水分子检测激光器

仪器信息网水分子检测激光器专题为您提供2024年最新水分子检测激光器价格报价、厂家品牌的相关信息, 包括水分子检测激光器参数、型号等,不管是国产,还是进口品牌的水分子检测激光器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合水分子检测激光器相关的耗材配件、试剂标物,还有水分子检测激光器相关的最新资讯、资料,以及水分子检测激光器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

水分子检测激光器相关的厂商

  • 华日激光坚持以市场需求引领新产品的研发,为客户提供纳秒、皮秒、飞秒等多种脉冲宽度,红外、绿光、紫外、深紫外等多种波长的激光器产品,所有产品均具备自主产权,同时产品通过欧盟CE质量安全认证,完全满足严苛条件下的工业加工要求,是超精细加工领域的理想光源。同时通过与全球高端激光设备制造商在电子电路、硬脆材料、半导体、新能源、生命科学等领域开展紧密合作,为用户提供全面的激光技术解决方案。
    留言咨询
  • 本公司是一家专业从事激光产品研发的高科技公司,拥有雄厚的技术设计和生产能力,终身致力于为国内外客户提供品质优良、性能出众、价格有竞争力之产品。目前已开发出多种半导体激光产品,其中激光标线器是一种方便实用的标线工具。可广泛用于作服装钉钮点光源定位、裁布机裁布辅助标线、缝纫机/裁剪机/钉钮机/自动手动断布机辅助标线定位、裁床裁剪对格与对条、电脑开袋机标线等等。方便快捷、直观实用。。  产品主要包括:半导体激光器、激光准直光源、激光平行光管、激光标线仪、光学透镜、实验室教学光源、激光功率计等。  半导体激光器主要包括绿光(532nm)系列激光器、红光(635nm、650nm、780nm)系列激光器和红外(808nm、850nm、980nm)系列激光器。  激光准直光源主要包括:D-系列(点状光斑)激光器、L-系列(一字线)激光器、S-系列(十字线)激光器、T1-系列(功率可调)激光器、T2-系列(频率调制)激光器,P-系列(平行光管)激光器,B-系列激光标线仪。其中D-系列激光器光束发散度可达0.1mrad;L-系列激光器线宽最小可达0.3mm;调制(T2)激光器调制范围0-10KHz。P-系列激光平行光管口径可达40mm,光束发散度可达0.02mrad。  激光功率计可标定532nm、635nm、650nm、780nm、808nm、850nm、980nm、1100nm各波段,工作同时可监测电流。  我公司激光产品及光学产品可广泛应用于科研、工业、勘探、测量及医疗等领域。可以根据用户的特殊要求设计加工专用激光器及光学系统,也可以提供激光系统应用和特殊用途的批量供应。“团结、自信、坚韧、进取”是我们的企业宗旨,我们将一如既往地为用户提供高品质的产品。
    留言咨询
  • 北京卓镭激光技术有限公司成立于2014年,位于北京市顺义区空港工业园内。卓镭激光在成立伊始就明确了助推民族激光产业发展的使命,以及打造国产激光器第一品牌的愿景。2015年初,公司与中科院建立战略合作关系,2016年西安全资子公司成立。2018年因工业市场发展强劲,深圳全资子公司成立,主要从事工业产品生产及售后服务。目前,卓镭激光北京、西安和深圳三地建筑面积近3000㎡,拥有千级光学洁净实验室及装配、生产车间。卓镭激光已通过国家级高新技术企业、ISO9001质量管理体系等多项资质认定,并且ALICE-PS系列激光器已顺利通过欧盟CE认证。公司具有完整的研发、生产与质量管理体系,致力于为全球客户提供一流的激光器产品与服务。卓镭激光产品主要应用于科学研究、工业加工和医疗美容等多个领域。公司成立四年以来,开发出用于材料改性(冲击强化)和科学研究的大能量激光器(LAMBER系列)、用于精细微加工的高功率超快皮秒激光器(BLAZER系列)、用于医疗美容的专用皮秒激光器(ALICE-PS系列)等十余个系列、二十余种型号的激光器产品。公司研发实力雄厚,目前已实现年产激光器2000台以上的产能,并出口至韩国、新加坡和以色列等国家。
    留言咨询

水分子检测激光器相关的仪器

  • 深紫外飞秒激光器概述以可调谐的锁模钛宝石激光器作为基频光源,经过多级倍频/和频来产生192-200nm波段的深紫外超短脉冲激光(图1)。 图1. 192-200 nm超短脉冲激光产生方案示意图 基于基频光源的不同选择,激光波长还可以实现大范围的调谐,最大范围可覆盖192-300 nm波段,且连续可调。另外还可输出覆盖二次谐波(375-500 nm)、三次谐波((230-300 nm)波段的可见、紫外超短脉冲激光。另外,基频光源也可选择1 μm波段(1064 nm、1030 nm)锁模激光器,可获得四次谐波(~260 nm)和五次谐波(~210 nm)的紫外激光。 图2. 激光器实物图(192-300 nm连续调谐,尺寸1300*600*200mm3,不含基频源) 技术特点: 覆盖深紫外、紫外、可见光的大范围波长调谐 电动控制波长调谐 高指向稳定性 图形化人机交互界面 波长可扩展深紫外飞秒激光器应用领域: 超快光谱探测 高精密激光加工 荧光寿命探测 非线性光学2. 基频光源技术参数典型的基频光源可选择Coherent公司CHAMELEON 系列钛宝石激光器或Spectra-Physics公司的Maitai HP系列激光器。主要技术指标如下: 技术指标典型参数波长 780 nm或波长可调谐 根据需求固定激光波长,或可调波长脉冲宽度100 fs、50 fs重复频率 80 MHz光束质量M21.3功率 ~2.5W@780 nm 取决于最终需求的深紫外激光功率,2.5W基频光对应于约4mW的195nm激光功率 3. 输出技术指标(1)195 nm激光输出功率约4 mW(基频功率2.5W@780nm).(2)195 nm激光输出功率约0.5 mW(基频功率1.4W@780nm) 技术指标典型参数波长195nm或波长可调谐192-300nm根据需求固定激光波长,或可调波长脉冲宽度~500fs@266nm基频光脉冲宽度100fs时测试结果重复频率80MHz功率~4mW@195nm典型调谐功率见下图((基于MaitaiHP基频源测试)图3.各波段激光输出功率:(a)二次谐波;(b)直接四次谐波;(c)三次谐波;(d)四次谐波(和频)。
    留言咨询
  • 一, 1392nm空气中水分子TDLAS激光分析测试地点:筱晓(上海)光子有限公司演示实验室 测试人:王秀祥 测试日期:2018-06-26TDLAS技术介绍:TDLAS是 Tunable Diode Laser Absorption Spectroscopy 的简称,中文翻译为可调谐半导体激光吸收光谱。可调谐二极管激光吸收光谱(TDLAS)技术是利用二极管激光器波长调谐特性,获得被测气体的特征吸收光谱范围内的吸收光谱,从而对污染气体进行定性或者定量分析。*指标激光气体分析仪传统光谱在线分析仪(如质谱仪、红外仪器等)预处理系统不需要(简单的)必需*测量方法现场、连续、实时测量采样预处理后间断测量气体环境高温、高粉尘、高水分、高流速、强腐蚀等、恶劣环境适应能力强只能测量恒温、恒压、恒流、干燥及无粉尘的气体*响应速度快:仅取决于仪表响应时间,小于 1 秒慢:取决于采样预处理时间、样品气传输时间和仪表响应时间,超过 20 秒准确性实地测量,气体信息不失真;测量值为气体线平均浓度;不受背景气体、粉尘及气体参数影响溶解吸附泄漏导致气体信息失真;测量值为探头位置局部浓度;背景气体、粉尘及气体参数影响测量的准确性连续性连续测量间断测量:反吹时无法测量可靠性无运动器件、可靠性高较多运动部件,可靠性低*测量参数可同时测量气体浓度、温度、流速等参数只能测量气体浓度介质干扰不受背景气体交叉干扰;自动修正粉尘及光学视窗污染干扰受背景气体的交叉干扰,无法定量修正粉尘及光学视窗污染干扰*样气排放无样气排放,安全无污染有样气排放,危险有污染标定维护标定:3~4 次/年;维护:3~4 次/年,自动提示标定:一个月 2~3 次;维护:经常运行费用无需备品备件;运行费用接近于零(仅为电费)需要较多备品备件;年费用一般为系统成本的 20%左右TDLAS与传统测量方法性能对比: 工程师安装调试现场 软件控制界面:(H20调试设定的吸收谱线值) 局部连接装置: (线缆连接图) 整体光路调试图 (专利技术无需光路调节对准,直接光纤耦合输入光纤耦合输出) (高SNR 2f信号光谱图)(上海空气中的水分子作为待测气体)我们的客户: 设备装箱清单:配件名称数量规格说明TDLAS综合控制盒1个1个NTT DFB激光器;1个PCI锁相控制板;激光器驱动底座;温度控制装置30m长光程气体吸收池1光纤耦合输入输出,无对准2mm大光面光电探测器1 内置于Herriote Cell探测器电源1 12V双通道示波器1 RIGOL待测气体1空气中水分子 无污染不需要购买±5V/±12V电源适配器1FC/APC光纤适配器11392nm单模光纤跳线13米控制盒与气体池连线USB数据线11米SMA转BNC信号线10.8米控制盒与探测器连线BNC转BNC信号线10.8米控制盒与示波器连线探测器电源线1根1米探测器跳线1根0.3米红外激光显示卡1张内六角螺丝刀1份UBC 控制软件1份测试结果说明:通过本次H2O(气体)系统搭建及其测试,证明我司的TDLAS控制箱以及长光程气体吸收池工作正常,性能优良,高达600dB的SNR能够很好地检测出空气中0.04%水分子的且系统噪声较低,初步估算灵敏度可达1ppm的下限。 系统升级服务:对于常见的气体我们同时为客户提供有偿的标定,以及软件设计服务,我们可以让我们的系统直接输出浓度值。目前支持直接输出浓度值的气体如下:(TDLAS系统操作软件) 二,7.4um QCL结合空芯光纤气室气体分析系统 分析空气中H2O理论基础1、比尔-朗伯定律一束激光穿过浓度为C的被测气体时,当激光器的波长和被测气体某个吸收谱线中心频率相同时,气体分子会吸收光子而跃迁到高能级,表现为气体吸收波段激光光强的衰减2、波长调制光谱技术A) 激光器的调谐特性DFB激光器 由于具有良好的单色性,窄线宽特性和频率调谐特性,DFB激光器能够很好的避免其他背景气体的交叉干扰,使检测系统具有较好的测量精度,因此被广泛的用于气体检测B) 谐波检测理论通过对激光器的驱动电压加高频正弦电压信号,从而改变电流,使输出频率也按正弦规律变化。通过给激光器驱动加锯齿波电压,使其输出波长在气体吸收峰两侧扫描,利用锁相放大器调制并解调出谐波信号,进行气体浓度的测量。3、吸收谱线选取的原则在进行气体检测时,对吸收谱线的选取非常关键,应考虑以下几个方面(1)气体在选定的谱线处要有较强的吸收峰,(2)谱线波长对应的激光器光源技术要相对成熟(3)在选定的吸收谱线处没有背景气体吸收的干扰,或吸收相对较弱,可以忽略7.4um QCL结合空芯光纤气室气体分析系统 分析空气中H2O,7.4um QCL结合空芯光纤气室气体分析系统 分析空气中H2O通用参数实验仪器1、7.4um低功耗台式DFB-QCL中红外量子级联激光器QCL7400 - 7.4um低功耗台式DFB-QCL中红外量子级联激光器是筱晓2018上半年开发出的国内先进低功耗的QCL DFB激光.超过100nm的可调谐范围,输出功率大于25mw满足客户测试气体传感等工业需求。我们的激光器准直输出输出功率稳定,温度波长稳定性高比传统大功耗的量子级联激光器的稳定性高出好几个数量级。为我们中红外测试的客户提供了最佳的测试光源。光谱图波长温度电流调谐曲线2、5米长光程小型化Mini中红外空芯光纤气体吸收池HC-5-MIR 5米长光程气体吸收池可应用于光谱分析检测,坚固,紧凑的气室采用了中空光纤盘绕,其排列非常简单。在中空纤维中,探测光束和分析物重叠,从而实现了灵敏的激光吸收光谱,并以最小的样品量进行痕量气体和同位素分析。3、2-15um碲镉汞(MCT)中红外光电探测器,带放大,带TECMCT-15-4TE放大探测器是一种热电冷却光电导HgCdTe(碲镉汞,MCT)探测器。这种材料对2.0到15 μm的中红外光谱波段光波敏感。半导体制冷片(TEC)采用一个热敏电阻反馈电路对探测器元件的温度控制在-30 °C,从而将热变化对输出信号的影响最小化。为了获得最佳效果,我们推荐将输出电缆(不附带)与一个50欧姆的终端连接。由于探测器是AC偶合的,因此它需要一个脉冲或斩波输入信号。 交流耦合探测器不会看到未斩波的直流信号,因为它们对只对强度变化而不是强度的绝对值敏感。三、实验测试 本次实验使用7.4um QCL激光器结合5米光程空芯光纤气体吸收池测试空气中的H2O气体。系统示意图操作步骤:1、安装7.4umQCL激光器,准直输出到空芯光纤气室的一端2、空芯光纤气室的另一端接入MCT探测器3、用BNC转SMA线连接探测器和7.4um QCL激光器的PREAMP前置放大端4、 用一根BNC-BNC线连接示波器和7.4um QCL激光器的DACOUT模拟输出端5、 用一根BNC-BNC线连接示波器和7.4um QCL激光器的TRIG OUT触发端6、 打开激光器和探测器7、 调节软件参数,在示波器上观察二次谐波信号波形、幅值等信息过程分析:利用电脑端的控制软件调节电流和温度的大小对波长进行调谐,使激光器实现一定波长范围的扫描,使输出波长覆盖气体的吸收峰,锁相放大器提供高频正弦调制信号,使激光器输出频率得到正弦调制,激光器发出的光经过气体吸收池,通过探测器进入PREAMP端前置放大电路,再经过锁相放大器调制解调,通过DAC OUT 模拟输出端到示波器通道2,显示二次谐波的信号。整个过程中,我们通过调节软件中的各项参数,同时观察输出波形,使输出波形最优。四、实验结果1、二次谐波波形及调制参数如下:二次谐波软件调制参数2、验证分析:通过查询Hitran数据库得到在波数为1354cm-1到1356cm-1范围内的吸收谱线如下:吸收峰波长约为7.381um,通过对比二次谐波幅值信息,与数据库相符合,由此验证是H2O气体。3、实验结论:通过测试,我们发现使用这套测试系统分析空气中的H2O气体时,二次谐波幅值可达150mV,说明这套测试系统精度很高。 产品清单:#名称描述数量17.4um中红外量子级联激光器峰值工作波长7.4um,输出功率5mW,光谱宽度1MHz,输出隔离度30dB,台式规格尺寸340(L)x240(W)x100(H)mm125米长光程小型化Mini中红外空芯光纤气体吸收池有效光程5m,波长范围3-12um,输出发散角30mrad,操作大气压0.01-1atm132-15um碲镉汞(MCT)中红外光电探测器响应波长范围2-15um,光敏面大小2x2mm,工作带宽10Hz-14MHz14U盘含操作软件,产品操作手册1三,7.4um QCL 结合空芯光纤气体吸收池分析系统 (实验分析空气中 H2O 水)一、理论基础1、比尔-朗伯定律一束激光穿过浓度为C的被测气体时,当激光器的波长和被测气体某个吸收谱线中心频率相同时,气体分子会吸收光子而跃迁到高能级,表现为气体吸收波段激光光强的衰减2、波长调制光谱技术A) 激光器的调谐特性DFB激光器 由于具有良好的单色性,窄线宽特性和频率调谐特性,DFB激光器能够很好的避免其他背景气体的交叉干扰,使检测系统具有较好的测量精度,因此被广泛的用于气体检测B) 谐波检测理论通过对激光器的驱动电压加高频正弦电压信号,从而改变电流,使输出频率也按正弦规律变化。通过给激光器驱动加锯齿波电压,使其输出波长在气体吸收峰两侧扫描,利用锁相放大器调制并解调出谐波信号,进行气体浓度的测量。3、吸收谱线选取的原则在进行气体检测时,对吸收谱线的选取非常关键,应考虑以下几个方面(1)气体在选定的谱线处要有较强的吸收峰,(2)谱线波长对应的激光器光源技术要相对成熟(3)在选定的吸收谱线处没有背景气体吸收的干扰,或吸收相对较弱,可以忽略7.4um QCL 结合空芯光纤气体吸收池分析系统 (实验分析空气中 H2O 水),7.4um QCL 结合空芯光纤气体吸收池分析系统 (实验分析空气中 H2O 水)通用参数 实验仪器1、7.4um低功耗台式DFB-QCL中红外量子级联激光器QCL7400 - 7.4um低功耗台式DFB-QCL中红外量子级联激光器是筱晓2018上半年开发出的国内先进低功耗的QCL DFB激光.超过100nm的可调谐范围,输出功率大于25mw满足客户测试气体传感等工业需求。我们的激光器准直输出输出功率稳定,温度波长稳定性高比传统大功耗的量子级联激光器的稳定性高出好几个数量级。为我们中红外测试的客户提供了最佳的测试光源。光谱图2、中空光纤式气体吸收池HC-5-FC-SMA中空光纤式气体吸收池包括光学窗口、光纤端口和气体端口。通过其中两个模块,您可以将中空光纤转化为台式气体吸收池,用于吸收光谱或基准波长应用,只需更换不同路径长度的光纤即可。3、2-15um碲镉汞(MCT)中红外光电探测器,带放大,带TECMCT-15-4TE放大探测器是一种热电冷却光电导HgCdTe(碲镉汞,MCT)探测器。这种材料对2.0到15 μm的中红外光谱波段光波敏感。半导体制冷片(TEC)采用一个热敏电阻反馈电路对探测器元件的温度控制在-30 °C,从而将热变化对输出信号的影响最小化。为了获得最佳效果,我们推荐将输出电缆(不附带)与一个50欧姆的终端连接。由于探测器是AC偶合的,因此它需要一个脉冲或斩波输入信号。 交流耦合探测器不会看到未斩波的直流信号,因为它们对只对强度变化而不是强度的绝对值敏感。三、实验测试 本次实验使用7.4um QCL激光器结合空心光纤气体吸收池测试空气中的H2O气体。系统示意图操作步骤:1、安装7.4umQCL激光器,准直输出到空芯光纤气室的一端2、空芯光纤气室的另一端接入MCT探测器3、用BNC转SMA线连接探测器和7.4um QCL激光器的PREAMP前置放大端4、 用一根BNC-BNC线连接示波器和7.4um QCL激光器的DACOUT模拟输出端5、 用一根BNC-BNC线连接示波器和7.4um QCL激光器的TRIG OUT触发端6、 打开激光器和探测器7、 调节软件参数,在示波器上观察二次谐波信号波形、幅值等信息过程分析:利用电脑端的控制软件调节电流和温度的大小对波长进行调谐,使激光器实现一定波长范围的扫描,使输出波长覆盖气体的吸收峰,锁相放大器提供高频正弦调制信号,使激光器输出频率得到正弦调制,激光器发出的光经过气体吸收池,通过探测器进入PREAMP端前置放大电路,再经过锁相放大器调制解调,通过DAC OUT 模拟输出端到示波器通道2,显示二次谐波的信号。整个过程中,我们通过调节软件中的各项参数,同时观察输出波形,使输出波形最优。四、实验结果1、二次谐波波形及调制参数如下:2、验证分析:通过查询Hitran数据库得到在波数为1354cm-1到1356cm-1范围内的吸收谱线如下:吸收峰波长约为7.381um,通过对比二次谐波幅值信息,与数据库相符合,由此验证是H2O气体。3、实验结论:通过测试,我们发现使用这套测试系统分析空气中的H2O气体时,二次谐波幅值可达872mV,说明这套测试系统精度很高。 产品清单:#名称描述数量17.4um中红外量子级联激光器峰值工作波长7.4um,输出功率5mW,光谱宽度1MHz,输出隔离度30dB,台式规格尺寸340(L)x240(W)x100(H)mm12中空光纤式气体吸收池极其简单和稳固的对齐方式,波长范围:紫外到长波红外,光程范围:0.1至5m,低样品量:10mL,体积小巧;灵活布局132-15um碲镉汞(MCT)中红外光电探测器响应波长范围2-15um,光敏面大小2x2mm,工作带宽10Hz-14MHz14U盘含操作软件,产品操作手册1
    留言咨询
  • 2020nm铥激光器(Tm:YAG):二极管泵浦固体激光器2020nm脉冲激光器Tm:YAG产品简介我们的标准二极管泵浦2020nm激光器在广泛的重复率和脉冲持续时间范围内提供高达100W的功率。由于突出的光束质量和高水平的水吸收,能在生物组织应用中提供惊人的结果。与闪光灯泵浦激光器相比,废热更少,冷却系统更小,有更紧凑的体积。通过采用可靠的激光二极管和坚固的结构,这些光源可连续7天24小时工作。2μm的Tm激光在激光雷达、激光测距、激光医学等领域具有良好的应用前景。与其它激光相比,Tm激光在医疗上显著的优点是能有效地促进组织凝固和汽化,并具有良好的止血效果。2020nm脉冲激光器Tm:YAG激光的特点切割高效精确:铥激光是通过Tm:YAG固态二级管形成激发光,波长约2μm,接近水分子的吸收峰值,能被组织中水分子高效吸收,从而使热损伤深度较浅(0.2mm下的切割区渗透),不损伤周围组织。应用范围较广:组织中无处不在的水分子为铥激光提供恒定的相互介质,水分子的高效吸收,温度迅速升至到沸点,进而气化。因此,铥激光能够穿透介质表面浅层,不依赖于组织中生色团的浓度,特别是血红蛋白的生色团,临床应用范围较广。光束直径较小:具有高质量、小直径的特性,因此能与软镜联合应用,完成一些手术操作。2020nm脉冲激光器Tm:YAG激光应用前列腺增生症的治疗Tm激光对组织的热损伤较小,操作更安全。Tm激光具有较好的切割、汽化和止血效果。这些特点使它成为前列腺手术的理想选择。膀胱肿瘤的治疗激光治疗膀胱癌的主要方法有膀胱肿瘤汽化术和膀胱肿瘤切除术。膀胱肿瘤汽化术在老年低度非肌肉浸润性膀胱肿瘤患者中尤其有用。该方法能达到一定的疗效,并发症发生率低,且无需全身麻醉,适合门诊患者。尿石症的应用Tm激光碎石术的机理是光热效应。光热效应的机理是:一方面,石头直接吸收能量,加热石头使其粉碎;另一方面,石头中的水被迅速加热,使蒸汽迅速流动,破坏石头。微创手术软组织治疗效果恒定的速度和功率,但较高的重复频率和较低的脉冲能量导致较低的切割深度和更大的热冲击。切的质量非常高。热冲击(冷/热消融)和切割深度(10 pm至6 mml)可通过激光参数和切割速度控制DPM系列2020nm(Tm:YAG)激光器特点1)小型单片激光系统2)高效二极管泵浦3)可提供光纤耦合版本4)不需要高电压5)减少废热6)使用寿命长,维护简单2020nm(Tm:YAG)激光器主要技术指标更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。您可以通过我们昊量光电的网站了解更多的产品信息,或直接来电。
    留言咨询

水分子检测激光器相关的资讯

  • 《自然》:110亿光年外遥远星系发现水分子
    新浪科技讯 北京时间12月19日消息,据国外媒体报道,德国科学家日前表示,他们最近在一个距地球约110亿光年外的星系中发现了水分子,这是人类迄今在距离地球最远的星系中发现水的存在,表明水在宇宙诞生初期是普遍存在的。   在最新一期出版的《自然》杂志上,德国的科学家公布了他们的这一最新发现。在此之前,人类发现的有水星系最远距离地球约70亿光年。天文学家们在利用德国艾弗尔斯贝格100米射电望远镜和美国甚大阵射电望远镜对一个名为“MG J0414+0534”的遥远星系进行科学探索的过程中,在其中发现了水分子的化学迹象。水分子似乎位于该星系的中央,在那里存在一个被称为“类星体”的特大质量黑洞。在不断吸收周边物质的同时,黑洞还释放出大量的辐射物。水分子就存在于落入黑洞的那些烟尘和气体之中,而且好象还会放大一种特定频率的无线电波,形成所谓的“水脉泽”。那是一种类似于激光的辐射物。   虽然在一个遥远的星系发现水分子并不意味着该星系的行星就一定也存在水,但是对于致力于寻找地球之外生命迹象的天文学家来说,这总是一个好兆头,至少是在地球外发现了适宜生命的化学分子。该星系距离地球非常遥远。科学家们认为,它应该比宇宙年轻大约六分之一的寿命。如此遥远的距离,以至于在通常情况下我们很难看到它。科学家们必须通过一种被称之为“引力透镜”的宇宙放大镜才能够实现对该星系的观测。爱因斯坦曾经在广义相对论中预言过这种引力利用技术。当地球与遥远的天体之间存在一个巨大的前景星系时,前景星系会使遥远天体的光线发生弯曲。光的弯曲作用从而产生遥远天体的多重放大图像,我们人类也就因此可以观测这种遥远的天体。   德国波恩的马克思-普朗克研究所射电天文研究分所天文学家维奥莱特-伊姆利泽里介绍说,“只有在这种引力透镜的帮助下,我们才有可能发现这种遥远的水分子。这种宇宙望远镜大大缩减了发现宇宙水分子所必要的时间。”这一发现表明,水分子形成和存在的必要环境其实早已存在,大约形成于宇宙大爆炸25亿年之后。维奥莱特认为,“因为水脉泽形成于星系核心附近,因此我们的研究成果也为研究星系形成时是否存在特大质量黑洞这一问题提供了可能。此外,研究成果还将促进我们利用当前已有的望远镜以及下一代射电望远镜进一步探索遥远星系中的水。至少我们现在已经知道那里确实存在水。”   科学家们曾经在实验室再现过水在宇宙中诞生的过程,这项成果将有助于人们探索水、生命和行星的起源。在太阳系诞生前,宇宙中就形成了由含有氢、氧、氮等元素的气体及尘埃高密度聚集而成的分子云,然而最初分子云内并不存在水分子,水是如何形成的一直不清楚。科学家们设计了一种实验设备,能制造零下263摄氏度的真空状态,这类似于宇宙中分子云形成初期的外界环境。在这种环境下,用氧分子撞击低温的氢原子,研究人员观测到了水分子的诞生。研究人员接着用红外线照射实验中形成的水分子,结果发现与宇宙分子云内的水分子一样,这些水分子也以非晶质冰形式存在,排列散乱。研究人员还推测说,水分子很可能在分子云诞生后1万年至10万年之间形成。   尽管在宇宙的星系中已经发现了水的存在,但悲观者认为宇宙星系中存在智慧生命的机率不到亿万分之一,人类还是可以判定有些行星存在文明。同时有些文明可能已经存在几百万年了,那这样的话他们文明程度肯定比人类高得多,人类在关于星球科普电影看到这样的景象。美国宇航局确定的三大探测目标就是探测地球之外的世界,这三大行星都有宏大的目标,搜索类地行星。第二个是空间干涉的测量项目,它是要寻找几个近距离的类地行星,测量它们质量和轨道。还有一个非常令人激动的,望远镜探索类地行星,分析其化学成份以及寻找生命迹象。(刘妍)
  • 大连化物所等利用大连光源发现水分子光解是星际振动激发态氢气的重要来源
    近日,中国科学院大连化学物理研究所大连光源科学研究室研究员袁开军、中科院院士杨学明团队,与南京大学教授谢代前合作,首次测量了水分子光解中的氢气产物通道,发现这些氢气产物全部处于振动激发态。该光化学反应为星际空间存在的振动激发态氢气的来源提供了重要途径。  氢气是宇宙中丰度最大的分子,对宇宙的演化起到重要作用。星际观测发现星云中分布大量的处于振动激发态的氢气,尤其是在星际光辐射区域天文观测到超过500条来自于振动激发态氢气的光谱线。振动激发态的氢气因具有较长的寿命和较高的反应活性,对行星大气的组成和演化具有关键作用。当前,星际理论表明,振动激发态的氢气主要有两个来源:恒星爆炸或形成过程产生的激波将氢气加热到振动态、氢气被紫外光激发随后衰变到电子基态的振动态。理论预测振动激发态氢气的直接形成也可能是这些高能量氢气的重要来源,而具体的形成过程尚不明确。  利用大连光源,袁开军团队探究了水分子的光化学过程。科研人员将解离波长调谐至100纳米到112纳米范围,利用离子成像首次观测到O(1S)+H2产物通道。实验表明氢气产物主要分布在第三或者第四振动激发态,理论计算构建了水分子的过渡态结构并解释了振动激发态氢气的形成机理。基于水在宇宙星云和彗星大气中广泛存在,水分子光解为星际光辐射区域存在的振动激发态氢气的来源提供了新途径,对建立星云和行星大气演化模型具有重要意义。  该研究是袁开军团队利用大连光源系统地研究水分子极紫外光化学过程的新进展。前期研究进展包括:发现水分子光解产生超热的羟基自由基(Nat. Comm.)、观测到电子激发态的羟基超级转子的形成(JPCL)、水分子同位素诱导的偶然共振效应(JPCL),水分子光解形成高振动激发的OH是火星大气辉光的来源(JPCL)、水分子三体解离产氧是行星早期大气中氧气的重要来源(Nat. Comm.),以及水分子光化学中的同位素效应是太阳星云中D/H同位素分布不均的重要原因(Sci. Adv.)。  相关研究成果以Vibrationally Excited Molecular Hydrogen Production from the Water Photochemistry为题,发表在《自然-通讯》(Nature Communications)上。研究工作得到国家自然科学基金动态化学前沿研究中心项目、中科院战略性先导科技专项(B类)“能源化学转化的本质与调控”﹑国家自然科学基金优秀青年科学基金项目、辽宁省“兴辽英才计划”等的资助。
  • 激光器光束质量分析检测技术介绍
    如今,激光器已经广泛应用于通信、焊接和切割、增材制造、分析仪器、航空航天、军事国防以 及医疗等领域。激光的光束质量无论对于激光器制造客户还是激光器使用客户都是重要的核心指标之 一。许多客户依赖激光器的出厂报告,从而忽略了对于激光器光束质量测试的重要性,往往在后面激 光器使用过程中达不到理想的效果。通过下方的对比图可以看出,同样的功率情况下(100W),如果焦点产生微小的漂移,对于材 料加工处的功率密度足足变化了 72 倍!所以,激光器仅仅测试功率或能量是远远不够的。对于激光光束质量的定期检测,如激光光斑尺寸大小、能量分布、发散角、激光光束的峰值中心、几何中心、高斯拟合度、指向稳定性等等,都是非常必要的。我公司对于激光光束质量的测试有着丰富且**的经验,对于不同波长、不同功率、不同光斑大小的激光器都可以提供具有针对性的测试系统和方案。相机式光束分析仪相机式光束分析仪采用二维阵列光电传感器,直接将辐照在传感器上的光斑分布转换成图像,传输至电脑并进行分析。相机式光斑分析仪是目前使用*多的光斑分析仪,可以测试连续激光、脉冲激光、单个脉冲激光,可实时监控激光光斑的变化。完整的光束分析系统由三部分构成:(1)相机针对用户激光波长以及光斑大小不同的测量需求,SPIRICON 公司推出了如下几类面阵相机:● 硅基 CMOS 相机通常为 190nm ~ 1100nm;● InGaAs 面阵相机通常为 900 ~ 1700nm;● 热释电面阵相机则可覆盖13 ~ 355nm 及 1.06 ~ 3000μm。相机的芯片尺寸决定了能够测量的光斑的*大尺寸,而像素尺寸则决定了能够测量的*小光斑尺寸;通常需要 10 个像素体现一个光斑完整的信息。相机型号SP932ULT665SP504S波长范围190-1100nm340-1100nm芯片尺寸7.1×5.3mm12.5×10mm23×23mm像.大.3.45x3.45μm4.54×4.54μm4.5x4.5μm分.率2048x15362752×21925120×5120相机型号 XC-130 Pyrocam III HR Pyrocam IV波长范围900-1700nm13-355nm&1.06-3000µ m13-355nm&1.06-3000µ m芯片尺寸9.6*7.6mm12.8mm×12.8mm25.6mm×25.6mm像元大小30*30um75µ m×75µ m75µ m×75µ m分辨率320*256160×160320×320灵敏度64nw/pixel(CW)0.5nJ/pixel(Pulsed)64nw/pixel(CW) 0.5nJ/pixel(Pulsed)饱和度 1.3 μW/cm2 @ 1550 nm3.0W/cm2 (25Hz)4.5W/cm2(50Hz))3.0W/cm2 (25Hz)4.5W/cm2(50Hz)) (2)光束分析软件Spiricon 光斑分析软件BeamGage 界面人性化,操作便捷, 功能强大,其Ultra CAL**逐点背景扣除技术,可将测量环境中的杂散背景光完全扣除掉,使得测量结果真实,得到更精准的ISO 认证标准的光斑数据(详情见 ISO 11146-3-2004)。(3)附件针对用户的特殊要求或者激光的特殊参数设定,SPIRICON 公司推出了一系列光束分析仪的附件,如:分光器、衰减器、衰减器组、扩/缩束镜、宽光束成像仪、紫外转换模块等等。对于微米量级的光斑,传统面阵相机受到像素的制约,无法成像或者无法显示完整的光斑信息。我们有两类光束分析仪可供选择。狭缝扫描光束分析仪NanoScan 2s 系列狭缝扫描式光束分析仪,源自2010 年加入OPHIR 集团的PHOTON INC。PHOTON INC 自 1984 年开始研发生产扫描式光束分析仪,在光通讯、LD/LED 测试等领域享有盛名。扫描式与相机式光斑分析仪的互补联合使得OPHIR 可提供完备的光束分析解决方案。扫描式光束分析是一种经典的光斑测量技术,通过狭缝 / 小孔取样激光光束的一部分,将取样部分通过单点光电探测器测量强度,再通过扫描狭缝 / 小孔的位置,复原整个光斑的分布。扫描式光束分析仪的优点 :● 取样尺度可以到微米量级,远小于 CCD 像素,可获得较高的空间分辨率而无需放大;● 采用单点探测器,适应紫外 ~ 中远红外宽范围波段;● 适应弱光和强光分析;扫描式光束分析仪的缺点 :● 多次扫描重构光束分布,不适合输出不稳定的激光;● 不适合非典型分布的激光,近场光斑有热斑、有条纹等的状况。扫描式光束分析仪与相机式光束分析仪是互补关系而非替代关系;在很多应用,如小光斑测量(焦点测量)、红外高分辨率光束分析等方面,扫描式光束分析仪具备独特的优势。自研自产的焦斑分析仪系统及附件STD 型焦斑分析系统● 功率密度 / 能量密度较大,NA 小于 0.05(约 3°),且焦点之前可利用距离大于 100mm,应当考虑使用本型号。● L 型焦班分析系统的标准版,采用双楔,镜头在双楔之间。● 综合考虑了整体空间利用率、对镜头的保护等因素。● 可进一步升级成为双楔在前的型号,以应对特别大的功率密度 /● 能量密度。● 合适用户 : 科研和工业的传统激光用户,高功率高能量激光用户, 超长焦透镜用户,小 NA 客户。02 型焦班分析系统● 功率密度 / 能量密度较小,或 / 和 NA 大于 0.05(约 3°),或 / 和焦点之前可利用距离小于100mm,应当考虑使用本型号。● 比 STD 更好调节;物镜更容易打坏。● L 型焦班分析系统,采用双楔,镜头在双楔之前。如遇弱光,可定制将双楔换为双反射镜。● 02 型机架不用匹配镜头尺寸,通用,可按需选择镜头。● 非常方便对焦。● 合适用户 : 使用小于 100mm 透镜甚至显微镜头做物镜的用户(表面精密加工);LD/ LED+ 微透镜的生产线做质检附件STA-C 系列 可堆叠 C 口衰减器&bull 18mm 大通光孔径。&bull 输入端为 C-Mount 内螺纹,输出端为 C-Mount 外螺纹。&bull 镜片有 1°倾角,因而可以堆叠使用。&bull 标称使用波段 350-1100nm。VAM-C-BB VAM-C-UV1 可切换式衰减模组&bull 18mm 通光孔径。&bull 标准品提供两组四片可推拉式切换的中性密度滤光片。&bull 用于需要快速改变衰减率的测量过程。&bull BB 表示宽波段,即 400-1100nm,提供 1+2、3+4 两组四片中性密度滤光片镜组。&bull UV1 表示紫外波段,即 350-400nm,提供 0.1+0.2、0.3+0.7 两组四片中性密度滤光片镜组。LS-V1 单楔激光采样模组&bull 20mm 大通光孔径。&bull 内置单片 JGS1 熔石英楔形镜采样片,易于拆卸和更换的楔形镜架。&bull 标称使用波段 190-1100nm。其他波段可定制。&bull 633nm 处 P 光采样率 0.6701%;S 光采样率 8.1858%。&bull 355nm 处 P 光采样率 0.7433%;S 光采样率 8.6216%。&bull 前端配模组母接口;后端配模组公接口及 C-Mount 外螺纹接口。DLS-BB 双楔激光采样模组&bull 15mm 通光孔径,体积紧凑。&bull 内置两片互相垂直的 JGS1 熔石英楔形镜采样片,无需考虑偏振方向。&bull 标称使用波段 190-1100nm,其他波段可定制。&bull 633nm 处采样率 0.05485%。&bull 355nm 处采样率 0.06408%。&bull 后端可配 C-Mount 外螺纹接口。SAM-BB-V1 SAM-UV1-V1 采样衰减模组&bull 20mm 大通光孔径。&bull BB 表示宽波段,即 400-1100nm,提供四个插槽和 0.3、0.7、1、2、3、4 六组中性密度滤光片镜组。&bull UV1 表示紫外波段,即 350-400nm,提供四个插槽和 0.1、0.2、0.3、0.7、1、2 六组中性密度滤光片镜组。&bull 前端配模组母接口;后端配 C-Mount 外螺纹接口。DSAM-BB DSAM-UV1 双楔采样衰减模组&bull 15mm 通光孔径,体积紧凑。&bull 内置两片互相垂直的 JGS1 熔石英楔形镜采样片,633nm 处采样率 0.05485%;无需考虑偏振方向。&bull BB 表示宽波段,即 400——1100nm,提供四个插槽和 0.3、0.7、1、2、3、4 六组中性密度滤光片镜组。&bull UV1 表示紫外波段,即 350——400nm,提供四个插槽和 0.1、0.2、0.3、0.7、1、2 六组中性密度滤光片镜组。&bull 后端配 C-Mount 外螺纹接口对于大功率激光器客户,如增材制造应用以及光纤激光器客户,我们还有专门的光束分析仪系统BeamCheck 和 BeamPeek 集成 CCD 光束分析仪直接探测高功率激光的光斑,以及一台功率计用于实时监测测量激光的功率。特殊的分束系统使其可以直接用于高功率激光,极小部分功率被分配给光束分析仪进行光斑分析,而大部分功率由功率计直接探测激光功率。可在近场或焦点处测量。BeamCheck 可持续测量不大于600W 的增材加工激光,BeamPeek 体积更为小巧,可测量*大1000W 的增材加工激光不大于2 分钟,然后自然冷却后进行下一轮测试。 型号BeamCheck BeamPeek波长范围1060-1080nm532nm 1030-1080nm功率测试范围0.1-600W10-1000W可持续测试性持续测试焦点漂移准确度±50µ m接口方式GigE Ethernet仪器尺寸406.4mm×76.2mm×79.4mm

水分子检测激光器相关的方案

水分子检测激光器相关的资料

水分子检测激光器相关的试剂

水分子检测激光器相关的论坛

  • 德研发快速检测水质的激光器

    据新华社柏林10月23日电 德国科研人员利用激光技术,推出了一种饮用水快速检测法,仅需几分钟就可得出检验结果。 德国弗劳恩霍夫应用固体物理研究所日前发表研究公报称,一种特殊的红外线激光器可以对自来水厂的饮用水样本进行自动分析。这种激光器的体积仅为鞋盒大小,其工作原理是,每种化合物分子都有特定的吸收光谱,用红外线激光照射水样本并分析其吸收光谱就可以确认化合物的种类。 这套红外线激光器已在德国黑森林地区的金齐希河自来水厂进行试用。在六周的时间里,这套仪器每隔三分钟就会对饮用水样品进行自动检测,共进行了约2.1万次检测,结果非常精确。 除对饮用水进行日常检验分析外,这套仪器还能快速检验出水中的危险物质,这将有助于政府部门对水污染事件作出快速反应。

  • 国产HeCd激光器推荐

    测zno的PL谱一般要用到325nm的HeCd激光器作为激发光源吧。但苦于进口的激光器动辄十几万,预算不够,大伙有没较便宜的国产激光器推荐的。谢谢!

水分子检测激光器相关的耗材

  • 2476nm DFB激光器,HF气体检测激光管
    2476nmDFB激光管-HF气体检测激光器
  • 1742nm检测HCl VCSEL激光器
    1742nm检测HCl VCSEL激光器 量青光电代理Vertilas公司产品描述: 德国Vertilas公司生产的气体传感器用VCSEL产品具有多种波长,满足大多数常用有害气体的探测要求。1742nmVCSEL可以用于氯化氢的测量。VCSEL激光器用于气体探测具有很高的电流依赖性,通常有4nm可调谐波长范围,因此特别适合用于TDLAS的测量方式。同时VCSEL具有结构简单,批量产品稳定,性价比高的因素。 Vertilas可提供的标准产品波长有:1273nm,1392nm,1512nm,1566nm,1570nm,1580nm,1590nm,1654nm,1742nm,1854nm,2004nm和2012nm。可以用于CO(一氧化碳),NO(一氧化氮),H2O(水汽),NH3(氨气),HCl(氯化氢),H2S(硫化氢),CH4(甲烷),N2O(一氧化氮),CO2(二氧化碳)等气体的探测。也可以提供客户指定的波长的激光器。 产品应用: 可调波长气体吸收光谱测量(TDLAS) 安全 环境监测 汽车以及自动化应用 产品特性: 1742nm VCSEL 工作温度-20~+70°C 宽波长可调范围 快速响应调制信号 提供多种封装形式 低阈值电压和电流
  • 1854nm水高检测浓度VCSEL激光器
    1854nm水高检测浓度VCSEL激光器产品描述: 德国Vertilas公司生产的气体传感器用VCSEL产品具有多种波长,满足大多数常用有害气体的探测要求。1854nmVCSEL可以用于水的测量。VCSEL激光器用于气体探测具有很高的电流依赖性,通常有4nm可调谐波长范围,因此特别适合用于TDLAS的测量方式。同时VCSEL具有结构简单,批量产品稳定,性价比高的因素。 Vertilas可提供的标准产品波长有:1273nm,1392nm,1512nm,1566nm,1570nm,1580nm,1590nm,1654nm,1742nm,1854nm,2004nm和2012nm。可以用于CO(一氧化碳),NO(一氧化氮),H2O(水汽),NH3(氨气),HCl(氯化氢),H2S(硫化氢),CH4(甲烷),N2O(一氧化氮),CO2(二氧化碳)等气体的探测。也可以提供客户指定的波长的激光器。 产品应用: 可调波长气体吸收光谱测量(TDLAS) 安全 环境监测 汽车以及自动化应用 产品特性: 1854nm VCSEL 工作温度-20~+70°C 宽波长可调范围 快速响应调制信号 提供多种封装形式 低阈值电压和电流
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制