下落法中温量热仪

仪器信息网下落法中温量热仪专题为您提供2024年最新下落法中温量热仪价格报价、厂家品牌的相关信息, 包括下落法中温量热仪参数、型号等,不管是国产,还是进口品牌的下落法中温量热仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合下落法中温量热仪相关的耗材配件、试剂标物,还有下落法中温量热仪相关的最新资讯、资料,以及下落法中温量热仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

下落法中温量热仪相关的厂商

  • 中芯热成科技(北京)有限责任公司
    留言咨询
  • 天道酬勤,行胜於言。 北京温分分析仪器技术开发有限公司自1998年成立以来,一直致力于液相色谱的开发与研制。一大批年富力强的科技人员汇集于此,具有高学历,丰富经验,创新观念的中青年科技工作者,组成了北京温分公司强大的科研力量。 引进先进技术,选用关键部件,精于开发,严于生产,提供优良的分析仪器。 注重质量,服务更重要;在过硬的质量保证下,北京温分公司率先推出保修两年的服务承诺;为您设计完整的解决方案,提供良好的售前,售中,售后服务。 北京温分,一批年轻的科技工作者正在做不懈的努力,他们需要您的信任与帮助。 与时俱进,开创辉煌。为迎接 新世纪的挑战,我们会做得更好,民族仪器产业的明天会更美好。
    留言咨询
  • 400-860-5168转4765
    安徽中科热仪科技有限公司,成立于2024年6月,坐落于安徽合肥庐阳区大数据产业园,是一家专注于量热仪和热分析及相关设备的研发、生产、销售与服务的高技术公司。作为中国科学技术大学的赋权企业,团队在相关领域发表60余篇SCI论文,并出版了6部热分析与量热专业著作,在热分析及量热领域具备深厚的理论基础及实践经验。在此基础上,中科热仪更汇集相关高水平的技术人才,具有完善的研发、生产及市场运营等方面的专业能力,为公司的长期稳定高速发展提供充足动力。公司主要产品为三维微量热仪、多通道量热仪、热分析及其附件等精密分析测试仪器,除提供标准化的一起外,中科热仪更可以根据客户要求,提供量身定制的解决方案,协助客户挑战前沿科学及工程问题。公司目标客户主要为高校及科研院所的科学研究部门,企业的研发、质量部门,政府及第三方检测机构等领客户群体,覆盖材料科学、化工过程安全、生命科学、化石能源、锂电池、氢能、环境、热力学及动力学基础等应用领域。依托核心团队在量热及热分析领域的深厚理论积淀、实践经验以及在相关行业的资源积累,秉承以客户为中心的经营理念,中科热仪致力于通过提供高品质、高性能的产品、高质量的专业服务,迅速渗透并扎根相关市场并拓展客户的深度及广度, 解决高端仪器的“卡脖子”困境,实现进口替代并开拓海外市场,高效整合相关资源,最终达到产品及技术领域的国际一流水平,在市场上占据相关行业的引领地位,服务中国及全球科学家及高端制造业,助力相关行业的持续发展进步。
    留言咨询

下落法中温量热仪相关的仪器

  • 到梅特勒托利多官网详细了解 重力下落式金属检测系统该系列设计适用于重力下落的散料环境,检测和剔除金属污染的产品。重力下落式金属检测系统能够用于各种散料,不管是精制散料还是原料,甚至是大一点的不规则的物体都可以检测。系统集成了各种剔除装置将含异物的散料剔除。通过人性化的薄膜键控面板(Signature)或者彩色触摸屏(Profile)进行操作。Profile重力下落式金属检测系统设计适用于重力下落的散料环境,检测和剔除含有金属异物的产品,梅特勒托利多的Profile重力下落式金属检测具有强大的电子控制系统,提供最高的检测精度,保证加工过程中产品质量。该系列都配有集成的剔除装置,在下落过程中将不合格产品剔除。无与伦比的检测精度能够检测各种金属,包括一般很难被检测的非磁性不锈钢。系统设计保证最小的安装高度,为客户解决在有限空间的设备安装问题。梅特勒托利多提供多种剔除装置可选,如Sealtite/Open剔除阀以及Y阀Sealtite技术为小颗粒和粉尘产品设计,可以防止异物通过剔除管道进入传输管道中。Atex防爆设计可以为存在爆炸危险的生产环境提供防爆方案。Signature重力下落式金属检测系统 梅特勒托利多重力下落式金属检测系统为Signature电子控制软件,为食品加工等行业的粉料产品提供最高的检测精度。通过隔膜面板进行系统操作,同时集成剔除装置保证不合格产品准确剔除。梅特勒托利多官方客服热线4008-878-788
    留言咨询
  • 下落法中温比热容测定仪 一、简介依阳公司出品的中温比热容测定仪是一种测定固态材料(包括固体、粉体、纤维和薄膜等)比热容的测试设备,采用的方法方法是下落式铜卡计混合法,依据的测试标准为国军标GJB 330A-2000 “固体材料60K~2773K比热容测试方法”和国标GB/T 3140-2005“纤维增强塑料平均比热容试验方法”,测试温度范围为50℃~1000℃。下落式铜卡计混合法作为一种经典测试方法,具有测试试样体积大、更适合块状复合材料测试的特点,而且测试周期短,对一般材料约一个小时测量一个试样,适合大批量试样的连续测量。中温比热容测定仪由计算机进行自动检测和控制,自动进行样品温度的监控、电动开关控制试样的整个下落过程、自动进行量热计温度的监控以及自动进行测试结果计算。中温比热容测定仪具有很高的测量精度,对于标准参考材料人造蓝宝石(synthetic sapphire:α-Al2O3)在50℃~1000℃范围内的测量相对误差小于±3%。下落法比热容测定仪原理图下落法中温比热容热分析测定仪下落法中温比热容热分析测定仪整机系统二、技术指标 (1)试样尺寸:最大直径14mm、高度30mm;(2)比热容温度范围:室温~1000℃;(3)比热容测量精度:优于±3%;(4)试样加热炉均温区长度:大于50mm;(5)试样加热炉均温区温度波动:±3%;(6)量热块热容量:2000J/℃;(7)量热计测温精度:优于0.01℃。三、特点1. 电动控制试样的下落,控制方式可根据不同需要进行选择,既可以单独进行试样悬丝熔断、炉门和量热计盖板的开启和闭合,也可以选择全自动联动方式,同时进行悬丝熔断、炉门和量热计盖板的操作,有效保证试样下落的准确性。 2. 全自动计算机软件控制,可以通过软件来设定加热炉温度、监测试样温度变化、量热计绝热控制情况和量热计温度变化过程,特别是能自动对试样下落后量热计的温度变化进行检测和显示,并自动计算和显示出测量结果。 3. 下落法比热容测试技术具有很强的扩展性,可以实现高温和超高温3000℃下的材料比热容测量。 4. 依阳公司的比热容测定仪特别采用了独特的仪器结构设计和灵巧的测试步骤,有效的提高了测试效率,使得单个试样在一个温度下的测试时间大大缩短,很轻易的实现快速大批量高效测试,测试效率远高于其他热分析仪器。
    留言咨询
  • M6-h系列金属检测机推出最适合干燥物品的下落式金属检测机,具有:降低异物扩散及流出的风险,降低废品损失,检测不受包装材料影响,保护后段设备等优点。实现业界高级别的高灵敏度检测。最大通过能力:84,000 L/H。
    留言咨询

下落法中温量热仪相关的资讯

  • 专家:已找到700吨氰化钠下落 尚未大范围泄露
    p br/ /p p   专业人员正在对氰化钠以及可能含有氰化钠的土壤进行回收处理 从目前检测的数据看尚未发生氰化钠的大范围泄漏 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201508/uepic/a421c8ff-2310-4635-92df-eb0fc8e42d8d.jpg" title=" 123745434.jpg" width=" 300" height=" 333" border=" 0" hspace=" 0" vspace=" 0" style=" width: 300px height: 333px " / /p p   科技日报-中国科技网8月15日快讯(记者 冯国梧)记者今天从天津滨海新区爆炸现场消防专家处了解到,昨日上午8时左右,河北一家生产氰化钠的货主(生产厂家)主动来到爆炸现场,并派出专业人士全力排查氰化钠的分布情况,组织实施对氰化钠的清理回收。 /p p   据介绍,昨日上午8时左右现场的消防专家在爆炸现场发现一处白色固体,并及时将氰化物货主找来辨识,确认后迅速组织相关人员查找氰化钠可能分布的区域。考虑这里曾经发生过大规模的爆炸,有些氰化钠可能散落,专业人士从爆炸现场开始展开大范围的搜索,查找氰化钠的下落,目前已找到氰化钠的分布范围,许多氰化钠的包装被炸开。然后以发现氰化钠的相距最远的两点划定重点排查区,只允许专业人士在现场作业,在此基础上再扩大1.5倍距离为缓冲区,组织专业人员进行全面排查和处理。 /p p   如何处理已找到的氰化钠?那些已爆炸散落的氰化钠又该如何处理?据介绍,氰化钠生产厂家已派出专业人员将氰化钠以及可能含有氰化钠的土壤进行回收处理。从目前检测的数据看尚未发生氰化钠的大范围泄漏。此外,天津市安监部门已准备了数百吨双氧水用于分解可能残留的氰化钠。 /p p   据氰化钠生产厂家介绍,这批货物是用于出口的,总量约700吨。 /p p br/ /p
  • 北航文力课题组《Nature Communications》:基于超精密3D打印柔性传感的软体机器人
    人们经常向往能够拥有魔法,以实现各种神奇的操作比如隔空操控、隔空取物,即在不主动触碰某个物体的情况下,用类似意念的超能力操控物体移动,多用于神话科幻电影或小说。正所谓,科技来源于想象,想象力是推动人类走向物种最顶端的原动力。而当科技发展到一定程度时,这种对于超能力的向往、对神奇操作的想象有时也会成为现实。2022年8月26日,国际顶级期刊《自然通讯》(Nature Communications)报道了北京航空航天大学机械工程及自动化学院仿生机器人研究团队文力课题组在软体机器人交互控制领域取得的最新进展。 操作人员通过裸手不仅能够实现对具有大量自由度的软体机器人的非接触控制,而且可以完成各类复杂的操作。能够将复杂的软体机器人的运动控制变得大众可及,得益于北京航空航天大学研究团队最新提出的基于双模态智能传感界面的软体机器人非接触交互示教方法。在该研究中,基于研究团队所研发多模态柔性传感界面,示教者在不接触软体机器人、无任何穿戴设备的情况下利用裸手交互地示教软体机器人(如连续体软体臂),使其实现复杂三维运动。其主要原理是,利用“隔空”条件下交互界面与人手表面电荷产生的静电感应,将人手和软体机器人之间的距离信号转换为传感信号,进而“诱导”机器人的运动。这类基于多模态柔性感知的非接触的示教方法可以显著拓展人类与软体机器人的交互方式。该论文第一作者为北京航空航天大学机械工程及自动化学院博士研究生刘文博,朵有宁、刘嘉琦、袁菲阳为共同第一作者,文力教授为论文通讯作者。中国科学院北京纳米能源与系统研究所与清华大学计算机系为本研究的合作单位。瞄准领域痛点问题软体机器人是一种新型柔软机器人,能够适应各种非结构化环境。由于软体材料的自由度可以根据需求自由变化,因此软体机器人有着极高的灵活性,并且软体机器人与生俱来的高度适应性,使其在与人类互动方面同传统的刚性机器人相比更具安全优势,在生物工程、救灾救援、医疗领域有着很大的应用前景,受到越来越多的关注。然而,由于目前软件机器人在建模和编程方面存在一定挑战,使得非专业人员在使用软件机器人实现特定动作及执行特定任务时常常面临一些不容忽视的困难。交互式示教方法能够高效、灵活地引导软机器人实现对应的运动,这将有助于软体机器人在室内、生产线和其它非结构化环境中的应用。攻克两大研究挑战在传统刚性机器人上常用到的拖拽示教的方式,并不能很好地应用于软体机器人,其主要是由于软体机器人顺应性高、具有无限自由度的自身特性。因此,直接进行“拖拽”会使软体机器人产生很大的被动变形。如果想检测这些被动变形,则需要在软体机器人上布置大量传感器。在解决软体机器人示教交互问题上,目前面临着两大挑战。(1)一种柔性多模态智能传感器-能够在适应软体机器人大变形的前提下,对多种环境信息(距离、压力以及材质等)做出响应。(2)一种友好的无需编程的软体机器人示教系统-能够简单高效地将人的指令传递给软体机器人。挑战一:多模态柔性传感器由于操作人员在与软体机器人交互过程中可能产生多种信号,且传感器需适应软体机器人自身柔软的特性,因此用于人机交互的传感器应具有检测多模态信号、柔软可变形等特点。课题组基于摩擦纳米发电机原理和液态金属的压阻效应提出了一种能够对非接触信号和接触信号进行实时感知和解耦的柔性双模态智能传感器(flexible bimodal smart skin, FBSS)。该传感器结构上主要包括柔性介电层、柔性电极层、激励层、液态金属图案和封装层组成。该团队利用新型微立体面投影光刻技术(nanoArch S140,摩方精密)实现了柔性介电层表面微型金字塔模具的3D打印,该传感器自身具有较强的柔性和可拉伸性。图1. 接触/非接触柔性双模态智能传感器(FBSS)的设计与传感原理。(a)传感器将不同功能层堆叠在一起。包括柔性介电层(青色)、柔性电极层(灰色)、刺激层(浅黄色)、液态金属(黑色)和封装层(橙色)。(b)柔性介电层顶部微金字塔结构的电子显微镜图像。该金字塔型微结构一方面可以有效介电层的表面积,增加表面电荷量进而提高非接触传感的灵敏度;另一方面可以减少外力作用在液态金属腔道上的面积增加压强促进液态金属腔道变形,进而提高接触传感的灵敏度。(c)印刷在硅胶材料层上的液态金属材料的光学显微镜图像。(d) FBSS可被弯曲,展示了其柔性。(e)样机可被拉伸(最大拉伸率为58.4%)。(f)样机的接触/非接触传感机制:i)柔性介电层(灰色)和外部物体(红色)在接触几次后,由于电子亲和性不同,产生了等密度的负电荷和正电荷。ii)当外部物体接近柔性介电层时,自由电子被驱动并从大地流向柔性电极。iii)外部物体开始接触FBSS,电子转移量增加,液态金属电阻增加。iv)外部物体与FBSS完全接触,转移的电子数和液态金属的电阻都达到最大值。v)随着外界压力的释放,电子从柔性电极(灰色)回流到大地,液态金属的电阻减小。vi)随着外部物体(红色)与FBSS分离,回流电子增多,液态金属的电阻恢复到初始状态。研究团队对柔性双模态智能传感器进行了系统的实验测试,研究结果表明,该传感器可以灵敏地检测外界物体与传感之间的距离以及接触压力,并且能够实时解耦这两种模态。此外该传感器利用不同材质得失电子能力的差异性,还可以对接触物体的材质进行检测。最后,实验研究表明该传感器具有一定环境抗干扰能力以及良好的稳定性和耐久性。研究团队所提出的柔性双模态智能传感器可以有效地检测外部物体的接近和接触信息,比如高速下落的网球,在整个过程传感器可以实时感知和区分网球的接近和击中传感器的逐个阶段。此外,该传感器还可以检测一个羽毛的飘落过程:随着羽毛逐渐接近,传感器输出的非接触信号逐渐增加。该柔性双模态智能传感器还能够感知人手的接近和按压信号,无需在手上增加任何外接设备:研究人员将该传感器连接进入LED灯控制电路,利用人手的接近信号控制控制红色LED灯亮度,接触信号控制蓝色LED灯亮度。图2. FBSS接触和非接触传感特性的表征结果。(a, b)网球从FBSS上方落下(下落距离200mm)的高速相机图像和接触、非接触输出信号。(c, d)人手指按压FBSS时的场景和接触、非接触输出信号。当检测到的非接触信号超过一个阈值时,红色发光二极管点亮;当手指按压FBSS时,蓝色LED点亮。在此基础上,课题组人员尝试将多模态柔性传感器与一些简单的软体机器人结合,实现了软体机器人与环境、与人的初步交互。将柔性多模态智能传感器放置在一段软体驱动器末端,通过人手能够实现非接触地直接控制驱动器的弯曲和收缩。这给人一种魔法般的体验;将柔性多模态传感器与气动折纸结构软体手结合,即使软体手完全埋进沙子依旧能够感知附近玩具昆虫的接近信息,并对其进行精准地抓取;柔性多模态智能传感器与气动驱动软体手爪结合,亦可实现运动路径上目标物体的搜寻与抓取:随着软体手爪逐渐靠近目标物,传感器输出的非接触信号逐渐增加,当超过一定阈值时系统判定为软体抓手找到了目标物并进行抓取,抓取过程中传感器输出的接近信号开始逐渐增加,最终实现了对目标物体的成功抓捕。图3. 自驱动软体机器人被人和环境的非接触信号触发。气动三自由度软体机械臂被人手的接近信号触发实现(a)弯曲和(b)缩短。(c)装有FBSS的气动软体折纸机器人成功检测并抓住玩具昆虫。(d)一个装备有FBSS的软体抓手自主搜索、检测和抓取塑料圆柱体物体,(e)在这个过程中接触和非接触信号随时间变化的结果。挑战二:针对软体机器人的示教交互方式基于多模态柔性传感器,课题组针对10自由度(软体臂主体由9根波纹管式气动驱动器组成,末端有一气动软体手)气动软体机械臂提出了一种非接触示教交互方式:利用人手的接近信号进行非接触控制,软体机械臂运动的步长大小对应非接触信号的大小,人手的按压信号用于控制末端软体手的开合。无需额外的穿戴设备,操作人员通过裸手即可与软体机械臂进行交互。同时,为了实现对软体机器人复杂姿态的控制,研究团队另辟蹊径,提出了“变换传感器位置&示教”的方法。在传感器的背部以及软体机器人上放置小的圆形磁铁,利用磁力快速改变传感器在软体机器人上的位置,从而实现对软体机器人各个驱动段的位姿控制。为简单验证上述示教控制系统的可行性,课题组人员控制软体机械臂进行二维、三维空间物体抓取任务。其重复过程能够很好地对示教过程进行复现。这种示教方式能够有效地捕捉并抓取空间内高、中、低大范围内的目标物体。由于交互控制系统能够完整地记录示教交互过程的控制步长数据,操作人员可以对复现过程的速度进行控制,并且根据用户的需求做出相应的调节。此外,研究人员还在软体机械臂每一段末端和贴附传感器的弧形片上安装了小磁片,便于交互过程中传感器位置的切换。该方法通过简单、快速地更换传感器的位置,实现了对每一段的高效交互控制,最终实现了整个软体复杂位姿的简单控制。图4. 基于“传感器换位与示教”方法交互式示教软体机械臂实现复杂运动。FBSS I和FBSS II随时间变化的非接触和接触信号的归一化结果。每个图中的红色和蓝色箭头表示用户正在将FBSS从一个位置移动到另一个位置,以便与软体机械臂的不同位置进行交互。(a)示教者使用“传感器换位与示教”方法操纵软体臂实现二维空间运动。(b) 使用“传感器换位与示教”方法操纵软体臂实现复杂三维空间运动。除了简单的控制软体机器人完成空间物体的抓取任务以外,还可以与软体机器人进行无接触的互动教学,从而实现更加复杂、更具挑战性的任务。例如,将一根水彩笔安装软体臂末端,通过示教方式“教会”软体机械臂在迷宫中行走;通过示教方式操作软体机械臂进行咽拭子采样。为更好地展现软体机械臂的灵活性和示教交互方式的效果,课题组人员在软体机械臂和目标物之间放置一块障碍物,通过示教方式,“教会”软体机械臂越过障碍并成功抓取一朵花。图5. 交互式示教自驱动软机器人潜在应用的展示。(a)示教软体机械臂走迷宫的实验场景。(b, c)软体机械臂走迷宫实验中示教和复现的轨迹。(d)走迷宫实验示教过程中的信号曲线。咽拭子采集实验示教过程的(e)实验场景和(f)信号曲线。(g)交互式示教软体机械臂越过障碍物并成功抓取花朵。研究团队提出一种基于多模态柔性传感的软体机器人的“非接触示教”方法。基于所研发多模态柔性传感界面,示教者利用裸手可以无接触地、交互地示教软体机器人(如连续体软体臂),使其实现复杂三维运动。这类基于多模态柔性感知的非接触的示教方法可以扩展人类与软体机器人交互方式。这种简单、高效、友好的非接触交互示教方式,为软体机器人在非结构化环境中的交互控制提供了一种新的范式。图6. 软体机器人非接触交互示教概念图:人们通过非接触示教的方式轻松控制软体机器人在非结构化环境中作业。
  • 高分子表征技术专题——示差扫描量热法进展及其在高分子表征中的应用
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。 我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读。期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来。高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献. 借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意! 原文链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304.2020.20234《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304示差扫描量热法进展及其在高分子表征中的应用陈咏萱 , 周东山 , 胡文兵 南京大学化学化工学院 配位化学国家重点实验室机构 南京 210023作者简介: 胡文兵,男,1966年生. 南京大学化学化工学院高分子系教授、博士生导师. 1989年本科毕业于复旦大学材料科学系,1995年博士毕业于复旦大学高分子科学系. 分别于1998~1999年赴德国弗莱堡大学物理系、2000~2001年美国田纳西大学化学系、2001~2003年荷兰物质科学研究院(FOM)原子与分子物理研究所从事博士后研究. 2004年至今,在南京大学任教. 2008年获杰出青年科学基金资助,2020年入选美国物理学会会士(APS Fellow). 主要研究方向为采用蒙特卡洛分子模拟和Flash DSC研究高分子结晶机理及材料热导率表征 通讯作者: 胡文兵, E-mail: wbhu@nju.edu.cn摘要: 示差扫描量热法(DSC)是表征材料热性能和热反应的一种高效研究工具,具有操作简便、应用广泛、测量值物理意义明确等优点. 近年来DSC技术的发展大大拓展了高分子材料表征的测试范围,促进了对高分子物理转变的热力学和动力学的深入研究. 温度调制示差扫描量热法(TMDSC)是DSC在20世纪90年代的标志性进展,它在传统DSC的线性升温速率的基础之上引入了调制速率,从而可将总热流信号分解为可逆信号和不可逆信号两部分,并能测量准等温过程的可逆热容. 闪速示差扫描量热法(FSC)是DSC技术近年来的创新性发展,它采用体积微小的氮化硅薄膜芯片传感器替代传统DSC的坩埚作为试样容器和控温系统,实现了超快速的升降温扫描速率以及微米尺度上的样品测试,使得对于高分子在扫描过程中的结构重组机制的分析以及对实际的生产加工条件的直接模拟成为可能. 本文从热分析基础出发,依次对传统DSC、TMDSC和FSC进行了介绍,内容覆盖其发展历史、方法原理、操作技巧及其在高分子表征中的应用举例,最后对DSC未来的发展和应用进行了展望. 本文希望通过综述DSC原理、实验技巧和应用进展,帮助读者加深对DSC这一常用表征技术的理解,进一步拓展DSC表征高分子材料的应用.关键词: 高分子表征 / 示差扫描量热法 / 温度调制示差扫描量热法 / 闪速示差扫描量热法 目录1. 热分析基础1.1 温度和热1.2 热分析(thermal analysis)2. 示差扫描量热法2.1 基本原理2.2 实验技巧2.2.1 仪器校准2.2.2 样品制备2.2.3 温度程序2.2.4 保护气氛2.3 应用举例2.3.1 比热容2.3.2 热转变温度2.3.3 转变焓2.3.4 DSC与其他技术连用3. 温度调制示差扫描量热法3.1 基本原理3.2 实验技巧3.2.1 样品质量3.2.2 温度程序3.3 应用举例3.3.1 可逆热容和不可逆热容3.3.2 等温可逆热容3.3.3 玻璃化转变4. 闪速示差扫描量热法4.1 基本原理4.2 实验技巧4.2.1 样品制备4.2.2 样品质量4.2.3 临界条件4.3 应用举例4.3.1 等温总结晶动力学4.3.2 不可逆熔融转变4.3.3 与其他表征技术连用4.3.4 玻璃化转变4.3.5 热导率5. 总结与展望参考文献1. 热分析基础1.1 温度和热温度是表征物体冷热程度的物理量,它仅由系统内部的热运动状态决定,是系统中物质分子热运动强度的量度. 热力学第零定律表明,所有互为热平衡的系统都存在一个共同的数值相同的态函数,这个态函数被称为温度,是一个强度量. 热力学第零定律阐明了温度计的工作原理:在测量温度时,首先选择一个作为标准的测温物体,也就是温度计,然后让它分别与各个物体接触并达到热平衡,得到的标准物体的温度就是各待测物体的温度. 值得注意的是,温度计的热容必须比待测物体的热容要低得多,以保证接触过程中不会改变物体的温度. 然而,温度测量获得的是一个相对量,为了定量测定温度,人们还需要建立一个温标.最初的温标是经验温标,它依据测温质的某一种物理属性随温度的变化关系来表征温度的大小. 例如,酒精和水银温度计是根据液体加热时的体积膨胀设计的,铂和RuO2温度传感器是依据金属导体的电阻随温度的变化关系设计的. 通常,这种变化关系是显著而单调的,假定其为简单的线性关系,那么测温属性x和温度θ的关系为:其中,常数a和b是由标准点和分度法确定的,根据不同的标准点和分度法可以确定不同的温标. 1714年,Fahrenheit将水的冰点设为32 °F,沸点为212 °F,建立了华氏温度. 1742年,Celsius将水的冰点设为0 °C,沸点为100 °C,建立了摄氏温度. 到1779年为止,全世界并存有19种经验温标. 然而,这些温标缺乏统一的标准,除了标准点外,采用不同的测温质测得的温度并不完全一致. 此外,测温属性往往无法在整个温度范围内保持完全线性的变化关系. 例如,水银在−39 °C发生固化,在357 °C发生气化,因此水银温度计的测温范围在其凝固点和沸点之间. 1848年,Kelvin依据卡诺定律提出了开氏温度作为物理学温标,它不依赖于任何测温物质的具体测温属性,故又称为绝对温标. 相应的温度也被称为热力学温度,以T表示,单位为开尔文,记为K.1967年,第13届国际标度会议确立热力学温度为基本温标,并将水的三相点的热力学温度设为273.15 K. 摄氏温度与热力学温度之间的关系为即,摄氏温度的0 °C对应热力学温度的273.15 K.热量是物质状态发生转变的一种反映,它与人类的日常生活息息相关,很早以前人们就开始了对热的探索. 早在公元前5世纪,Empedocles[1]就提出这个世界是由气、水、土和火(热)四大元素所组成的. 一直到18世纪中叶以前,热质说(theory of caloric)盛行. 18世纪后期,人们开始通过实验证明热是粒子内部的运动. 19世纪后半期,Joule和Boltzmann等建立了统计热力学的基本原理,从而彻底推翻了传统的热质说.由热力学第一定律可知,热是能量的一种形式,记为Q,它可以和其他形式的能量互相转化,且总能量保持不变,即:物体吸收或放出热量的能力由热容C (JK−1)来表征,表示物体温度升高1 K所吸收的热量(单位J),而单位质量(克,g)物体升高1 K所吸收的热量为比热容cm (JK−1g−1),将能量表示为体积和温度的函数,则根据体积不变的条件可以得到同样可以将能量表示为压强、温度的函数, 在压强不变的条件下,可得到其中,H为定义的一个态函数,称为焓(enthalpy). 它与内能的关系为由此得到等容热容和等压热容的关系为1.2 热分析(thermal analysis)广义上来说,所有控制温度的测量过程都可以称为热分析. 1999年,国际热分析和量热协会(International Confederation for Thermal Analysis and Calorimetry, ICTAC)和美国材料与试验协会(American Society for Testing and Materials, ASTM)[2~4]对热分析的定义为:在程序温度下,测量物质的物理性质与温度或时间关系的一类技术. (A group of techniques in which a physical property of a substance is measured as a function of temperature or time while the substance is subjected to a controlled-temperature program.)常见的热分析所测量的物理性质包括质量、温差、热量、应力和应变等. 按照测量性质的不同,最基本的热分析包括以下几种:差热分析法(differential thermal analysis, DTA)、示差扫描量热法(differential scanning calorimetry, DSC)、热机械法(thermomechanical analysis, TMA)、热重分析法(thermogravimetric analysis, TGA)等等.示差扫描量热法(DSC)的定义是:在程序控温和稳态保护气氛下,测量进出样品和参比物之间的热流差随温度或时间变化的一种技术. 它是目前应用最为广泛的一种热分析技术. 随着科学技术的进步,DSC也得到了不断的发展,特别是近年来取得了显著的进展. 其中一个主要的进展是在20世纪90年代出现的温度调制DSC (temperature-modulated DSC, TMDSC). TMDSC在传统DSC线性扫描速率的基础上加入了调制升降温速率,可测得非线性调制热流信号,对该热流信号进行解调制,可以将总热流信号区分为可逆信号和不可逆信号两部分. TMDSC还可以通过对等温过程施加微量调制升降温速率进行准等温实验,追踪实验过程中的不可逆过程随时间的演化,并最终获得平衡状态下的可逆热容. DSC技术的另一个重要进展是近年来发展起来的闪速示差扫描量热法(fast-scan chip-calorimetry, FSC). FSC其商业化版本为Flash DSC,是基于芯片量热技术和微制造技术而发明的超快速示差扫描量热技术,它可达到106 Ks−1的扫描速率,具有较高的灵敏度,进一步将DSC的表征时间和温度窗口拓展到了发生较快速热转变的区间,增强了其表征和研究各种热转变动力学的能力.2. 示差扫描量热法2.1 基本原理示差扫描量热法起源于19世纪中期. 1887年,Le Chatelier[5,6]采用热电偶首次记录了陶土的温度随时间变化的升温曲线. 1899年Roberts-Austen[7]使用参比热电偶,首次测量了样品与参比物之间的温差,发展了差热分析法(DTA). 然而这种方法只能用于定性测量样品和参比物之间的温差ΔT.1955年,Boersma[8] 改进了DTA设备并建立了一个定量DTA测量单元,该仪器的热阻与试样无关. 对仪器的热容进行校正,可使得扫描过程中样品的热流与温差呈稳定的线性关系,从而可以定量测量热流. 这一发现最终导致了热流型DSC的诞生. 热流型DSC保留了差热分析法引入的参比物,并监测试样和参比物之间的热流差变化,得到了比只测定试样的绝对热流变化更为精确的测试结果,这也是示差扫描量热法中“示差”的含义及来源. 1964年,Watson等[9,10]提出了功率补偿型DSC的概念,这一概念有利于提高DSC的升降温速率. 此后,DSC技术不断发展并成为热分析领域的常规分析手段. 目前,市场化的DSC设备根据加热方法和测量原理主要分为热流型示差扫描量热仪(heat flux DSC)和功率补偿型示差扫描量热仪(power compensation DSC)两类[11].热流型DSC的测试装置如图1所示.图 1Figure 1. Illustration of heat-flux DSC (Mettler-Toledo heat-flux DSC) with the heating rate controlled through the furnace temperature. There are two sets of thermocouples measuring the heat flow between the furnace and the pan for sample and reference and two central terminals bringing the average T signal from all the thermocouples out to the computer.热流型DSC从外部加热整个炉体,并给样品和参比物提供同样的加热功率. 由热欧姆定律可知,由炉体流到试样坩埚的热流[Math Processing Error]ϕs 以及由炉体流入参比坩埚的热流[Math Processing Error]ϕr分别为[12]其中,[Math Processing Error]Ts、[Math Processing Error]Tr和[Math Processing Error]Tc分别为试样温度、参比温度和炉体温度,[Math Processing Error]Rth为热阻.DSC检测信号[Math Processing Error]ϕ为2个热流之差,由于参比坩埚和试样坩埚相同,仪器两边具有对称性,可将上式简化为即,热流型DSC的检测信号[Math Processing Error]ϕ与试样和参比物之间的温差[Math Processing Error]ΔT=Ts−Tr成正比.热流型DSC对整个炉体进行加热,测试氛围均匀且稳定,因此能保持较为稳定的基线. 另一方面,炉体的热容较大,不利于快速升降温,因此热流型DSC的升降温速率较慢.功率补偿型DSC的测试装置如图2所示.图 2Figure 2. Illustration of power-compensation DSC as invented by Perkin Elmer with the reference and the sample separately heated by two platinum resistance thermometers in two calorimeters mounted in a constant temperature block.功率补偿型DSC采用2个独立的加热器分别对样品盘和参比盘进行控温和功率补偿,当样品发生吸热或者放热效应而导致样品与参比物之间的温差不为零时,电热丝将及时对参比盘或样品盘输入电功率以进行热量补偿,使两者的温度始终处于动态零位平衡状态,同时记录样品和参比物的2只补偿电热丝的功率之差随时间的变化关系,功率补偿型DSC的热源更贴近样品,温度响应灵敏,因此升降温速率更快. 为了准确测量样品的热效应,功率补偿型DSC的2个炉体必须具有很高的对称性,然而仪器内部的环境往往会随着时间而发生改变,因此功率补偿型DSC的基线容易发生漂移,不如热流型DSC稳定.2.2 实验技巧2.2.1 仪器校准首先采用标准物质在待测温度范围内对仪器进行校准,以保证测量值与参考值相吻合. 校准的内容主要包括DSC曲线上的温度值以及热流速率值. 因此标准物质应具有较好的稳定性,其测量性能必须具有可靠的文献参考值. 常用于校准的标准物质有铟、锡、尿素、苯甲酸等等,这些标准物质可用于不同温度范围内的校准. 图3是采用铟进行熔点以及熔融焓校准得到的测量结果,将标准物质的熔点以及熔融焓的测量值与文献参考值进行比较,若测量值不在误差限之内,则需要对仪器的参数进行调整,使测量值与参考值相符合[13].图 3Figure 3. Illustration of the calibration of temperature and heat-flow rate with the standard material Indium for DSC measurement. The curve is characterized by its baseline and the endothermic process with some characteristic temperatures including the beginning of melting, Tb, the extrapolated onset of melting, Tm, the peak temperature, Tp, and the end of melting where the baseline is finally recovered, Te. Generally, Tm is the most reproducible point as an accurate measure of the equilibrium temperature which are used for the temperature calibration. The peak area below the baseline can be compared with the expected fusion heat of standard materials for the calibration of the heat flow rate.2.2.2 样品制备DSC实验采用坩埚作为试样容器,包括铝坩锅、高压坩埚以及具有特殊用途但使用较少的铂金、黄金、铜、蓝宝石或者玻璃坩埚等等. 其中最常用的是铝坩埚,包括40 μL标准铝坩埚和20 μL轻质铝坩埚. 带盖的40 μL标准铝坩埚应用范围较广,能进行固体和液体样品的测试. 20 μL的轻质铝坩埚的热容较小,有利于提高测试信号的分辨率和灵敏度,可用于质量较小的薄膜或者粉末样品的测试,一般不用于液体样品的测试. 称量样品之前首先需要选取2个质量十分相近的坩埚,以保证DSC仪器具有较好的对称性. 此外,取放坩埚时采用镊子夹取坩埚,并将坩埚放置在称量纸上,以免污染坩埚及坩埚内的样品.然后选择样品质量. 一般来说,样品质量越少越好,较少的样品量可以减小样品内部的温度梯度,提高信号的分辨率,此外还能保证与坩埚底部的良好接触,有利于提高基线的稳定性和温度测量的准确度. 然而样品质量过少会导致信号的灵敏度较低. 因此,在称量样品时需要综合考虑两者的影响. 通常,样品的体积不超过坩埚体积的2/3,有机样品的质量为5~10 mg,无机样品的质量为10~50 mg[12]. 称量时采用差减法,先用分析天平称量空坩埚的质量,然后放入样品,称量样品和坩埚的质量之和,两者相减则得到样品的质量. 称量时每个质量都需要测量3遍,保证质量称量的准确度在±0.2%.装样过程需要注意3个方有关高分子标准热容数据可从ATHAS (Advanced THermal AnalysiS)[16]等数据库中查找.2.3.2 热转变温度高分子材料的物理热转变温度主要包括玻璃化温度和熔点. 玻璃化温度[Math Processing Error]Tg是非晶态聚合物在玻璃态和高弹态之间转变的温度. 研究玻璃化转变温度可以得到有关样品的热历史、稳定性、化学反应程度等重要信息,对于实验研究、质量检测等具有重要意义. 玻璃化转变温度通常取DSC曲线发生玻璃化转变台阶上下范围的中点. 图5是ASTM方法[17]测量聚合物玻璃化转变温度的热流曲线图,在台阶的拐点[Math Processing Error]Ti处做一条切线,由这条切线与基线的交点可得到外推起始温度[Math Processing Error]Tb1和外推终止温度[Math Processing Error]Te1,这两点的中点即为玻璃化转变温度[Math Processing Error]Tg.图 5

下落法中温量热仪相关的方案

  • 下落法量热计和差示扫描量热仪在比热容测试中的比较
    本文分别描述了下落式和差示扫描量热计式比热容测试方法的测量原理,列出了这两种技术的国内外标准测试方法,并从多个方面对这两种测试方法进行了比较,其中下落法比热容测试样品量大、操作简便入门容易,测试温度可高达3000℃,而DSC法则测试参数多应用面广,两种方法各有特点和侧重,相互互补,需根据具体使用情况进行选择。
  • 高温下落法量热计实时测试系统
    本文详细描述了高温下落法量热计的设计和功能。此量热计可以用来测量室温298K-2000K温度范围内固体和液体材料的焓值变化。试样体积为1.0~1.2cm3,放置在直径10mm、高度13mm的铂铑坩埚内。试样在加热炉内的温度采用铂铑热电偶测量。量热计块热容为3.8876±3.6×10-3kJ.K-1。热容测量范围为1800~3000J,误差为5J。本文还介绍了基于WINDOWS操作系统的下落法量热计实时测控软件的设计。
  • 采用下落式量热计方法测量隔热材料高温比热
    本文介绍了采用下落式量热计方法开发的一种温度范围为100~1000℃的材料比热容测量装置。由于绝热材料一般密度低、气孔率高、低导热系数和热容较小,所以绝热材料的比热容很难准确测量。通过此开发的测试设备,采用将被加热试样落入水中的下落法,可以很容易的进行绝热材料比热容测量,所得到的测量结果是从下落前试样温度与试样下落后水平衡温度之间的平均比热容。采用此测试设备对标准参考材料SRM 720人造蓝宝石进行了测试,测试结果与标准数据偏差小于±10%。对碳化硅耐火材料、岩棉、硅铝矾土硅石纤维、硅铝矾土硅石板、硅酸钙和二氧化硅玻璃等材料进行了测试。

下落法中温量热仪相关的资料

下落法中温量热仪相关的论坛

  • 下落法量热计和差示扫描量热仪在比热容测试中的比较

    下落法量热计和差示扫描量热仪在比热容测试中的比较

    摘要:本文分别描述了下落式和差示扫描量热计式比热容测试方法的测量原理,列出了这两种技术的国内外标准测试方法,并从多个方面对这两种测试方法进行了比较,其中下落法比热容测试样品量大、操作简便入门容易,测试温度可高达3000℃,而DSC法则测试参数多应用面广。两种方法各有特点和侧重,相互互补,需根据具体使用情况进行选择。[b][color=#ff0000]1. 测量原理[/color][/b][color=#ff0000]1.1. 下落法比热容测量原理[/color] 比热容的定义为单位质量样品的温度升高1K所吸收的热量。下落法比热容测量原理则完全按照比热容定义来进行实施,如图 1-1所示,即将已知质量的样品通过加热炉加热到测试温度TS,然后样品落入具有恒定温度TC的绝热量热计中,试样将热量传递给量热计,并使得量热计温度上升并最终达到平衡温度TH。通过测量绝热量热计落入试样后的温升TH-TC可以测得试样放出的热量,即试样受热所吸收的热量,由此可以得到TC和TS温度范围内平均比热容和平均焓值。通过多个温度点下的平均比热容测量及数据处理,还可以得到某一温度点下的比热容和焓值。[align=center][img=,400,492]http://ng1.17img.cn/bbsfiles/images/2017/05/201705231031_01_3384_3.png[/img][/align][align=center][b][color=#3333ff]图 1-1 下落法比热容测定仪结构示意图[/color][/b][/align] 下落法比热容测量的核心部件是量热计,量热计为绝热式量热计的一种铜卡计,即通过测量标定过的已知质量铜块的温升来得到铜块吸收的热量(试样放出的热量),因此下落法是一种典型的绝对测量方法,测量精度只受到加热量热计的电压和电流标定精度限制。[color=#ff0000]1.2. 差示扫描量热仪比热容测量原理[/color] 差示扫描量热法(DSC)热分析方法在程序控制温度下, 测量样品和参比物的温度差和温度关系,由此测定各种热力学参数(如热焓、熵和比热等)和动力学参数。如图 1-2所示,在此基础上又发展出功率补偿型DSC和热流型DSC。[align=center][img=,619,296]http://ng1.17img.cn/bbsfiles/images/2017/05/201705231031_02_3384_3.jpg[/img][/align][align=center][b]图 1-2 各种差示扫描量热仪测量原理图[/b][/align] 热流型差示扫描量热仪DSC 是使样品和参比物同时处于一定的温度程序(升/降/恒温)控制下,观察样品和参比物之间的热流差随温度或时间的变化过程。 功率补偿型DSC是给试样和参比物分别配备独立的加热器和传感器,整个仪器由两个控制系统进行监控,其中一个控制温度,使试样和参比物在预定的速率下升温或降温;另一个用于补偿试样和参比物之间所产生的温差,这个温差是由试样的放热或吸热效应产生。通过功率补偿使试样和参比物的温度保持相同,这样就可从补偿的功率直接求算热流率。 由此可见,差示扫描量热仪都需要参比物做为基准,因此这种测试方法是一种典型的相对法,在测量过程中,要精确了解参比物的用量和相关特性。[b][color=#ff0000]2. 标准测试方法[/color][/b][color=#ff0000]2.1. 下落法比热容标准测试方法[/color] (1)GJB 330A-2000 固体材料60-2773K比热容测试方法 (2)GBT 3140-2005 纤维增强塑料平均比热容试验方法 (3)ASTM D4611-16 岩石和土壤比热标准测试方法(ASTM D4611-16 Standard Test Method for Specific Heat of Rock and Soil)[color=#ff0000]2.2. DSC比热容标准测试方法[/color] (1)ASTM E1269-11 Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry (2)ISO 11357-4 Plastics: Differential Scanning Calorimetry (DSC)- Determination of Specific Heat Capacity (3)Japanese Industrial Standard K 7123 Testing Methods for Specific Heat Capacity of Plastics (4)ASTM E2716-09 (2014) Standard Test Method for Determining Specific Heat Capacity by Sinusoidal Modulated Temperature Differential Scanning Calorimetry[color=#ff0000][b]3. 两种测试方法比较[/b]3.1. 测量精度比较[/color] 下落式比热容测试方法是一种下落式量热计法,这是一种绝对测量方法。所谓绝对测量方法即材料性能的测量不依赖于任何其它物质的性质,所以目前国内外计量机构普遍采用下落式量热计或绝热量热计做为计量级别的测试方法。差示扫描量热测试方法则是一种典型的相对法,即材料性能的测量还要依赖其它物质的性质,测量过程中要始终与参考材料进行对比,测量精度受到参考材料性质和精度的限制。差示扫描量热仪中常用的参考材料蓝宝石和纯三氧化二铝粉末都是采用下落式量热计或绝热量热计进行校准后才能使用,从原理上讲,下落法就比差示扫描量热法测量精度要高。[color=#ff0000]3.2. 测试操作复杂度比较[/color] 在比热容测试操作复杂程度方面,下落式比热容测试方法与差示扫描量热仪相比具有巨大优势。做为一种绝对测试方法,下落法测试仪器的内部结构比较复杂,但整个操作过程非常简单以避免各种因素对测量精度的影响,测试操作中只需安装好被测试样,试样达到设定温度后进行自动落样,就可以对试样比热容进行全自动准确测量,无需进行其它各种试验参数的设定。而在使用差示扫描量热仪测量比热容过程中,要考虑到多种因素的影响,并对试验参数进行正确的设定,操作复杂程度要远大于下落法,对操作人员的技术要求很高,否则测量结果会出现较大偏差。 差示扫描量热仪比热容测试必须考虑的主要影响因素大致有下列几方面: (1)实验条件:程序升温速率和所通气体的性质。气体性质涉及气体的氧化还原性、惰性、热导性和气体处于静态还是动态。 (2)试样特性:试样用量、粒度、装填情况、试样的稀释和试样的热历史条件等。 (3)参比物特性:参比物用量、参比物的热历史条件。 从以下ISO和ASTM差示扫描量热仪比热容标准测试方法中的相关规定就可以看出DSC操作的复杂程度。以下同时列出采用DSC测量比热容时的操作注意事项。3.2.1. DSC蓝宝石法比热容测试ISO标准方法细节 (1)三次测试:空白测试、蓝宝石测试、样品测试。 (2)两个坩埚的质量差不要超过0.1mg,材料相同。如果仪器足够稳定,且坩埚质量差小于0.1mg,空白曲线和蓝宝石曲线可以使用多次。 (3)当需要在更宽的温度范围内获得更准确的结果时,温度范围可以被分为2个或多个的小段温度范围,每一段50到100K宽,第二段的开始温度应该比第一段的结束温度低30K。 (4)实验的开始温度要比数据获取点的温度低30K。 (5)两个等温段的时间一般为2到10min。3.2.2. DSC蓝宝石法测试ASTM标准方法细节 (1)与ISO和JIS标准测试方法相似。 (2)因为毫克级的样品,所以样品要均一并有代表性。 (3)化学反应和失重会导致测试无效,所以要仔细选择坩埚和温度范围。 (4)合成蓝宝石最好是片状,实验室间的偏差小,推荐合成的蓝宝石(α-氧化铝)标样为热流校准标样。 (5)必须要进行温度和热流校准。因为比热随温度的变化不大,所以温度不用经常校准,但热流校准则非常关键。 (6)样品的形态与标样最好一致(粉末——粉末)(片——片)。 (7)推荐至少每天做热流校准。 (8)蓝宝石测试和样品测试使用同一坩埚。如果使用不同重量的坩埚,要考虑坩埚重量差别。 (9)恒温段至少4min,加热速率不能超过20K/min。 (10)如果样品质量变化大于等于0.3%,则测试无效。3.2.3. DSC比热容测试注意事项 (1)炉体清洁 对炉体通氧气空烧,空烧后一定要将炉体及传感器上的灰尘及灰分吹走。如果使用自动进样器,则一定要保证放置坩埚的转盘上无灰尘。 (2)温度校准 因为比热是温度的函数,所以一定要对测试范围内的温度进行校准。加热速率包含在各种测试方法中,如果温度不准,升温速率也不准,这将影响比热测量精度。 (3)坩埚及类型 根据测试温度范围选择坩埚,并最好将样品压倒坩埚底部,坩埚底部要非常平整,提高热接触效果。坩埚最好有定位针,保证位置固定。每一个比热容测试使用质量相同的坩埚。 (4)气体 静态空气或50ml/min氮气。 (5)样品及制备 样品要与坩埚底部接触良好,可以用聚四氟乙烯棒将粉末样品压实。 特别细的粉末样品可能还有比较多的水分,要先进行除水处理。 样品最好是薄片状以减小接触热阻,粉末样品最好采用中等尺寸(约0.1mm)以下的粉末颗粒。 样品必须是热稳定的固体、纤维、粉体和液体。因为样品为毫克级,所以样品的不均匀性会导致严重误差。化学反应或质量损失可能使测试无效。 导热性较差的样品通常会比比热容真值低5%。 (6)样品量 测试信号与样品量成正比,这意味着样品量越大越好,DSC信号在5mW至10mW之间较好。但样品量大的同时会使得样品的导热性差,同时容易造成样品受热不均匀。 (7)称重精度 重量准确度对比热测定非常重要,最好用百万分之一的天平称重样品。ASTM标准要求至少是十万分之一的天平。 (8)空白曲线 准确的比热容测试一定要减空白曲线,最好测试前能多做几遍空白曲线,前两遍用于调节仪器,第三遍曲线用于计算。 (9)加热速率 经典的比热容测试的加热速率通常为10K/min,如果想节省时间,20K/min的加热速率也可以得到测试结果,但比热容测试的原则是加热速率越慢越好,以使得试样温度受热均匀。 (10)参考材料 实际操作中参考材料可以采用蓝宝石,形状为片状。理论上最好是参考材料的比热容与样品越接近越好。[color=#ff0000]3.3. 样品大小和材料代表性比较[/color] 按照比热容的定义可知,无论是下落法还是差示扫描量热计法,被测样品尺寸和质量越大,样品吸收或放出的热量就越多,也就越便于得到准确的测试信号。无论是那种测试方法,样品的大小主要取决于加热方式、温度和热流检测方式。 下落法比热容测试中,样品是整体加热方式以及大面积接触放热方式,所以被测样品可以在很大(是DSC样品的几十倍)的同时还能保证样品的温度均匀性和放热准确性。大样品恰恰是下落法比热容测试的重要特点,这非常有利于非均质材料的比热容测试,如各种内部多结构形式的复合材料和各种低密度的轻质材料等。而大试样同时也是下落法测量精度高的重要保证。 差示扫描量热仪比热容测试中,原则上样品也是越大越好。但由于受到仪器结构的限制,样品大多数是底部加热和测量形式。为保证样品具有良好的热接触性能、传热性能以及温度均匀性,要求样品和参考材料最好是片状,且还要是毫克量级的微量样品。这就使得差示扫描量热法测试中要在测量准确性和样品代表性之间进行妥协和权衡,样品量大代表性好但测量精度差,测量精度高则需要样品量小代表性差,因此差示扫描量热仪多用于均质材料的比热容测试。[color=#ff0000]3.4. 测试温度范围比较[/color] 下落式比热容测试方法由于采用了绝热式量热计技术,可以轻松的实现上千度以上的高温测试,这也是国内外高温比热容测试多采用下落法的原因。 由于受到温差和热流信号探测技术的限制,一般标准的差示扫描量热仪最高温度不超过800℃。也有特制的上千度以上的差示扫描量热仪,但由于技术复杂度明显提高,使得仪器价格远高于普通差示扫描量热仪。[color=#ff0000]3.5. 测试效率比较[/color] 下落式比热容测试方法是一种单点温度测试方法,即测试样品在某个温度下的焓值和平均比热容,然后通过多个温度点焓值和平均比热容测试得到样品比热容随温度变化曲线。下落法看似不像差示扫描量热仪那样在样品温度连续变化过程中进行测量,但可以在设定温度下快速进行多个样品的连续测量。具体测试中,当第一个样品温度达到稳定后开始下落到绝热量热计中,在量热计热平衡过程中,可以导入第二个样品进行加热。当第一个样品在量热计达到热平衡并得到测试结果后,取出第一个样品后就可以下落第二个样品。如此连续操作方式可以极大提高下落法的测试效率,得到一条比热容温度变化曲线的效率基本与差示扫描量热计相同。而如果是测量多个试样的比热容温度变化曲线,则可以在一个温度点下把所有被测样品测量一遍,然后在升温至下一个温度点进行另一轮的测量,这种多个试样的测试效率要远比差示扫描量热仪快很多。 差示扫描量热仪的测试过程则是一个典型的升降温过程,升降温必须按照设定的速率进行,而且为了保证测量精度,升降温速率还不能太快,因此差示扫描量热仪这种程序式的测试流程大大限制了测试效率。[b][color=#ff0000]4. 测试设备校准[/color][/b] 下落式比热容测试方法是一种绝对测量方法,除了相应的温度传感器进行定期校准外,不再需要其它方式的校准。为了评价测试设备的测量准确度,可以采用NIST标准参考材料SRM 720(蓝宝石)或高纯度蓝宝石做为被测样品进行考核或定期自检。 对于差示扫描量热计法测量比热容而言,则需要经常采用蓝宝石参考材料进行测量和校准,ASTM标准测试方法甚至要求在每次比热容测试前都要进行校准。 另一方面,从理论上讲,差示扫描量热计法测量比热容过程中,要求参考材料的热容与样品热容越接近越好,也就是说对于不同比热容样品测量最好采用已知的近似比热容参考材料才能最大限度的保证测量精度。在这方面,文献"Reference materials for calorimetry and differential thermal analysis." Thermochimica Acta 331 (1999): 93-204给出了详细的描述。[color=#ff0000][b]5. 下落式比热容测试仪器的应用情况[/b][/color] 下落式比热容测试技术由于测量精度高而普遍应用于国内外的各个计量机构,相关文献可以参考中国计量院的研究论文:温丽梅, et al. "下落法测量材料比热的装置研究." 计量学报 z1 (2007): 300-304。 采用下落法测试材料比热容的文献报道也非常多,可以参考上海依阳实业有限公司官网上的大量文献报道:http://www.eyoungindustry.com/2013/1024/47.html。 下落法比热容测试方法和差示扫描量热计测试方法在国内基本是同步发展,由于航天部门大量采用各种复合材料和高温材料,要求测量精度高和测试温度范围广。同时,由于材料研制和生产中的工艺和质量需求,往往要求大批量的对材料比热容进行测试。因此,综合考虑下落法和差示扫描量热计法这两种方法的特点,国内航天系统几乎都选择了下落法做为材料工艺中的指定测试方法,并编制了相应的国军标测试方法。[b][color=#ff0000]6. 总结[/color][/b] 综上所述,下落法和差示扫描量热计法比热容测试技术各有特点,下落法具有测量精度更高,测试样品大更具有代表性,操作上手容易,测试效率快,测试温度范围宽等特点。差示扫描量热计则具有微量样品和应用面更广的特点。两种方法各有千秋,相互互补,需根据具体使用情况进行选择。

  • 混合法比热容测试中绝热量热计的高精度等温绝热技术介绍

    混合法比热容测试中绝热量热计的高精度等温绝热技术介绍

    [b][color=#339999][size=16px]摘要:在下落法比热容测试中绝热量热计的漏热是最主要误差源,为实现绝热量热计的低漏热要求,本文介绍了主动护热式等温绝热技术以及相应的解决方案。方案的核心一是采用循环水冷却金属圆筒给量热计和护热装置提供低温环境或恒定冷源,二是采用三通道分布式温差传感器和[/size][size=16px]PID[/size][size=16px]控制器使绝热屏对量热计进行动态温度跟踪。此单层绝热屏技术可以达到小于[/size][size=16px]0.02K[/size][size=16px]的温差控制精度,对于更低漏率量热计和更高温度均匀性的要求可采用多层屏技术。[/size][/color][/b][align=center][size=16px][color=#339999][b]------------------------------------[/b][/color][/size][/align][size=18px][color=#339999][b]1. 背景介绍[/b][/color][/size][size=16px] 下落法,也称之为铜卡计混合法,是一种测量固态材料比热容的绝热量热计标准测试方法,常用于测量100℃至超高温温度范围固态材料的比热容,特别适用于要求更具代表性的较大试样尺寸复合材料和各种低密度材料。[/size][size=16px] 下落法比热容测试的基本原理如图1所示,将已知质量的试样悬挂于加热炉中进行加热,当试样的温度达到设定温度且稳定后使其落入置于自动绝热环境且初始温度为20℃的铜块量热计中。试样放热使量热计温度升高到末温,通过测量量热计的温升,可求出试样的平均比热容。[/size][align=center][size=16px][color=#339999][b][img=下落法原理及其量热计温升变化,650,260]https://ng1.17img.cn/bbsfiles/images/2023/08/202308181720089359_1047_3221506_3.jpg!w690x277.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 下落法原理及其量热计温升变化[/b][/color][/size][/align][size=16px] 从上述下落法原理可以看出原理十分简单,但要实现比热容的准确测量,最关键的技术是要使量热计始终处于绝热环境,且量热计的起始温度要准确恒定,具体要求如下:[/size][size=16px] (1)下落法测试过程要求量热计始终处于绝热状态,避免量热计热量向四周散失而降低量热计的温升。为此需要采用高精度的主动绝热技术,使位于量热计周围的主动护热装置的温度动态跟踪量热计的温度变化并保持一致,从而形成动态等温绝热效果。[/size][size=16px] (2)为了保证测试的连贯性和准确性,样品下落前量热计的初始温度始终要保持一个恒定值,如20℃,由此要求量热计在处于绝热环境的同时,还需准确控制量热计温度恒定在20℃。[/size][size=16px] 上述两点几乎是所有绝热量热计准确测量最重要的边界条件,也是绝热量热计的关键技术,需要采用精密的温控技术才能实现。为此,本文介绍了实现此关键技术的解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 解决方案的整体思路是样品通过顶部入口落入量热计,对圆柱形量热计按照上中下三个方向进行全方位的主动式护热,量热计及其护热装置全部放置在比20℃起始温度略低的温度环境内,此温度环境由19℃循环水冷却的金属圆筒提供。依此设计的量热计整体结构如图2所示。[/size][align=center][size=16px][color=#339999][b][img=下落法比热仪绝热量热计结构示意图,550,451]https://ng1.17img.cn/bbsfiles/images/2023/08/202308181721406706_1103_3221506_3.jpg!w690x567.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 下落法比热仪绝热量热计结构示意图[/b][/color][/size][/align][size=16px] 如图2所示,量热计内镶嵌了一个圆柱形落样井,落样井外侧镶嵌有金属细丝以提供量热计标定加热功能,测温热电阻则由量热计底部插入固定。[/size][size=16px] 在量热计的侧向四周安装有一个侧向护热圆桶以提供量热计径向绝热所需的径向温度跟踪控制。同样,在量热计的上下两端分别安装有底部护热板和顶部护热板,以提供量热计轴向绝热所需的温度跟踪控制。由此通过径向和轴向的温度动态跟踪控制,使护热装置的温度始终与量热计相同,从而使量热计总是处于等温绝热状态。[/size][size=16px] 由于量热计和护热装置都处于一个温度19℃左右的低温环境,此低温环境就相当于一个恒定冷源,那么护热装置仅采取加热方式就可以对高于此低温环境的量热计温度进行快速跟踪控制,同时也这样可以很精确的控制量热计的20℃起始温度。[/size][size=16px] 为了实现高精度的起始温度控制和跟踪温度控制,除了需要采用高精度铂电阻温度计之外,关键是还需在上中下护热装置与量热计之间分别配置高分辨率的分布式温差传感器,以及三通道的超高精度PID温度控制器,温差传感器的分辨率以及PID温控器的AD和DA精度决定了温度跟踪精度和量热计绝热效果,最终决定了比热容的测量精度。本解决方案所采用的温差传感器以及超高精度PID控制器,可使温度跟踪精度达到0.02K以下,优于标准方法中规定的0.05K精度要求。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 等温绝热是各种高精度绝热量热计普遍使用的技术手段,也是各种高精度温度环境控制首选的技术途径之一。针对下落法比热容测试中的绝热量热计,本解决方案采用的是单层绝热屏结构,而对于绝热或环境温度恒定有更高要求的仪器设备和试验环境,在单层结构基础上可以采用多层绝热屏结构,特别是在恒定的真空压力环境下,单层或多层绝热屏结构更是首选技术方案。[/size][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][b][color=#339999]~~~~~~~~~~~~~~~[/color][/b][/align][size=16px][/size]

  • 欧核中心研究反物质是否会下落

    新华社日内瓦4月30日电 (记者刘美辰 吴陈)欧洲核子研究中心ALPHA项目组在一份新研究报告中说,在成功“抓住”反氢原子较长时间后,他们目前正试图直接分析反物质与引力的相互作用,以确定反物质到底是向下落还是“向上落”。 与人们所熟知的物质不同,反物质的原子由带负电的质子和带正电的电子组成。据当前理论预计,氢原子和反氢原子具有相同的质量,因此它们与引力的相互作用方式也应该相同:不管是氢原子还是反氢原子,一经释放就会受到向下的作用力。但这一理论还有待实证检验。 ALPHA项目组此前用特殊磁场将反氢原子“抓住”达1000秒。然后反氢原子被释放,研究人员利用对位置敏感的湮灭探测器观察其运动轨迹,试图分析引力对被释放的反氢原子的影响。 ALPHA项目组于4月30日在英国《自然通讯》期刊上报告说,这是科研人员首次能对反物质与引力的相互作用进行直接分析。不过,他们目前还只是迈出了直接观测、分析引力如何影响反物质的第一步,因为根据现阶段的数据仍无法确认反物质在引力的作用下到底是向下落还是“向上落”。 据介绍,ALPHA实验设备升级后,明年将重新启动。届时在更多数据支持下,有望更好地直接观察反物质如何受引力作用。 项目组研究人员乔尔·法扬斯说:“如果反物质真的‘向上落’——发生这种情况的可能性不大,那么我们就不得不改变对宇宙运行方式的看法了。”

下落法中温量热仪相关的耗材

  • 曲安奈德益康唑乳膏中曲安奈德和硝酸益康唑含量的分离,色谱柱COSMOSIL C8-MS
    曲安奈德益康唑乳膏中曲安奈德和硝酸益康唑含量的分离,色谱柱COSMOSIL C8-MS 关键词:曲安奈德益康唑乳膏,曲安奈德,硝酸益康唑,2010年药典,辛烷基硅烷键合硅胶 2010年中国药典标准:曲安奈德益康和硝酸益康唑色谱条件:照高效液相色谱法(附录Ⅴ D)测定,用辛烷基硅烷键合硅胶为填充剂;以溶解在乙腈-异丙醇-水-85%磷酸中的己烷磺酸钠为流动相A,以溶解在甲醇-水-85%磷酸中的己烷磺酸钠为流动相B,进行梯度洗脱;柱温为40℃;检测波长为227nm。曲安奈德峰与硝酸益康唑峰的分离度应符合要求。(中国药典二部P269) 需要详细的药典标准请联系北京绿百草:010-51659766. 登录网站获得更多产品信息: www.greenherbs.com.cN
  • 量热仪配件充氧仪
    自动充氧仪特点:充氧装置是为充氧的配置装置,它同氧弹热量计配套。也可用于其他型号热量计的气压自封式新型氧弹,该充氧装置具有以下优点:(1)可以避免充氧所造成的喷溅。 (2)充氧速度可调节。 (3)操作方便,省时省力。 (4)可以延长氧气减压阀的使用寿命。(5)自动充氧,可随时观察氧弹、氧气瓶中的氧气压力、安全可靠。自动充氧仪主要技术指标:①许用工作压力:最大4MPa ②氧压力表量程:0-6MPa ③正常充氧压力:3Mpa无级可调 ④充氧时间:≥30s自动充氧仪工作原理:氧气从氧气瓶经过减压器输入充氧装置或再经过流量调节器到充气阀,阀内的阀塞借助于氧气的压力关闭充氧阀。氧弹将阀塞压开使氧气充入氧弹。充氧的压力由氧气压力表指示。自动充氧器维护与保养:(1) 试用氧气必须符合 GB213-96 要求,禁止使用电解氧。氧气瓶应摆放在符合安全规程的地点 (2) 充氧器要放在平稳的工作台面上; (3) 充氧器(包括充氧导管、减压阀)严禁与各种油脂接触; (4) 充氧器上的氧气导管要避免弯折、扭曲 ; (5) 充氧器周围严禁有明火存在; (6) 如氧气瓶的氧压低于 5MPa ,应更换新氧气。如氧弹中充氧压力超过 3MPa ,则应将氧弹中的氧气放出,重装氧弹,重新充氧。手持微型充氧仪规格尺寸: 总高度约95mm;充氧仪内嘴直径为:12.4mm;氧弹充氧嘴直径:12mm。微型充氧仪技术指标:充氧压力: 不小于4MPa;充氧管耐压: 不小于4MPa。适用于各种型号的量热仪充氧使用 。
  • 粮食中呕吐毒素检测仪
    呕吐毒素检测仪深圳市芬析仪器制造有限公司生产的CSY-YG701粮食中呕吐毒素检测仪可快速准确测定出玉米、大米大麦、小麦、花生、粮油等食品乳制品、谷物及饲料和饲料原料中的真菌毒素含量(呕吐毒素、黄曲霉、玉米赤霉烯酮等),广泛应用于粮油监测中心、粮油饲料生产加工、食品加工贸易、面粉厂、粮食局、畜禽养殖户自查、工商质监部门用于市场快速筛查等 粮食中呕吐毒素检测仪组成:CSY-YG701检测仪主机、一体化拉杆箱包装、台式电子天平、可调移液器、移液枪头、计时器、离心机、粉粹机、涡旋振荡器、取样勺、采样瓶、离心管、镊子、留样密封袋、标签纸、合格证/保修卡、说明书、定量检测卡等。 产品优势:1.仪器使用寿命长:采用高性能LED光源,金属丝杆设计,非连续工作模式,使用寿命可达10年;2.液晶触摸屏7英寸中文显示,人性化操作界面,读数准确、直观; 3.本仪器具备数据储存功能,接口方式采用USB、RS232等设计,方便数据的存储和相关处理;4.自动保存检测结果,数据存储量大,内置微型打印机,可实时打印检测结果;5.支持网络通信(wifi、网络端口),可以进行数据传输功能(选配定制功能);6.内置六通道试剂温度生化培养装置,解决不同区域温度对数据的影响;7.封闭式检测仓门设计,避免灰尘进入仪器内部,延长仪器使用寿命;8.配置齐全:所需设备、试剂、耗材一站式提供,开箱即检;9.内置标准曲线,通过ID卡导入标准曲线,无需检测时再做标准曲线,既节省了成本,也避免了操作人员与霉菌毒素的接触,保护操作人员的安全;10.整机支持按客户要求定制(ODM加工及OEM项目合作) 技术参数:1、屏幕:7寸触摸屏2、操作系统:嵌入式操作系统3、重复性:CV<3%4、稳定性:CV<3%5、台间差:CV<3%6、检测通道:单通道定量检测结果 7、前处理:≤15分钟(根据项目而定)8、检测时间:<10s可对样本进行定性、半定量检测9、检测结果报告:可准确报告出检测项目、被测物质的浓度、检测单位、被检查单位、检验员、检测时间、检测限等信息可在触摸屏上显示,可通过仪器内置打印机输出10、连接方式:USB接口,串口,网口11、数据传输:USB 以及网口(升级wifi)12、检测器:光电源 , 波长:365nm/610nm13、一体化拉杆箱包装(详见配置清单) 呕吐毒素快速检测仪配置清单:序号名称型号规格单位数量1主机CSY-YG701台12电源适配器线15V5A条13说明书本14合格证/保修卡本14台式电子天平200g/0.01g台15样品称量架个16可调移液器1000-5000ul把17可调移液器20-200ul把18移液枪头20-200ul96/盒19移液枪头1000-5000ul20只/袋110计时器个111标签纸张2 12采样瓶50ml个1013离心机7000转台114离心管50ml个2015离心管1.5ml个5016粉粹机台117涡旋振荡器台118毛刷个119镊子个120取样勺个121留样密封袋张5022检测卡40次/盒1以上是CSY-YG701呕吐毒素快速检测仪技术参数,如果您想了解有关于CSY-YG701呕吐毒素快速检测仪操作说明书以及其他问题,请致电深圳市芬析仪器制造有限公司夏经理
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制