电源环路分析仪

仪器信息网电源环路分析仪专题为您提供2024年最新电源环路分析仪价格报价、厂家品牌的相关信息, 包括电源环路分析仪参数、型号等,不管是国产,还是进口品牌的电源环路分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电源环路分析仪相关的耗材配件、试剂标物,还有电源环路分析仪相关的最新资讯、资料,以及电源环路分析仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

电源环路分析仪相关的厂商

  • 南京长友宜分析仪器有限公司是国内著名的分析仪器研发生产厂家,重合同守信用企业。公司集研发、生产、销售、培训、维修、技术咨询为一体,汇集了一批长期从事分析仪器的高科技资深专业人才。引用国内外最新的微机与传感器技术、红外技术与光学、机械、检验等技术结合,从客户的实际需要出发,研究开发出了一系列高速分析仪器及配套检测设备,如:炉前碳硅分析仪、炉前熔炼测温仪、红外碳硫分析仪、多元素分析仪、光谱分析仪、金相分析仪、五大元素分析仪、铜合金铝合金分析仪、矿石分析仪等化验检测设备。
    留言咨询
  • 山东联众分析仪器有限公司是一家专业生产色谱仪的高科技企业。凭借多年的生产经验及人才积累、通过不断研发、创新,已成为专业色谱领域的的行业领跑者,并建立起完善的现场安装及售后服务体系,不断服务于科研院校、环境监测、石油化工、燃气、煤矿、电力、食品等行业。  我们围绕客户的实际需求不断创新,加强校企合作,持续引进高端技术、人才,致力打造成为专业的、提供整体解决方案的分析仪器制造企业。  公司于2015年被《国家食品企业质量安全检测技术示范中心》授予实验室分析检测仪器示范单位荣誉称号,公司的气相色谱仪也同时被该中心确定为标准检测仪器并投入使用。  公司在多年经营过程中以科技为先导,不断引进、吸收、研发、创新、开发了品质优良的分析仪器。形成了以燃气分析仪、微量硫分析仪、在线气体分析仪为主的气相色谱仪三大系列。  公司的质量方针:开拓创新,精益求精,精细管理,优质服务。  公司的品质承诺:时刻关注客户,满足顾客当前和未来对产品品质的要求。  公司的服务宗旨;想客户所想,急客户所急,供客户所需,以更加完美的技术品质和真诚的服务回报用户!  经营理念:在专注的细分市场,实现领跑的差异化优势。  核心价值观:待人以诚,执事以信。凡事要利人,时刻站在用户的角度去考虑产品及服务问题
    留言咨询
  • 南京凯迪高速分析仪器有限公司是一家集科研、生产及销售为一体的专业化科技企业。专业生产各类多元素分析仪,碳硫分析仪,炉前碳硅分析仪,高频红外碳硫分析仪,炉前铁水质量管理仪,炉前铁水分析仪,合金分析仪,矿石分析仪,不锈钢分析仪,有色金属分析仪,红外碳硫分析仪,五大元素分析仪,金属元素分析仪,电脑碳硫分析仪,元素分析仪,三元素分析仪,铁水质量管理仪,铁水在线分析仪,铁水碳硅分析仪,热分析仪,碳硅分析仪,炉前快速分析仪器,红外碳硫仪,钢铁分析仪,钢铁成分分析仪,智能电脑碳硫联测分析仪,定硫仪,碳硫仪,定碳仪,化验设备,分析仪器,实验设备,化验设备,生铁化验仪器,碳硫高速分析仪,五金分析仪器,五金化验仪,高速分析仪器,三元素检测仪,微机元素分析仪,微机碳硫分析仪,铁合金分析仪,铜合金分析仪,铝合金分析仪,铝合金化验仪器,锌合金分析仪,镁合金分析仪,不锈钢分析仪器,矿石成分分析仪器,矿石化验仪器,铁矿石化验仪器,矿石分析仪器,矿石成分分析仪器,铝矿石分析仪器,铝土矿分析仪器,镁矿分析仪器,铝矿石化验仪,锌矿石分析仪器,锌矿石化验仪器,磁铁矿化验仪器,磁铁矿品位分析仪,镍矿石品位分析仪,铁矿石品位分析仪,矿石品位分析仪器,镁矿化验仪器,磁铁矿分析仪器,铁矿石分析仪器,矿石元素分析仪器,铁矿分析仪器,锌矿化验设备,铁矿化验设备,镁矿化验仪器,矿石品位分析仪器,铁矿石品位分析仪,镍矿石品位分析仪,矿石元素测定仪,矿石化验设备,采矿分析仪器,开矿化验仪器,精矿粉分析仪器,矿粉分析仪器,铁矿粉分析仪,铁粉化验仪器,铝矿石分析仪,铜矿石分析仪,铁矿石分析仪,微量元素分析仪,现场分析仪器,焦炭分析仪,铸造分析仪,黑色金属分析仪,光谱仪,分光光度计,金相显微镜,元素分析,元素化验,制样设备等金相仪器。其产品广泛应用于冶金,铸造,采矿,建筑,机械,电子,环保,卫生,化工,电力,技术监督、质量监督及大专院校等部门对钢铁分析、冶金化验、铸造分析、化工设备、矿石分析等一系列产品的分析,深受用户喜爱。可测定生铁、铸铁、球铁、普碳钢、合金钢、合金铸铁、不锈钢、各种矿石、有色金属中碳、硫、锰、磷、硅、镍、铬、钼、铜、钛、锌、钒、镁、稀土等多种材料中各种化学成份的百分含量 。与传统法比较,其速度和精度已有了极大提高,常规的炉前控制元素检测速度达到了"读秒"水准. 仪器测量范围广、精度高,高、中、低档齐全,并能接受用户特殊定货。
    留言咨询

电源环路分析仪相关的仪器

  • 一,2通道 DTS专用高速数据采集卡( 用于Phase- OTDR相位光时域反射计系统)phase optical time-domain reflectometry (Phase-OTDR) system ,低成本相位光时域反射计(phase OTDR)系统DTS 专用高速数据采集卡是一款高速微弱信号数据采集卡。DTS 专用高速数据采集卡采用我公司科技创新设计的硬件实时累加平均技术实现了微弱信号增强采集,提取出被噪声淹没的相关信号。通过板载同步技术, 原始信号经过最多 32768 次累加,可使信号信噪比提高 180 倍,是一种用途广泛的微弱信号检测板卡。DTS 专用高速数据采集卡板载两片 12bit 高速 A/D 转换器,根据客户需求, 可提供 100MSPS,125MSPS 两个采样率版本。DTS 专用高速数据采集卡精心设计了独te的并行同步信号采集累加技术, 使采集和累加同步完成。对长度 10000 点的原始信号做 16000 次采集、累加,计算机得到最终结果只需 3 秒。DTS 专用高速数据采集卡具有外触发、内触发两种触发模式。客户可以任意选择设备触发采集卡模式或采集卡触发设备模式。经过精心信号完整性处理, 设备给出的触发脉冲过冲在 5%以内,优越的信号质量保证设备不被误触发。DTS 专用高速数据采集卡可以精确地恢复检测和测量被噪声背景淹没的微弱信号,te别适合用于分布式光纤传感系统。2通道 DTS专用高速数据采集卡( 用于Phase- OTDR相位光时域反射计系统),2通道 DTS专用高速数据采集卡( 用于Phase- OTDR相位光时域反射计系统)通用参数采样频率:100M/125M 可选A/D 分辨率:12bit通道数:2 通道数据输出接口:PC104输入阻抗:50 欧信号输入方式:SMA两通道同步抖动:5psRMS输入量程:±2V模拟信号带宽(-3dB):100MHZ触发方式:内触发、外触发(上升沿触发)内触发宽度:N/采样频率,N 可由软件设定内触发周期:M(uS),M 可由软件设定单次采样信噪比:≥60dB采样长度:100~10000 采样点单次采样精度:±0.1%累加次数:10~32768 次任意可调累加平均方式:实时采样累加平均,3 秒可完成 10000 采样点 16384 次采样累加功耗:15W工作温度:0℃—50℃存储温度:0℃—100℃相对湿度:0—85%仪器驱动程序:Windows XP应用程序:提供 VC++6.0 开发平台下 DEMO 程序源代码及技术支持信号接口如上图所示,采集卡提供 4 个 SMA 输入输出口。功能如下表:信号名功能S1_IN优秀路模拟信号输入S2_IN第二路模拟信号输入IT内同步触发输出OU外同步触发输入DTS 系统接线样例1、光源(设备)触发采集卡连接方式2、采集卡触发光源(设备)连接方式采集卡实测效果( DTS 系统应用)以下信号使用的是 DTS 专用高速数据采集卡-150 型号采集卡,配合我司的脉冲光源和 APD 探测电路,使用 6KM 长 InfiniCor公司 62.5μm 多模光纤,环境温度为 21℃,在约四公里处有四个光纤圈在 70℃的油槽中,长度依次为 5M, 2M,3M,8M,在约五公里处也打有一个光纤圈,放在 70℃油槽中。4096 次平均参考光曲线 4096 次平均信号光曲线4096 次平均光纤圈部分曲线 32768次平均参考光曲线 32768 次平均信号光曲线32768次平均光纤圈部分曲线二, DTS一体化光模块 (集成拉曼光源,WMD,APD探测器,采集卡)DTS一体化光模块内部集成了WDM和筱晓光子自主研发并具有相应知识产权的拉曼光源、APD探测器、采集卡。该模块集成度高、尺寸小。所有的模块经过严格的环境测试,保证了DTS一体化光模块的长期可靠性和稳定性,可直接集成到DTS整体设备使用,方便客户设计、应用DTS设备。DTS一体化光模块 (集成拉曼光源,WMD,APD探测器,采集卡),DTS一体化光模块 (集成拉曼光源,WMD,APD探测器,采集卡)产品特点高集成度(拉曼光源、WMD,APD,采集卡)高峰值、纳秒级的脉冲激光输出TCP/IP控制高稳定性和高可靠性工作环境温度:-10~55℃产品应用DTS光纤测温激光测距实验室科研用光源光纤传感系统技术参数技术指标:单模DTS参数Min. 值典型值Max. 值单位备注测量距离-2525Km温度精度-±3-℃25Km@3min温度分辨率-0.1-℃采样分辨率-0.4-m空间分辨率-5-m定位精度-5-m测量时间-35Min测量范围-20-120℃常用光纤 多模DTS参数Min. 值典型值Max. 值单位备注测量距离--10Km温度精度-±2-℃10Km@6s温度分辨率-0.1-℃采样分辨率-0.4-m空间分辨率-2-m定位精度-2-m测量时间-1-s测量范围-20-120℃常用光纤机械结构结构类型参数规格单位备注 模块式结构尺寸250x150x35mm连接头类型FC/APC默认输出尾纤类型单模光纤 900um 套管尾纤长度1000±10mm电性能特性参数Min. 值典型值Max. 值单位供电电压+9+12+28V启动功耗-1520W全温功耗-2025W工作环境参数Min. 值典型值Max. 值单位备注工作温度范围-10+25+55℃储存温度范围-40-+70℃相对湿度5-90三, BLAST 分布式布里渊环路应变和温度分析仪 (DTSS 温度传感)Brillouin Loop Analyzer of Strain and Temperature 布里渊环路应变和温度分析仪分布式温度传感 Distributed Temperature Sensing(DTS) 允许沿传统光纤精确测量温度值,是常见的 DFOS 技术之一,具有广泛的用途,并且已经在不同环境中得到稳定应用。可以采用不同的方法和技术来获得 DTS 测量值。 我们推出布里渊光时域分析(BOTDA) 技术基于 DTSS,能够沿着传统光纤进行可靠和精确的温度测量。以简单易用且高度可配置的询问器形式呈现,可为科学和工业团体提供开发新研究和应用的宝贵工具。BLAST 是一种基于 BOTDA (Brillouin Optical Time Domain Analyser 布里渊光时域分析仪) 技术的 DTSS 系统,它采用新技术和方法来提高最终测量的质量并降低噪声。询问器沿着连续的光纤环路测量数千个点,获取布里渊频移 Brillouin Frequency Shift (BFS) 值,该值可以转换为光纤上的直接温度读数。BLAST 提供简单直接的 DTSS 测量,利用改进的布里渊检测技术来提高 BFS 测量的质量,从而改善获取的温度值,从而在所有光纤环路中提供一致且低噪声的性能。BLAST 分布式布里渊环路应变和温度分析仪 (DTSS 温度传感),BLAST 分布式布里渊环路应变和温度分析仪 (DTSS 温度传感)产品特点高达 0.1 度的灵敏度空间分辨率低至 1 m直接温度读数(需要参考)易于使用的配置和简单的测量长达 50 公里的环路范围,无需放大完整的可配置采集时间能够实现快速(30 秒)测量时间两个盒子:光学单元和处理单元产品应用BLAST 的构建和设计采用简单的配置方法,允许轻松修改关键参数测量以适应最终用户需要 。审问者的多功能性允许在多个应用程序中使用:基础设施健康监测电力电缆监控油气监测(管道泄漏)可再生能源控制和勘探(地热)火灾隐患检测热能发电通用参数测量波长1550 ± 0.5 nm测量通道1个通道(循环)距离范围环路50km85Km 放大(初步)空间分辨率(标距)1 到 25 m空间采样1 m准确性 (σ)10 . 1 º C动态范围Brillouin 位移: ± 2 GHzTª : 多达 600 º C测量时间Min. 值: 30 sec for 10 Km典型值: 5 min for 50 Km系统接口光连接器SC/APC数据以太网 1 Gb, USB 3.0视频HDMI, DP1. 超过 4 km,3 m空间分辨率,150 MHz(2 MHz 步长)频率扫描,50km G .652D 光纤。其它参数物理和电气光学单元19” 机架式,, 5U, 40 cm 深,15 Kg处理单元19” 机架式, 4U, 50 cm 深,23 Kg2温度范围+15 to +35 º C功率110/220 V, 50/60 Hz, 500 W2. 无需添加存储驱动器Alcala de Ebro Ebro河附近天坑引起的地形变形的BLAST DTSS测量(西班牙阿拉贡,2020-2022)
    留言咨询
  • 在线氨氮分析仪 400-860-5168转1975
    在线氨氮分析仪型号:PM8202I在线氨氮分析仪概述:氨氮分析仪主要由控制器搭配Bsens730氨氮电极组成,可分别连续在线监测水体中氟离子、氯离子、氨氮浓度的变化。应用:自来水、污水及各种工业用水。产品特点:● 防水防气全密封外壳,防护等级高;● 简单,用户友好型中英文操作界面;● 大屏液晶显示离子浓度、温度、时间及继电器状态;● 离子选择电极一次性投入低;● 需定期电极校准,测量可靠;● 2路4-20mA,RS485 Modbus;● 密码保护防误操作。型 号PM8202 I测量范围0.00~20000ppm分辨率0.0./0.1/1ppm精度±0.01,±0.1,±1ppm温度补偿-10~130℃手动/自动;(NTC30K/PT1000)温度工作温度:-10~70.0℃;储存温度:-20~70.0℃显示带背光超大点阵LCD语言中/英文存储60万条数据电源90-260VAC,50/60Hz;24VDC可选变送输出2路隔离变送4-20mA输出,最大环路500Ω,0.1%F.S,可设定测量值和温度通讯功能RS485 Modbus清洗输出清洗间隔:0.1-1000h可调,清洗时间:1-1000s可调报警输出2组独立Hi/Lo报警点,带迟滞设置,5A/250VAC/30VDC安装方式壁挂式、管道式、面板式防护等级IP65外观尺寸144×144×108mm开孔尺寸138×138mm重量0.87KG
    留言咨询
  • 在线氨氮分析仪-量程 400-860-5168转1975
    在线氨氮分析仪-量程型号:PM8202I在线氨氮分析仪-量程概述:氨氮分析仪主要由控制器搭配Bsens730氨氮电极组成,可分别连续在线监测水体中氟离子、氯离子、氨氮浓度的变化。应用:自来水、污水及各种工业用水。产品特点:● 防水防气全密封外壳,防护等级高;● 简单,用户友好型中英文操作界面;● 大屏液晶显示离子浓度、温度、时间及继电器状态;● 离子选择电极一次性投入低;● 需定期电极校准,测量可靠;● 2路4-20mA,RS485 Modbus;● 密码保护防误操作。型 号PM8202 I测量范围0.00~20000ppm分辨率0.0./0.1/1ppm精度±0.01,±0.1,±1ppm温度补偿-10~130℃手动/自动;(NTC30K/PT1000)温度工作温度:-10~70.0℃;储存温度:-20~70.0℃显示带背光超大点阵LCD语言中/英文存储60万条数据电源90-260VAC,50/60Hz;24VDC可选变送输出2路隔离变送4-20mA输出,最大环路500Ω,0.1%F.S,可设定测量值和温度通讯功能RS485 Modbus清洗输出清洗间隔:0.1-1000h可调,清洗时间:1-1000s可调报警输出2组独立Hi/Lo报警点,带迟滞设置,5A/250VAC/30VDC安装方式壁挂式、管道式、面板式防护等级IP65外观尺寸144×144×108mm开孔尺寸138×138mm重量0.87KG
    留言咨询

电源环路分析仪相关的资讯

  • 分析仪器电源的核心技术指标及测试方法
    摘要:电源是各类分析仪器最重要的、最常用的关键部件之一;本文重点讨论了分析仪器中使用最多的空心阴极灯、氘灯、钨灯等的直流电源、交流电源、脉冲电源等及其核心技术指标的测试方法和有关问题;这些问题对有关仪器的研发者、制造者、维修者、使用者都有非常重要的参考意义。0、前言目前,国内外许多科技工作者对分析仪器中最重要的的电光系统(包括电源和灯泡)普遍重视不够;大家认为只要灯泡好就行。其实不然,如果电源不好,仪器灯泡再好对仪器整机是没有用的[1];当然如果灯泡不好,电源再好也同样是不行的。本文只讨论有关电源;例如:原子吸收分光光度计(AAS)、原子荧光光度计(AFP)、紫外可见分光光度计(UVS)、旋光分光光度计(ORD)、高效液相色谱(HPLC)等仪器中使用最多的空心阴极灯、氘灯、钨灯等电源;如果这些仪器中的电光系统(灯泡和电源)中有一个元件不稳定或出现故障,整个仪器就不可能稳定。特别是电光源系统中,所有灯泡都依赖于电源,没有电源,灯泡就不能发光;即使有了电源,如果电源的核心性能指标不好,整个分析仪器就不可能稳定可靠。例如:各类空心阴极灯、氘灯的电源的触发电压、工作电压、工作电流、预热时间、电源的纹波、电流调整率等核心指标中,只要某一个指标出现问题,灯泡就不能发出稳定可靠的光。所以,AAS、AFP、UVS、ORD、HPLC等所有光谱仪器和色谱仪器的研发者、制造者、维修者、使用者,都必须高度重视分析仪器的电光源系统中的电源。本文将对各类光谱、色谱仪器中使用最多的空心阴极灯、氘灯、钨灯等的电源组成及其核心性能技术指标的测试方法和有关问题进行讨论。一、空心阴极灯电源1、直流电源空心阴极灯系统发光的稳定性,既依赖于灯泡的质量,又依赖于电源的稳定性。空心阴极灯必须要求电源有足够高的起辉(又称触发)电压(250~500V)才能点亮,同时必须要有足够高的工作电压(150~300V)和工作电流(4~20mA)才能维持正常工作。空心阴极灯的电源分直流电源和交流(脉冲)电源两类。目前,空心阴极灯在大多数情况下,都是使用脉冲电源。但是也有人使用直流电源;如果使用直流电源,对其稳定性要求很高。通常采用如下图所示的空心阴极灯恒流电源,并要求电流稳定性(电流调整率)达到(或优于)0.05%以上。 空心阴极灯的恒流电源组成图2、交流电源或脉冲电源一般来讲,空心阴极灯的电源如果是采用直流电源,其发光效率低,并且电流大到一定程度时,会产生自吸现象,同时还容易受到干扰。因此。为了提高空心阴极灯的输出效率,减少自吸现象、谱线变宽和减少干扰,目前,国内外的大多数的AAS都普遍采用脉冲电源供电。脉冲电源的脉冲调制频率和占空比根据不同仪器各异;一般都是采用400Hz以上的调制频率,例如作者使用过的TAS-986/990仪器的空心阴极灯电源的调制频率就是400Hz、其占空比为 4:1。一般空心阴极灯的脉冲供电电流波形如下图所示。 空心阴极灯的脉冲供电电流波形图脉冲供电方式可使用很大的峰值电流,但是平均电流很小。这样,可以延长空心阴极灯的寿命。例如:作者的实践表明:假设采用400Hz的脉冲供电,脉冲宽度为15µ s,峰值电流300mA,则可得到比直流供电时大150倍的输出光强度;但是,自吸现象和谱线宽度并无明显增加。这足已说明脉冲供电的优越性。二、 氘灯恒流电源及其性能技术指标的测试方法1、电路组成氘灯及其电源是UVS的电光系统的关键部件(对AAS仪器而言,氘灯主要用来扣背景,也非常重要)。氘灯的好坏直接影响UVS整机质量和AAS扣背景的能力,影响仪器整机的灵敏度和质量。所以,对氘灯电源要认真测试;特别是用直流恒流电源的氘灯,更加要注意重视对有关核心性能指标的测试。众所周知,氘灯属于气体放电的光源,它需要一个稳定的氘灯恒流电源,其输出电流一般为100-500mA。而氘灯工作时,其工作额定电流一般恒定为300mA,所以称为氘灯恒流电源。氘灯恒流电源是UVS和AAS(一般5mA)的关键部件之一。下图为作者研制的一种非常适用于高精度氘灯恒流电源的电路组成图。氘灯恒流电源的原理图目前,我国的许多计量部门,经常在有关的光谱仪器检定标准中规定:电源波动对测试结果影响的技术指标;如:1990年9月1日开始实施的中华人民共和国国家计量检定规程-JJG682-90中,明确提出“电源电压变化的影响:外电电源电压在220±22V范围内改变,仪器100%透射比的最大变化应小于0.5%”。又如:1997年6月1日开始实施的中华人民共和国国家计量技术规范,JJG375-96中,提出“电源电压的影响:电源电压(220±22)V变化时对仪器的影响应符合具体规定的要求”。而该要求示值变化只允许±0.5%(对A级光栅式的仪器要求示值变化±0.3%;B级要求±0.5%)。这样规定的技术指标一是太低,二是不大科学。因为外电电源就产生±0.5%的分析误差,如果再加样品前处理、噪声、光谱带宽、环境干扰等引起的误差,仪器的分析测试结果总误差就会大得惊人,连一般分析工作的最低要求也达不到。这种技术指标的仪器根本不能满足使用要求。我们说这种技术指标不科学,主要是指它是一个电子学的技术指标,应该用电子学的指标(电流调整率、纹波系数、漂移等)来衡量,而不应该用“示值变化±0.3%”等来表示。当然也可以归一到吸光度(Abs)来表示。作者在实践中,计算了自己研发的AAS和UVS在紫外区工作时微光信号的大小,发现AAS、UVS的光信号在紫外区一般为毫微流明(nLm)级;所以,AAS、UVS属于微光测试范畴。为了保证AAS、UVS仪器的稳定性,一般高质量的AAS和UVS,其氘灯恒流电源的电流调整率要求达到0.05%,纹波系数要求在0.5% 以内。作者曾研究过一种高性能的氘灯恒流电源(DLPS-3型氘灯恒流电源),其电流调整率达到0.0006%,获得了上海市的科技进步奖。为了延长氘灯的寿命,在点燃氘灯以前,氘灯的灯丝一定要事先经过预热;预热时间可以从10秒到30秒均可,使用者可以自选。但一般科技工作者大都取10秒左右的预热时间。否则,如果氘灯不经过预热而直接点亮,氘灯的寿命肯定会缩短。作者在实践中发现,一般国产氘灯的氘灯触发电压为200到400伏,最低170伏也能点亮;一般进口氘灯的触发电压为350伏到650伏。如果一开机,氘灯不经过预热,氘灯的触发电压一下就直接加到阳极上,就会严重缩短氘灯寿命。氘灯电源向氘灯提供的灯丝电压和灯丝电流,一定要与氘灯灯泡的要求相一致。目前国际上一般都是两种类型;一种是2.5V(伏),4A(安培);一种是10V,0.8A。从氘灯电源的制作来讲,因为电流小,10V,0.8A比较好作。而2.5V(伏),4A(安培)的灯丝供电,因电流很大,氘灯的电源比较难制作,同时,因为电流大,容易因为发热而产生漂移。所以,作者认为在AAS中,最好不要选用2.5V(伏),4A(安培)的灯丝供电的氘灯。为了延长氘灯的寿命,还可将氘灯用在半功率点上;即将氘灯恒流电源的工作电流调节到180mA左右。作者的实践证明,最好使用在150到200mA范围内。这样作可大大延长氘灯寿命。有时可使氘灯的寿命延长好几倍。本人研制的优质氘灯电源,在中国科学院组织的专家鉴定会上,用户使用“坏了”的废弃氘灯带到现场当场测试,都可以点亮,并且很稳定!使用者可以对氘灯恒流电源的稳定性作简单的测试,以便判断氘灯电源的稳定性是否合格。最重要的是测试三个指标;其一是电流调整率。其二是漂移,其三是纹波系数目前国际上几种高水平的氘灯电源及其主要技术指标2、氘灯恒流电源的电流调整率的测试方法氘灯是分析仪器中使用最多的光源之一,氘灯也是对电源要求最高的光源之一。因此,对氘灯电源的指标测试也要求非常严格。特别是对电流调整率的测试更是如此;其测试方法如下:通过一只0.5KV的调压变压器,将交流电源引入恒流电源;通过恒流电源点亮氘灯,在氘灯电源的输出端用分压器取采样电压约取1.8V左右(直流信号电压),用数字电压表监控。氘灯电源预热半小时后,调节调压变压器,分别记录198V、220V、242V所对应的1.8V直流电压的变化(即记录交流供电电压220V变化±10%时,所对应的输出直流电压的变化值)。例如:作者在研制DLPS-3型氘灯恒流电源时,实际测量数据的结果如下表所示:DLPS-3型氘灯恒流电源时的实际测量数据 VS V0 V0 V0 V0 V01981.74801.74781.74791.74781.74792201.74791.74791.74791.74791.74792421.74791.74791.74791.74791.7480由上表可计算出,作者研制的氘灯恒流电源的电流调整率为:SI=ΔV0/ V0=0.0001/1.7479=0.0000572=5.72×10-5式中:ΔV0=V0242-V0198差值中的最大者;即1.7479-1.7478=0.0001V0为220V对应的直流输出电压根据国际微光测试协会的建议:用于微光测试仪器的电源,一般要求电流调整率SI达到0.05% (即 5.0×10-4)。3、氘灯恒流电源漂移的测试方法首先点亮氘灯,电源预热半小时后,在上述电流调整率测试的条件下,固定输入电压为220V左右,用高精度的数字电压表记录1.8V左右的直流输出电压在一小时内的变化值V0,即是氘灯电源的漂移。目前国际上氘灯电源的漂移一般为1×10-3~5×10-4。4、氘灯恒流电源的纹波系数(或纹波电压)的测试方法在点亮氘灯或假负载的情况下,用交流毫伏表或示波器直接测量。作者采用的氘灯恒流电源的纹波系数的简单测试方法有两种:第一,点亮氘灯,预热半小时后,用示波器或交流真空毫伏表,直接在氘灯的阴极和阳极之间测试。例如:作者[2]在研制DLSP-3型氘灯恒流电源时,曾采用这种方法测得纹波电压15mV,测得氘灯两端的直流工作电压为69.11V;由此计算出纹波系数SR=15mV/69.11V=2.17×10-4。第二,点亮氘灯,预热半小时后,用示波器或交流真空毫伏表,在采样电阻上测得纹波电压3mV,测得采样电阻上的直流工作电压为1.7675V;由此计算出纹波系数SR=3mV/1.7675V=1.7×10-3;但是,这是一个假数据;如果采样电压变为为69.11V(增大39倍),则纹波电压也增大到117mV。纹波系数还是一样的。作者的实践表明,在一般情况下,第一种方法较接近实际,比较可靠。一般要求氘灯电源的纹波系数在0.5%以内。三、开关电源的核心技术指标及其测试方法目前,很多企业采用开关电源做氘灯供电电源;其测试方法如下:目前很多科技工作者们,经常使用开关电源。但是,不注重对开关电源的性能技术指标的测试,这是很不妥当的;因为开关电源的组成主要包括:输入电网滤波器、输入整流滤波器、电压变换器、输出整流滤波器、控制电路、保护电路等。开关电源的工作原理是将220V的市电(交流电)先变成直流,而后通过变换器将直流变成交流,再将交流变成直流。它有体积小、重量轻(只有线性电源的25%左右)、功耗小、转化效率高(一般为60-79%;而线性电源一般只有30-40%)等优点。但是,它的输入电压调整率、纹波电压、电流调整率、漂移等指标也很重要,如果不经过测试,不知道这些性能技术指标的情况,就会影响正确使用 ,或者说不能将开关电源用在最佳状态;特别是输入电压调整率、纹波电压、电流调整率和漂移这四项核心性能技术指标,会影响开关电源的使用质量。直至影响仪器的整机的稳定性、噪声和漂移,影响整台仪器的质量。开关电源的输入电压调整率、电流调整率(负载调整率)、纹波电压、漂移和噪声的测试方法简述如下:1、电压调整率测试方法:输入电压调整率是指的输入交流电压变化时,输出电压相应变化的情况(或变化率)。其测试方法如下式所述:LRV=(V242-V198)/V220;式中:LRV为输入电压调整率;V242为输入电压为交流242V时的输出电压(直流);V198为输入电压为交流198V时的输出电压(直流);V220为输入电压为交流220V时的输出电压(直流);只要测出相应的交流电压、直流电压,代入式中,就可算得输入电压调整率。具体操作方法如下:开关电源的输入交流电压通过一只0.5KV(或1 KV)的调压变压器;采用假负载,在电源的输出端用分压器取采样电压约取1.5V-1.8V的直流信号电压,用4位半以上的数字电压表监控。冷态开机预热半小时后,调节调压变压器,分别记录198V、220V、242V所对应的直流电压(即记录交流供电电压220V变化±10%时,所对应的输出直流电压),代入上式即可得到电压调整率。根据国际微光测试协会的建议:用于微光测试仪器的电源,一般要求电压调整率SV达到0.05% (即5.0×10-4)。2、电流调整率(负载调整率)的测试方法氘灯的电流调整率(负载调整率)是指输出电流在额定范围变化时(一般在测试时采用假负载,取工作电流为50mA-350mA变化),输出电压的变化率。其测试方法如下式所述:LRI=(V50-V359)/VH;×100%;式中:LRI为电流调整率(负载调整率);V50为最小负载时(50mA时)的输出电压(直流);V350为最大负载时(350mA时)的输出电压(直流);VH为半载时(200 mA时)的输出电压(直流)。只要测出V50、V359和VH等相应的直流电压,代入式中,就可算得电流调整率LRI。根据国际微光测试协会的建议:用于微光测试仪器的电源,一般要求电流调整率SI达到0.05%(即5.0 × 10-4)。3、纹波电压的测试方法所谓纹波电压,就是指直流电压上叠加的50-100Hz的交流电压的最大值(P-P值或有效值);因此,可以用交流毫伏表直接测量。一般用LR表示。是指的在负载电流为350mA时,叠加在负载上的直流电压上的交流电压值。纹波电压还可以用示波器直接测量。纹波指标也可以用纹波系数表示;其测量方法如下式所述:SR=LR/V直;式中:SR为纹波系数;LR为直流电压上叠加的交流电压的最大值,即纹波电压值;V直(又有人叫V0)为最大负载时的直流电压值(也可以采用额定电压75V)。根据作者的实践经验,一般光学类分析仪器的纹波系数要求得到1.0*10-3左右。4、漂移、噪声的测试方法:漂移和噪声是开关电源最重要的关键核心性能技术指标之一,它直接影响开关电源的质量。目前国内外的科技工作者,对各类分析仪器的漂移和噪声的定义、测试方法的理解尚未完全统一。尤其对开关电源的测试,很多科技工作者都较陌生。作者在总结目前国内外科技工作者对各类电子仪器的漂移、噪声测试方法的基础上,提出了对开关电源的漂移、噪声的测试方法如下:冷态开启开关电源,预热2小时后,在开关电源的输出端采用假负载(电阻),从分压电阻上采取取样电压约1.8V(直流信号电压)左右,用4位半以上的数字电压表监控。连续测试1小时;取这一小时里的最大值与最小值之差,即是漂移。在这一小时内任取10分钟(哪里最差取哪里;或者说哪里的峰-峰值最大取哪里;总共有无数个10分钟),在这10分钟里的峰-峰值(最大值减最小值),前面加“”符合,即是噪声。我们还必须记住:噪声不同于纹波。纹波是出现在输出端子之间的一种与输入频率和开关频率同步的成分,一般指50周或50周的倍频,用峰-峰(P-P)值表示。而噪声是出现在输出端子之间的纹波以外的一种高频成分;也用峰-峰(P-P)值表示。但是,二者的数值不会相同,肯定是噪声大于纹波。也有很多科技工作者采用脉冲电源给氘灯供电,因篇幅所限,此不赘述。主要参考文献[1] 李昌厚,略论光谱色谱仪器五大系统的创新切入点,仪器信息网,2024-4-25.[2] 李昌厚,DLPS-2型多功能氘灯恒流电源,《电子科学技术》,1987,第5期.[3] 李昌厚,仪器学理论与实践,北京:科学出版社,2008.[4] 李昌厚,紫外可见分光光度计仪器及其应用,北京:化学工业出版社,2010.[5] 李昌厚,原子吸收分光光度计仪器及其应用,北京:科学出版社,2006.[6] 李昌厚,高效液相色谱仪器及其应用,北京:科学出版社,2014.[7] 李昌厚,分析仪器应用中常见的12个有关技术问题的探讨,仪器信息网,2023-05-31作者简介李昌厚,男,1963年毕业于天津大学精密仪器系光学仪器专业;中国科学院上海营养与健康研究所原仪器分析室主任、生命科学仪器及其应用研究室主任、教授、博士生导师、华东理工大学兼职教授、天津大学兼职教授;国务院政府特殊津贴终身享受者。主要研究方向:长期从事分析仪器研究开发和分析仪器应用研究。主要从事光谱仪器(紫外吸收光谱、原子吸收光谱、旋光光谱、分子荧光光谱、原子荧光、拉曼光谱等)、色谱仪器(液相色谱、气相色谱等)及其应用研究;特别对《仪器学理论》和分析仪器指标检测等方面有精深研究;以第一完成者身份,完成科研成果15项。由中科院组织专家鉴定,其中13项达到鉴定时国际上同类仪器的先进水平,2项填补国内空白;以第一完成者身份获得国家发明奖和省部级(中国科学院、上海市、科技部)科技成果奖5项;发表论文280篇,出版《仪器学理论与实践》、光谱和色谱仪器及其应用等专著5本。曾任中国仪器仪表学会理事、中国仪器仪表学会分析仪器分会第五届、第六届副理事长兼光谱仪器、高速分析等多个专业委员会的副主任;国家认监委计量认证/审查认可国家级常任评审员、国家科技部“十五”、“十一五”、“十二五”和“十三五”重大仪器及其应用专项的技术专家组组长、上海市科学仪器专家组成员、《生命科学仪器》副主编、《光学仪器》副主编、《光谱仪器与分析》副主编、上海化工研究院院士专家工作站成员等数十个学术团体和专家委员会成员,和北京瑞利、北京普析、上海科哲、美国ISCO等十多家公司的技术顾问或专家组组长等职务。
  • 武汉首届神经环路示踪技术专题研讨会完美收官!
    首届神经环路示踪技术专题研讨会暨神经环路示踪技术全国培训会(以下简称:武汉神经专题研讨会)于2016年5月25-29日在中国科学院武汉物理与数学研究所召开完毕。该专题研讨会重点安排如下:介绍神经环路示踪相关的新方法和新技术;讲解示踪工具的基础知识;现场指导注册会员进行实践操作及如何选择、使用和分析实验数据等。 瑞沃德生命科技对此次研讨会讲解培训提供了脑立体定位仪、夹持器、适配器、颅钻、手术器械等产品技术支持。其中,脑立体定位仪是神经解剖、神经生理、 神经药理和神经外科等领域内的重要研究设备,利用颅骨表面的标志(如前囟点)为基本参考点,通过三维移动来确定动物颅骨下某神经核团的位置进而对神经核团 进行精确注射、电刺激、光刺激、脑电信号记录等操作。 瑞沃德品牌数显型脑立体定位仪,实时显示数量,直接读取X、Y、Z轴移动距离,移动距离读数精度为10um,产品质量稳定可靠。瑞沃德生命科技为医学研究及临床应用领域提供最佳解决方案,努力推动神经科学研究发展。 武汉神经专题研讨会的目的是以神经科学研究中的重点和难点为目标,发展和完善神经环路示踪技术,并大力推广神经环路示踪新方法、新技术、新应用。深圳市瑞沃德生命科技有限公司受邀参加了这次武汉首届神经环路示踪技术专题研讨会并提供仪器设备赞助,和参加的科研人士、高校学者一起探讨了神经科学研究发展。
  • 如何优化输出精度,奥远电源这样做
    奥远电源通过综合考虑多个因素,采取了一系列策略和措施,将HV电源的输出精度优化到不高于±20V。1. 电路设计优化:奥远电源不断改进产品的电路结构和参数,以确保电路的稳定性、可靠性和高精度。通过精确调整电路的结构和参数,他们能够降低电路内的干扰和误差,从而提升输出精度。2. 先进的控制算法:奥远电源引入了先进的控制算法,并对其进行迭代优化。他们监测高压电源的输出电压,并通过调整输入电压来维持输出电压的稳定性。这种反馈控制系统可以实时调整输入电压,以提高输出精度。此外,他们还引入了环路控制算法,通过更精细的方式调整输入电压,进一步提高输出精度。通过负载检测电路等方法,他们能够实时监测负载情况,并相应地调整输出电压,以降低负载对输出精度的影响。3. 严格的生产工艺流程:奥远电源非常注重生产环节中的工艺流程。他们确保工艺流程的合理性,并严格把控元器件和电路板等部件的质量。通过采用多种策略并行的方式,他们能够确保HV电源在输出精度方面的最大偏移量不超过±20V的产品指标。4. 温度补偿技术:奥远电源采用温度补偿技术来解决温度变化对输出精度的影响。他们在设计中考虑了温度补偿电路,通过测量和监控环境温度,自动调整电源的输出,以保持稳定的精度。5. 噪声抑制措施:奥远电源重视抑制噪声对输出精度的影响。他们采用隔离、滤波和屏蔽技术来降低噪声干扰对输出精度的影响。这些措施有助于提高输出信号的纯净度和稳定性。6. 精密校准和质量控制:奥远电源进行精密的校准,并制定合理的校准周期,以确保输出精度的长期稳定性。他们建立了完善的质量控制体系,从供应链管理到制造和售后服务的每个环节,严格控制质量,确保元器件和产品达到要求。通过精密的校准过程,他们可以确保每个HV电源都具有预期的输出精度。7. 故障保护机制:奥远电源实施了全面的故障保护机制,包括过流、过压、过温等故障的监测和处理。这些机制能够及时检测到异常情况并采取措施,以保证输出精度和用户设备的安全性。通过这些保护机制,他们能够预防潜在的故障,并及时采取纠正措施,保持HV电源的正常运行和高精度输出。8. 用户反馈和持续改进:奥远电源高度重视用户的反馈和需求。他们积极收集用户的反馈信息,并将其纳入产品改进的考虑范围。通过与客户的沟通和合作,他们不断改进产品设计和制造流程,以进一步提高输出精度,并满足用户对高精度输出的需求。奥远电源通过在电路设计、控制算法、生产工艺流程、温度补偿技术、噪声抑制措施、精密校准、质量控制和故障保护等多个方面采取综合措施,将HV电源的输出精度优化到不高于±20V的水平。他们不断追求技术创新和用户满意度,致力于为客户提供高质量、高性能的电源产品。通过持续的研发和创新,他们不断改进产品性能和质量,以满足用户对高精度输出的需求,并为各种应用场景提供可靠、稳定且精准的电源解决方案。

电源环路分析仪相关的方案

电源环路分析仪相关的资料

电源环路分析仪相关的试剂

电源环路分析仪相关的论坛

  • 用示波器做环路分析需要几步?

    尽管环路分析是检测控制系统稳定性的重要手段,但是测试过程中有诸多细节需要注意,如何快速理解环路分析的意义?环路分析需要怎样设定参数?环路分析的结果该如何读取呢?[b]一、如何三句话讲清楚环路分析在做什么?[/b]1、稳定可靠的系统必须是闭环系统(带反馈)。控制器根据系统的实际输出与理想输出的偏差来设计算法,使输出值逼近设定值;2、系统稳定性需要依靠环路中的增益相位裕量来量化,这个指标可以通过扫频来测量;3、环路分析就是在控制系统中注入频率变化的干扰信号,从而得出系统的频率响应曲线。总得来说,通过环路分析就能知道当负载端变化时控制系统的表现是否稳定,就这么简单![align=center] [img]https://www.yishangm.com/upload/image/20180416/20180416140424_61743.png[/img][/align][align=center]环路分析结果图片[/align][b]二、环路分析的结果是什么?[/b]示波器根据输出信号、输入信号的幅度、相位随频率变化的关系,可得到环路系统的伯德图(幅频特性、相频特性)。想要对产品的稳定性有所了解,靠品牌、经验、还有研发人员拍胸脯都是不够的,有了伯德图协助定量分析,一测便知。[align=center][img]https://www.yishangm.com/upload/image/20180416/20180416140434_28683.png[/img][/align][align=center]环路分析数据报表[/align][b]三、有了环路分析,电源性能会有哪些提升?[/b]通过环路分析可以量化电源的频率响应特性,从而将电源朝着更稳定的方向优化。工程师再也不用通过盲目的反复尝试去积累经验,器件选型也不用过分考虑裕量,从而更好的控制电源成本。[b]四、环路分析的关键测试步骤及参数设定[/b]1、寻找干扰信号注入点在电压反馈型的开关电源电路中,测试信号注入点为反馈回路的取样点与输出电压点之间。要辨别采样点比较简单,只需观察反馈电压由输出电压的哪条支路分压得到即可。注入电阻可选择10~100欧的电阻,这种电阻在反馈电路中影响不大,推荐在系统设计时就提前预留此电阻。2、注入信号幅度调节注入信号的幅度经验值可设为输出电压的5%。如果幅度不能过小,示波器可能无法识别;过大则可能使系统出现非线性导致测量失真。3、扫描频率范围设定环路系统的截止频率推荐设为开关频率的1/20~1/6,在这个范围内,一般可以找到环路的穿越频率点。此处留意环路系统穿越频率不能过低,否则环路无法响应高频的负载波动,从而引起输出电压的噪声。[align=center][img]https://www.yishangm.com/upload/image/20180416/20180416140444_37786.png[/img][/align][align=center]环路分析参数设置界面[/align][b]五、环路分析测量系统的搭建[/b]在ZDS4000环路分析开关电源的应用中,除了示波器之外,还需要信号发生器模块、高压隔离变压器配合。信号发生器模块用于注入信号的产生(普通信号发生器也可代替),高压隔离变压器用于隔离注入电路对环路电路工作的影响。Tip:由于注入信号幅度微弱,推荐选用1X衰减的探头测试。若使用10X,则信号衰减后很容易被噪声淹没。在接地时也尽量使用接地弹簧,而不是接地夹子。[align=center][img]https://www.yishangm.com/upload/image/20180416/20180416140455_76596.png[/img][/align][b]六、环路分析样例数据解读[/b]由于开关电源闭环系统的反馈较为简单,可以根据环路分析所得的波特图进行简约分析:在闭环增益为0dB时,即穿越频率时,相位裕度一般需要大于45度;在相位接近0度时,此时闭环增益应小于-20dB。若符合上述条件,则此闭环为稳定系统。如下图所示,屏幕右上角显示系统的相位裕度为135.5度,增益裕度为30db。[align=center][img]https://www.yishangm.com/upload/image/20180416/20180416140504_31102.png[/img][/align]

  • 生化分析仪连接上UPS电源之后就不能正常工作

    本人给医院的检验科装了一套美国山特的C6KS主机加蓄电池,现在出问题了,UPS电源给生化分析仪供电,现在分析仪只要连接上UPS电源后就检测出来的数据是有问题的,经检查是因为市电的零地电压过高,后来给UPS电源后端加了一台隔离变压器,把零地电压给降到了0V,后来接上UPS电源后就正常工作了,可是过了两天又不行了,又回复到原来的情况了,请问各位大师们怎么解决啊,

  • 示波器频域分析如何应用于电源调试?

    电源噪声是电磁干扰的一种,其传导噪声的频谱大致为10kHz~30MHz,最高可达150MHz。电源噪声,特别是瞬态噪声干扰,其上升速度快、持续时间短、电压振幅度高、随机性强,对微机和数字电路易产生严重干扰。[b]示波器频域分析在电源调试的应用[/b]本文谈到这么多年来最受关注的电源噪声测量问题,有最实用的经验总结,有实测案例佐证,有仿真分析相结合。在电源噪声的分析过程中,比较经典的方法是使用示波器观察电源噪声波形并测量其幅值,据此判断电源噪声的来源。但是随着数字器件的电压逐步降低、电流逐步升高,电源设计难度增大,需要使用更加有效的测试手段来评估电源噪声。本文是使用频域方法分析电源噪声的一个案例,在观察时域波形无法定位故障时,通过FFT(快速傅立叶变换)方法进行时频转换,将时域电源噪声波形转换到频域进行分析。电路调试时,从时域和频域两个角度分别来查看信号特征,可以有效地加速调试进程。在单板调试过程中发现一个网络的电源噪声达到80mv,已经超过器件要求,为了保证器件能够稳定工作必须降低该电源噪声。[align=center] [img]https://www.yishangm.com/upload/image/20180329/20180329145409_85669.png[/img][/align]在调试该故障前先回顾下电源噪声抑制的原理。如下图所示,电源分配网络中不同的频段由不同的元件来抑制噪声,去耦元件包含电源调整模块(VRM)、去耦电容、PCB电源地平面对、器件封装和芯片。VRM包含电源芯片及外围的输出电容,大约作用于DC到低频段(100K左右),其等效模型是一个电阻和一个电感组成的二元件模型。去耦电容最好使用多个数量级容值的电容配合使用,充分覆盖中频段(数10K到100M左右)。由于布线电感和封装电感的存在,即时大量堆砌去耦电容也难以在更高频起到作用。PCB电源地平面对形成了一个平板电容,也具有去耦作用,大约作用在数十兆。芯片封装和芯片负责高频段(100M以上),目前的高端器件一般会在封装上增加去耦电容,此时PCB上的去耦范围可以降低到数十兆甚至几兆。因此,在电流负载不变的情况下,我们只要判断出电压噪声出现在哪个频段,那么针对这个频段所对应的去耦元件进行优化即可。在两个去耦元件的相邻频段时两个去耦元件会配合作用,所以在分析去耦元件临界点时相邻频段的去耦元件也要同时纳入考虑。[align=center][img]https://www.yishangm.com/upload/image/20180329/20180329145421_52774.png[/img][/align]根据传统电源调试经验,首先在该网络上增加了一些去耦电容,增加电源网络的阻抗余量,保证在中频段的电源网络阻抗都能满足该应用场景的需求。结果纹波仅降低几mV,改善微乎其微。产生这个结果有几个可能:1、噪声处在低频,并不在这些去耦电容起作用的范围内;2、增加电容影响了电源调节器VRM的环路特征,电容带来的阻抗降低与VRM的恶化抵消了。带着这个疑问,我们考虑使用示波器的频域分析功能来查看电源噪声的频谱特性,定位问题根源。示波器的频域分析功能是通过傅立叶变换实现的,傅立叶变换的实质是任何时域的序列都可以表示为不同频率的正弦波信号的无限叠加。我们分析这些正弦波的频率、幅值和相位信息,就是将时域信号切换到频域的分析方法。数字示波器采样到的序列是离散序列,所以我们在分析中最常用的是快速傅立叶变换(FFT)。FFT算法是对离散傅立叶变换(DFT)算法优化而来,运算量减少了几个数量级,并且需要运算的点数越多,运算量节约越大。[b]示波器捕获的噪声波形进行FFT变换的关键点[/b]示波器捕获的噪声波形进行FFT变换,有几个关键点需要注意。1、根据耐奎斯特抽样定律,变换之后的频谱展宽(Span)对应与原始信号的采样率的1/2,如果原始信号的采样率为1GS/s,则FFT之后的频谱展宽最多是500MHz;2、变换之后的频率分辨率(RBW Resolution Bandwidth)对应于采样时间的倒数,如果采样时间为10mS,则对应的频率分辨率为100Hz;3、频谱泄漏,即信号频谱中各谱线之间相互干扰,能量较低的谱线容易被临近的高能量谱线的泄漏所淹没。避免频谱泄漏可以尽量采集速率与信号频率同步,延长采集信号时间及使用适当的窗函数。电源噪声测量时不要求较高的采样率,所以可以设置很长的时基,这也意味着采集的信号时间可以足够长,可以认为覆盖到了整个有效信号的时间跨度,此时不需要添加窗函数。调整以上设置可以得到比较准确的FFT变换曲线了,再通过zoom功能查看感兴趣的频点。如下图中电源噪声的主要能量集中在11.3KHz左右,并以该频率为基波频率谐振。据此可以推断本PDN网络在11.3KHz处的阻抗不能满足要求,电容在该频点的阻抗也比较高,起不到降低阻抗的作用,所以前面增加电容并不能减小电源噪声。一般来说,11.3KHz应该是VRM的管辖范围,此处出现较大噪声说明VRM电路设计不能满足要求。这里对VRM的性能进行分析,VRM分析的方法众多,此处主要采用仿真其反馈环路波特图的手段。波特图主要观察几个关键信息:1、穿越频率,增益曲线穿越0dB线的频率点;2、相位裕度,相位曲线在穿越频率处所对应的相位值;3、增益裕度,相位在-360°时所对应的增益值。这里我们主要关注穿越频率和相位裕度这两个指标。从VRM的环路波特图(如下图a)可以看到,VRM的穿越频率在8KHz左右,相位裕度37度。这里存在两个问题:首先VRM的相位裕度一般需要大于45度才能保证环路的稳定工作,这里相位裕度稍小一些,需要增加相位裕度;其次穿越频率太低,穿越频率附近VRM的调整作用逐渐降低,而此频点bulk电容还起不到作用,所以在8KHz附近会存在较高的阻抗,这个频点的噪声抑制作用较差。下图(b)是优化VRM环路之后的波特图,调整相位裕度到50度,穿越频率推到46KHz左右。[align=center][img]https://www.yishangm.com/upload/image/20180329/20180329145434_88284.png[/img][/align]对优化后的VRM验证纹波,可以看到纹波明显降低到33mv,能够满足器件要求。[align=center][img]https://www.yishangm.com/upload/image/20180329/20180329145443_15140.png[/img][/align]上述案例是使用示波器FFT功能快速定位电源问题的过程,从这个例子可以看到示波器的频域分析功能在电路调试时可以发挥很大作用。示波器的FFT功能配合长存储深度可以很方便地分析低频率长周期信号,这个优势在数字电路调试中比较突出。

电源环路分析仪相关的耗材

  • 美国API 分析仪开关电源KIT000253
    美国API 空气站T100 T200 T300 T400 T700 T701分析仪开关电源美国API 空气站100E 200E 300E 400E分析仪开关电源创新科仪销售美国API NO-NO2-NOx分析仪T200、SO2分析仪T100、CO分析仪T300、O3分析仪T400、动态校准仪T700、零气发生器T701、CO2分析仪、硫化氢分析仪、β射线法PM10和PM2.5颗粒物监测仪等以及零配件和耗材。创新科仪长期供应美国热电赛默飞、美国API、ECOTECH、ESA、Metone、先河、天虹、聚光、中晟等品牌的no-no2-nox分析仪、so2分析仪、co分析仪、o3分析仪、动态校准仪、零气发生器、co2分析仪、β射线法pm10和pm2.5颗粒物监测仪等以及零配件和耗材。
  • API空气站气体分析仪继电器板和电源组件
    美国API 空气站T100 T200 T300 T400 T700 T701分析仪继电器板和电源组件美国API 空气站100E 200E 300E 400E分析仪继电器板和电源组件美国API T100二氧化硫分析仪 配件 紫外灯KIT000236 内置泵PU4292-N811 LED触屏083500000美国API T200氮氧化物分析仪 配件 外置泵076510100 LED触屏083500000 LED触屏083500000美国API T300一氧化碳分析仪 配件 内置泵PU4292-N811 光源009550500 LED触屏083500000美国API T400臭氧分析仪 配件 内置泵PU4292-N811 紫外灯KIT000289 LED触屏083500000美国API T700多路流量校准仪 MFC流量控制器014550300 LED触屏083500000 美国API T701零气发生器 过滤材料FL0000007 FL0000016 LED触屏083500000美国API 100E二氧化硫分析仪 配件 紫外灯KIT000236 内置泵PU4292-N811美国API 200E氮氧化物分析仪 配件 外置泵076510100 美国API 300E一氧化碳分析仪 配件 内置泵PU4292-N811 光源009550500美国API 400E臭氧分析仪 配件 内置泵PU4292-N811 紫外灯KIT000289美国API 700E多路流量校准仪 MFC流量控制器014550300 美国API 701E零气发生器 过滤材料FL0000007 FL0000016 创新科仪销售美国API NO-NO2-NOx分析仪T200、SO2分析仪T100、CO分析仪T300、O3分析仪T400、动态校准仪T700、零气发生器T701、CO2分析仪、硫化氢分析仪、β射线法PM10和PM2.5颗粒物监测仪等以及零配件和耗材。创新科仪长期供应美国热电赛默飞、美国API、ECOTECH、ESA、Metone、先河、天虹、聚光、中晟等品牌的no-no2-nox分析仪、so2分析仪、co分析仪、o3分析仪、动态校准仪、零气发生器、co2分析仪、β射线法pm10和pm2.5颗粒物监测仪等以及零配件和耗材。
  • ATP荧光快检分析仪
    ATP荧光快检分析仪设备适用于食品、饮用水中微生物快速检测,餐具洁净度快速检测,食品加工器具、工作台面、餐饮器具等消毒结果快速检测,环境工作平台即时评估,该设备采用生物化学反应方法检测ATP菌落总数含量。具有快速、准确、灵敏、简便、可靠等优点,能在几十秒内获得检测结果,只需简单的*训即可由一般工作人员进行现场操作。 ATP荧光快检分析仪用途:食品、医药卫生、医药、日化、造纸、工业水处理、国防以及环保、水政、海关出入境检疫及其他*法部门等多种行业。 技术参数:1、检测精度:1*10-16mole atp2、检测范围:1-9999RLUs3、检测时间:10秒4、重复性:≤±3%5、仪器屏幕:3.5寸真彩触摸屏,中文操作界面6、测量模式:标准检测15秒,快速检测10秒,二种测量模式可选7、智能检测:内置高精度倾角传感器,对仪器倾角状态实时监控,检测盖是否完全闭合,检测仓内是否放置拭子8、存储功能:不低于20000个检测结果,记录包括检测时间、检测结果、判断结果、检测上限、检测下限等数据9、通讯协议:miniUSB10、检测舱:仪器具有移动检测舱,受到污染可清洗,可更换。11、仪器功能设置:日期时间设置、息屏时间设置可调、显示屏亮度可调、语音提示开启和关闭、历史记录关闭及开启12、电池功能:3000mAh大容量充电锂电池供电,可选配太阳能充电器、车载电源充电器13、电源:5V,2A14、仪器尺寸(L×W×H):195mm×75mm×40mm15、仪器重量:300g16、拭子开放:通用国内外一体化采集拭子及分离拭子17、配套箱:手提式铝合金箱子及拭子冷藏盒
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制