可以降低噪音,而且可以防止外部冲击对核心晶体参数损毁。 伽马射线计数器配件特色 用于X射线和伽马射线计数 计数能力:10^6脉冲/秒 能量范围:5kev --150Kev
  • 防护服,经过伽马射线照射
    防护服经过伽马射线照射,采用特殊透气性微孔织物制造,具有良好的防液体性和障碍物保护性。在ISO 8级(100.000/M3.5级)洁净室中进行制造和包装。? 经过伽马射线照射,无菌保证(SAL)10-4? 良好的液体和颗粒保护性? 极低的颗粒脱落水平? 良好的透气性和水蒸气穿透率? 柔软的布样织物颜色:白色严格按照ISO认证设施中的要求进行测试和制造,确保每件产品达到严格的质量标准并符合规格。通过单独的实验室测试对产品进行验证。
  • 88-6150巴罗克二码合一冻存管伽马射线灭菌
    81-70550.5ml冷冻管,可站立,棕色,聚丙烯材质,伽玛射线灭菌,不带书写区,管与盖配套,无RNase、无DNase,50套/袋,10袋/盒,4盒/箱2000个/箱巴罗克Biologix81-70560.5ml螺口管,可站立,透明色,聚丙烯,伽玛射线灭菌,不带书写区,管与盖配套,无RNase、无DNase,50套/袋,10袋/盒,4盒/箱2000个/箱巴罗克Biologix81-71541.5ml冻存管,可站立,透明色,聚丙烯,伽玛射线灭菌,不带书写区,管与盖配套,无RNase、无DNase,50套/袋,10袋/盒,4盒/箱2000个/箱巴罗克Biologix81-72042.0ml冻存管,可站立,透明色,聚丙烯,伽玛射线灭菌,不带书写区,管与盖配套,无RNase、无DNase,50套/袋,10袋/盒,4盒/箱2000个/箱巴罗克Biologix81-72052ml棕色避光螺口管,可站立,棕色,聚丙烯,伽玛射线灭菌,不带书写区,管与盖配套,50套/袋,10袋/盒,4盒/箱2000个/箱巴罗克Biologix81-82042.0ml冻存管,可站立,透明色,聚丙烯,伽玛射线灭菌,带书写区,管与盖配套,无RNase、无DNase,50套/袋,10袋/盒,4盒/箱2000个/箱巴罗克Biologix88-6200S常规冻存管,米字底,2ml外旋,带白色盖子,可站立,侧面条形码、数字码,伽马射线灭菌;无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计;25套/袋,40袋箱1000个/箱巴罗克Biologix88-6201S常规冻存管,米字底,2ml外旋,带红色盖子,可站立,侧面条形码、数字码,伽马射线灭菌;无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计;25套/袋,40袋箱1000个/箱巴罗克Biologix88-6202S常规冻存管,米字底,2ml外旋,带绿色盖子,可站立,侧面条形码、数字码,伽马射线灭菌;无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计;25套/袋,40袋箱1000个/箱巴罗克Biologix88-6203S常规冻存管,米字底,2ml外旋,带蓝色盖子,可站立,侧面条形码、数字码,伽马射线灭菌;无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计;25套/袋,40袋箱1000个/箱巴罗克Biologix88-6204S常规冻存管,米字底,2ml外旋,带黄色盖子,可站立,侧面条形码、数字码,伽马射线灭菌;无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计;25套/袋,40袋箱1000个/箱巴罗克Biologix88-6205S常规冻存管,米字底,2ml外旋,带紫色盖子,可站立,侧面条形码、数字码,伽马射线灭菌;无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计;25套/袋,40袋箱1000个/箱巴罗克Biologix88-6207S常规冻存管,米字底,2ml外旋,带透明盖子,可站立,侧面条形码、数字码,伽马射线灭菌;无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计;25套/袋,40袋箱1000个/箱巴罗克Biologix88-6500S常规冻存管,米字底,5ml外旋,带白色盖子,可站立,侧面条形码、数字码,伽马射线灭菌;无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计;25套/袋,40袋/盒1000个/箱巴罗克Biologix88-6501S常规冻存管,米字底,5ml外旋,带红色盖子,可站立,侧面条形码、数字码,伽马射线灭菌;无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计;25套/袋,40袋/盒1000个/箱巴罗克Biologix88-6502S常规冻存管,米字底,5ml外旋,带绿色盖子,可站立,侧面条形码、数字码,伽马射线灭菌;无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计;25套/袋,40袋/盒1000个/箱巴罗克Biologix88-6503S常规冻存管,米字底,5ml外旋,带蓝色盖子,可站立,侧面条形码、数字码,伽马射线灭菌;无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计;25套/袋,40袋/盒1000个/箱巴罗克Biologix88-6504S常规冻存管,米字底,5ml外旋,带黄色盖子,可站立,侧面条形码、数字码,伽马射线灭菌;无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计;25套/袋,40袋/盒1000个/箱巴罗克Biologix88-6505S常规冻存管,米字底,5ml外旋,带紫色盖子,可站立,侧面条形码、数字码,伽马射线灭菌;无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计;25套/袋,40袋/盒1000个/箱巴罗克Biologix88-6507S常规冻存管,米字底,5ml外旋,带透明盖子,可站立,侧面条形码、数字码,伽马射线灭菌;无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计;25套/袋,40袋/盒1000个/箱巴罗克Biologix88-6210S常规冻存管,米字底,2.0ml内旋,带白色盖子,可站立,侧面条形码、数字码,伽马射线灭菌;有O型圈,PP材质,可站立,带书写区;液氮条件下-196℃到121℃,可反复冻融;25套/袋,40袋箱1000个/箱巴罗克Biologix88-6211S常规冻存管,米字底,2.0ml内旋,带红色盖子,可站立,侧面条形码、数字码,伽马射线灭菌;有O型圈,PP材质,可站立,带书写区;液氮条件下-196℃到121℃,可反复冻融;25套/袋,40袋箱1000个/箱巴罗克Biologix88-6212S常规冻存管,米字底,2.0ml内旋,带绿色盖子,可站立,侧面条形码、数字码,伽马射线灭菌;有O型圈,PP材质,可站立,带书写区;液氮条件下-196℃到121℃,可反复冻融;25套/袋,40袋箱1000个/箱巴罗克Biologix88-6213S常规冻存管,米字底,2.0ml内旋,带蓝色盖子,可站立,侧面条形码、数字码,伽马射线灭菌;有O型圈,PP材质,可站立,带书写区;液氮条件下-196℃到121℃,可反复冻融;25套/袋,40袋箱1000个/箱巴罗克Biologix88-6214S常规冻存管,米字底,2.0ml内旋,带黄色盖子,可站立,侧面条形码、数字码,伽马射线灭菌;有O型圈,PP材质,可站立,带书写区;液氮条件下-196℃到121℃,可反复冻融;25套/袋,40袋箱1000个/箱巴罗克Biologix88-6215S常规冻存管,米字底,2.0ml内旋,带紫色盖子,可站立,侧面条形码、数字码,伽马射线灭菌;有O型圈,PP材质,可站立,带书写区;液氮条件下-196℃到121℃,可反复冻融;25套/袋,40袋箱1000个/箱巴罗克Biologix88-6217S常规冻存管,米字底,2.0ml内旋,带透明盖子,可站立,侧面条形码、数字码,伽马射线灭菌;有O型圈,PP材质,可站立,带书写区;液氮条件下-196℃到121℃,可反复冻融;25套/袋,40袋箱1000个/箱巴罗克Biologix88-6050至尊冻存管-六边底,0.5ml外旋,带白色平盖,伽马射线灭菌,侧面预置一维码和编码数字,无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-6051至尊冻存管-六边底,0.5ml外旋,带红色平盖,伽马射线灭菌,侧面预置一维码和编码数字,无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-6052至尊冻存管-六边底,0.5ml外旋,带绿色平盖,伽马射线灭菌,侧面预置一维码和编码数字,无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-6053至尊冻存管-六边底,0.5ml外旋,带蓝色平盖,伽马射线灭菌,侧面预置一维码和编码数字,无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-6054至尊冻存管-六边底,0.5ml外旋,带黄色平盖,伽马射线灭菌,侧面预置一维码和编码数字,无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-6055至尊冻存管-六边底,0.5ml外旋,带紫色平盖,伽马射线灭菌,侧面预置一维码和编码数字,无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-6057至尊冻存管-六边底,0.5ml外旋,带透明平盖,伽马射线灭菌,侧面预置一维码和编码数字,无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-6100至尊冻存管-六边底,1.0ml外旋,带白色平盖,伽马射线灭菌,侧面预置一维码和编码数字,无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-6101至尊冻存管-六边底,1.0ml外旋,带红色平盖,伽马射线灭菌,侧面预置一维码和编码数字,无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-6102至尊冻存管-六边底,1.0ml外旋,带绿色平盖,伽马射线灭菌,侧面预置一维码和编码数字,无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-6103至尊冻存管-六边底,1.0ml外旋,带蓝色平盖,伽马射线灭菌,侧面预置一维码和编码数字,无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-6104至尊冻存管-六边底,1.0ml外旋,带黄色平盖,伽马射线灭菌,侧面预置一维码和编码数字,无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-6105至尊冻存管-六边底,1.0ml外旋,带紫色平盖,伽马射线灭菌,侧面预置一维码和编码数字,无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-6107至尊冻存管-六边底,1.0ml外旋,带透明平盖,伽马射线灭菌,侧面预置一维码和编码数字,无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-6150至尊冻存管-六边底,1.5ml外旋,带白色平盖,伽马射线灭菌,侧面预置一维码和编码数字,无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-6151至尊冻存管-六边底,1.5ml外旋,带红色平盖,伽马射线灭菌,侧面预置一维码和编码数字,无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-6152至尊冻存管-六边底,1.5ml外旋,带绿色平盖,伽马射线灭菌,侧面预置一维码和编码数字,无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-6153至尊冻存管-六边底,1.5ml外旋,带蓝色平盖,伽马射线灭菌,侧面预置一维码和编码数字,无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-6154至尊冻存管-六边底,1.5ml外旋,带黄色平盖,伽马射线灭菌,侧面预置一维码和编码数字,无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-6155至尊冻存管-六边底,1.5ml外旋,带紫色平盖,伽马射线灭菌,侧面预置一维码和编码数字,无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-6157至尊冻存管-六边底,0.5ml外旋,带透明平盖,伽马射线灭菌,侧面预置一维码和编码数字,无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-9050至尊冻存管-六边底,0.5ml外旋,带白色平盖,伽马射线灭菌,底部预置二维码,侧面预置一维码和数字码,无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-9051至尊冻存管-六边底,0.5ml外旋,带红色平盖,伽马射线灭菌,底部预置二维码,侧面预置一维码和数字码,无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-9052至尊冻存管-六边底,0.5ml外旋,带绿色平盖,伽马射线灭菌,底部预置二维码,侧面预置一维码和数字码,无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-9053至尊冻存管-六边底,0.5ml外旋,带蓝色平盖,伽马射线灭菌,底部预置二维码,侧面预置一维码和数字码,无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-9054至尊冻存管-六边底,0.5ml外旋,带黄色平盖,伽马射线灭菌,底部预置二维码,侧面预置一维码和数字码,无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-9055至尊冻存管-六边底,0.5ml外旋,带紫色平盖,伽马射线灭菌,底部预置二维码,侧面预置一维码和数字码,无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-9057至尊冻存管-六边底,0.5ml平盖,带透明平盖,伽马射线灭菌,底部预置二维码,侧面预置一维码和数字码,无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-9100至尊冻存管-六边底,1.0ml外旋,带白色平盖,伽马射线灭菌,底部预置二维码,侧面预置一维码和数字码,无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-9101至尊冻存管-六边底,1.0ml外旋,带红色平盖,伽马射线灭菌,底部预置二维码,侧面预置一维码和数字码,无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-9102至尊冻存管-六边底,1.0ml外旋,带绿色平盖,伽马射线灭菌,底部预置二维码,侧面预置一维码和数字码,无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-9103至尊冻存管-六边底,1.0ml外旋,带蓝色平盖,伽马射线灭菌,底部预置二维码,侧面预置一维码和数字码,无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-9104至尊冻存管-六边底,1.0ml外旋,带黄色平盖,伽马射线灭菌,底部预置二维码,侧面预置一维码和数字码,无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-9105至尊冻存管-六边底,1.0ml外旋,带紫色平盖,伽马射线灭菌,底部预置二维码,侧面预置一维码和数字码,无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-9107至尊冻存管-六边底,1.0ml平盖,带透明平盖,伽马射线灭菌,底部预置二维码,侧面预置一维码和数字码,无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-9150至尊冻存管-六边底,1.5ml外旋,带白色平盖,伽马射线灭菌,底部预置二维码,侧面预置一维码和数字码,无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-9151至尊冻存管-六边底,1.5ml外旋,带红色平盖,伽马射线灭菌,底部预置二维码,侧面预置一维码和数字码,无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-9152至尊冻存管-六边底,1.5ml外旋,带绿色平盖,伽马射线灭菌,底部预置二维码,侧面预置一维码和数字码,无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-9153至尊冻存管-六边底,1.5ml外旋,带蓝色平盖,伽马射线灭菌,底部预置二维码,侧面预置一维码和数字码,无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-9154至尊冻存管-六边底,1.5ml外旋,带黄色平盖,伽马射线灭菌,底部预置二维码,侧面预置一维码和数字码,无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-9155至尊冻存管-六边底,1.5ml外旋,带紫色平盖,伽马射线灭菌,底部预置二维码,侧面预置一维码和数字码,无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-9157至尊冻存管-六边底,1.5ml平盖,带透明平盖,伽马射线灭菌,底部预置二维码,侧面预置一维码和数字码,无内毒素和细胞毒素,无DNA酶、RNA酶和人类DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-9210至尊冻存管-六边底,2ml内旋,带白色盖子,聚丙烯,底部预置二维码,侧面预置一维码和数字码,可反复冻融;管体双色印刷,有书写区,黑色刻度印刷;伽马射线灭菌,无RNase、无DNase、无内毒素和外源DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-9211至尊冻存管-六边底,2ml内旋,带红色盖子,聚丙烯,底部预置二维码,侧面预置一维码和数字码,可反复冻融;管体双色印刷,有书写区,黑色刻度印刷;伽马射线灭菌,无RNase、无DNase、无内毒素和外源DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-9212至尊冻存管-六边底,2ml内旋,带绿色盖子,聚丙烯,底部预置二维码,侧面预置一维码和数字码,可反复冻融;管体双色印刷,有书写区,黑色刻度印刷;伽马射线灭菌,无RNase、无DNase、无内毒素和外源DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-9213至尊冻存管-六边底,2ml内旋,带蓝色盖子,聚丙烯,底部预置二维码,侧面预置一维码和数字码,可反复冻融;管体双色印刷,有书写区,黑色刻度印刷;伽马射线灭菌,无RNase、无DNase、无内毒素和外源DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-9214至尊冻存管-六边底,2ml内旋,带黄色盖子,聚丙烯,底部预置二维码,侧面预置一维码和数字码,可反复冻融;管体双色印刷,有书写区,黑色刻度印刷;伽马射线灭菌,无RNase、无DNase、无内毒素和外源DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-9215至尊冻存管-六边底,2ml内旋,带紫色盖子,聚丙烯,底部预置二维码,侧面预置一维码和数字码,可反复冻融;管体双色印刷,有书写区,黑色刻度印刷;伽马射线灭菌,无RNase、无DNase、无内毒素和外源DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix88-9217至尊冻存管-六边底,2ml内旋,带透明盖子,聚丙烯,底部预置二维码,侧面预置一维码和数字码,可反复冻融;管体双色印刷,有书写区,黑色刻度印刷;伽马射线灭菌,无RNase、无DNase、无内毒素和外源DNA;专为液氮和超低温冰箱使用而设计,25套/袋,40袋箱1000个/箱巴罗克Biologix

伽马射线光谱仪原理相关的资料

伽马射线光谱仪原理相关的资讯

  • 新突破!我国观测到迄今最亮伽马射线暴
    图①:科学载荷“高能爆发探索者”(示意图)。  图②:“慧眼”卫星(示意图)。  图③:中国高海拔宇宙线观测站(“拉索”)。  以上均为中科院高能所供图  制图:张丹峰中国科学院高能物理研究所负责建设和运行管理的中国高海拔宇宙线观测站(“拉索”)、科学载荷“高能爆发探索者”和“慧眼”卫星三大科学装置,近日同时探测到迄今最亮的伽马射线暴(GRB 221009A)。这是我国首次实现对伽马射线暴的天地多手段联合观测,打破了伽马射线暴亮度最高、光子能量最高、探测能量范围最高等多项伽马射线暴观测纪录,对于揭示伽马射线暴的爆发机制具有重要价值。  比以往最亮伽马射线暴亮10倍以上  伽马射线暴是宇宙中最剧烈的天体爆发现象,首次发现于上世纪60年代。伽马射线暴短至几毫秒,长达数小时,释放的能量超过太阳在其一生辐射能量的总和。持续时间较长的伽马射线暴产生于比太阳大几十倍的恒星星体坍缩爆炸,而持续时间较短的伽马射线暴则产生于两个致密天体(如黑洞或中子星)合并爆炸,还可能伴随发射引力波。  伽马射线暴的观测研究是天文前沿领域,近年来不断取得重大突破。2017年8月17日,在一个由两颗中子星合并爆炸产生的伽马射线暴之前观测到伴随产生的引力波,这是人类首次在电磁波和引力波窗口同时观测宇宙天体,开启了多信使天文学的新时代。  此次,迄今最亮的GRB 221009A伽马射线暴,近日被三大科学装置同时探测到。在这个伽马射线暴发生之前,人类探测到的伽马射线暴亮度纪录保持者是2013年4月27日发生的编号为GRB 130427A的一个伽马射线暴,全世界几乎所有重要望远镜都进行了观测。  本次观测中,“拉索”将伽马射线暴光子最高能量纪录提升近20倍,在国际上首次打开10万亿电子伏波段的伽马射线暴观测窗口,并与“慧眼”卫星和“高能爆发探索者”一起,发现这个爆发事件比以往人类观测到的最亮伽马射线暴亮了10倍以上。  实现对伽马射线暴的天地多手段联合观测  本次探测到的高强度爆发,发生在距离地球24亿光年处。如此明亮的伽马射线爆发,预计每几十年甚至百年才会出现一次。本次“拉索”探测到了大量的高能光子,最高光子能量达到了18万亿电子伏,在国际上首次打开了10万亿电子伏波段的伽马射线暴观测窗口。  “拉索”实验中科院高能所团队首席科学家曹臻研究员说:“这次‘拉索’在千亿电子伏以上的甚高能区记录到几万个光子信号,将给出伽马射线暴最高能段的光变曲线最精细的测量。”  凭借先进的探测器设计,“高能爆发探索者”成功对伽马射线暴GRB 221009A的软伽马射线光变特征进行高精度观测,展现出初期爆发和后随闪耀的演化过程。“慧眼”卫星的高能、中能和低能X射线望远镜首次在伽马射线暴观测中同时探测到信号,而且因为“慧眼”卫星当时正在扫描观测该天区,从而对这个迄今最亮伽马射线暴的余晖进行了及时监测。  得益于中科院高能所近些年天地一体化观测能力建设的高速发展,尤其是“拉索”的成功建造和运行占据国际领先地位,高能所首次实现对伽马射线暴的天地多手段联合观测,并独家实现从最高的十几万亿电子伏光子(“拉索”)到百万电子伏伽马射线(“高能爆发探索者”)和千电子伏X射线(“慧眼”卫星)的多谱段精细测量,跨越超9个量级。  曹臻说:“在过去半个多世纪探测到的数千个伽马射线暴中,最高能量光子达到大约1万亿电子伏(TeV)。本次‘拉索’探测到大量的高能光子,最高光子能量达到18万亿电子伏。”  引发巨大反响,大量相关研究迅速展开  “拉索”是以宇宙线观测研究为核心的国家重大科技基础设施,由中国自主提出并设计建造。该观测站位于四川省稻城县海拔4410米的海子山,主体工程于2021年7月完成建设并投入科学运行,是目前世界上灵敏度最高的超高能伽马射线天文台,其运行开启了“超高能伽马天文学”观测时代。捕捉和高统计量观测伽马射线暴是“拉索”的重要科学目标之一,此次亮度空前的爆发正好发生在“拉索”视场的中心附近,为完成该项科学目标奠定了强大的观测基础。  “慧眼”卫星是我国第一颗空间X射线天文卫星,于2017年6月发射运行,在轨观测5年多来,已在黑洞、中子星、快速射电暴等方面取得一大批重要原创成果。  “高能爆发探索者”是今年7月发射的空间新技术试验卫星的主要科学载荷之一,它采用“怀柔一号”卫星所开创的新型探测技术以及基于北斗短报文的准实时星地通信方案,能够迅速下传观测数据。“高能爆发探索者”目前处于在轨测试阶段,预计将获得更多重要成果。  伽马射线暴GRB 221009A发生后,“拉索”实验中科院高能所团队迅速展开数据分析,在爆发后不到两天就通过伽马射线暴协同观测网(GCN)向国际同行发布初步观测结果。进一步的数据分析和科学研究正由“拉索”国际合作组成员全力开展。中科院高能所“慧眼”卫星和“高能爆发探索者”观测运行团队、载荷团队和数据分析团队正迅速投入观测分析,并及时启动机遇观测。在项目团队密切协作下,“慧眼”卫星和“高能爆发探索者”已得到初步分析结果,并通过天文电报和伽马射线暴协同观测网向国际同行发布。  目前,探测结果已在国际引发巨大反响,大量相关研究展开,涌现出关于新物理可能性的许多讨论。这些测量对宇宙中存在的背景光场等基本物理参数和模型将作出强烈的限制,预计会产生重要的认知水平提升。
  • 北京市核与辐射安全中心343万采购伽马射线成像谱仪等设备
    项目编号:11000022210200005753-XM001项目名称:核与辐射环境应急监测能力建设项目预算金额:343 万元(人民币)采购需求:序号标的名称数量交货地点简要技术需求或服务要求1伽马射线成像谱仪1套采购人指定地点分析特定区域辐射强度空间分布、快速确定放射性场所同位素种类及其热点所在方位。详见第四章采购需求书。2便携式特殊核(中子)材料甄别仪1套采购人指定地点对样品中的γ射线和中子进行测量,实现放射性预警的同时,通过后端算法分析进行特殊核材料及中子材料的甄别。详见第四章采购需求书。3低本底α、β测量仪1套采购人指定地点用于环境实验室、保健物理、放化实验室、工业安全、食品安全、核医学等领域的样品中α、β放射性测量。详见第四章采购需求书。4液氮回凝制冷系统2套采购人指定地点为顶部插拔式高纯锗探测器的工作提供高可靠的冷却系统。详见第四章采购需求书。5碘采样器2套采购人指定地点采集空气中气溶胶、微粒碘(或其它碘成份)等成分,详见第四章采购需求书。6应急移动单兵系统1套采购人指定地点用于采集核事故应急情况下单兵检测人员在应急现场的音/视频信息、核与辐射应急检测数据及GPS 定位信息,详见第四章采购需求书。7大流量气溶胶采样器1套采购人指定地点高效地收集室内外空气中的气溶胶成分。详见第四章采购需求书。8长杆γ剂量率仪1套采购人指定地点用于对难以接近区域或对热点作长距离测量γ剂量率。详见第四章采购需求书。9氚采样器1套采购人指定地点对环境中气态氚和气态氚水收集,详见第四章采购需求书。注:投标人必须针对本项目所有内容进行投标,不允许拆分投标。合同履行期限:合同签订后6个月内交货,并通过采购人验收。本项目不接受联合体投标。
  • 新型高敏感成像技术研发成功 集磁共振和伽马射线优点于一身
    英国《自然》杂志28日公开的一篇论文,描述了一种集磁共振成像和伽马射线成像优点于一身的新型光谱成像技术,有望为开发新型医学诊断工具打下基础。  磁共振成像是将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。这是医学领域非常重要的诊断工具,因为它具有卓越的空间分辨率,能够分辨图像中的个体特征。而伽马射线探测器则具有高度敏感性,可用于探测微量放射性示踪剂。这些示踪剂能够定位特定的目标,因此这种图像可用于诊断癌细胞的分布和数量以及脑和心血管畸形。一直以来,这两种技术各有千秋,但双方的优点却很难兼得。  此次,美国弗吉尼亚大学研究人员高登盖茨、威尔逊米勒及其团队成员,发明了一种全新的成像技术,先利用磁共振收集空间信息,再利用伽马射线收集图像信息。研究人员通过在玻璃槽中进行放射性原子成像操作,证明了该技术的可行性。而传统的磁共振成像方法需要几十亿甚至更多的原子才能生成图像。  在目前阶段,如使用该技术获取示例图像的数据,大约需要60个小时,这对于临床应用而言并不理想。不过论文作者提出,虽然该技术手段在某些方面仍需改进,譬如说处理速度,但提高探测器的规模或者放射性示踪剂的数量或有助于克服这些问题。  在论文随附的新闻与观点文章中,英国诺丁汉大学科学家认为,该技术将有助于生物学和非生物学系统的研究。

伽马射线光谱仪原理相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制