质谱蛋白标记方法

仪器信息网质谱蛋白标记方法专题为您提供2024年最新质谱蛋白标记方法价格报价、厂家品牌的相关信息, 包括质谱蛋白标记方法参数、型号等,不管是国产,还是进口品牌的质谱蛋白标记方法您都可以在这里找到。 除此之外,仪器信息网还免费为您整合质谱蛋白标记方法相关的耗材配件、试剂标物,还有质谱蛋白标记方法相关的最新资讯、资料,以及质谱蛋白标记方法相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

质谱蛋白标记方法相关的厂商

  • 北京百泰派克生物科技有限公司(Beijing Biotech Pack Scientific Co., Ltd. 简称BTP)成立于2015年,是国家级高新技术企业,业务范围主要围绕蛋白和小分子代谢物检测两大板块,从事蛋白质和小分子代谢物的理化性质分析及结构解析等相关技术服务,为客户提供高性价比、高效率的技术服务。深耕蛋白鉴定、定量蛋白组(iTRAQ/TMT、label free、DIA/SWATCH)、PRM靶蛋白定量、蛋白和抗体测序、蛋白修饰(二硫键、糖基化、磷酸化、乙酰化、泛素化等)、靶向和非靶向代谢物检测。百泰派克生物科技检测平台包括:检测分析平台、蛋白质组学分析平台、代谢组学分析平台、蛋白质从头测序平台、生物制药分析平台和流式细胞多因子检测平台。公司拥有独立的质谱实验室、色谱实验室、细胞培养室和免疫学实验室,以及高分辨率质谱仪和高效液相色谱。目前已与国内外多家药物研发企业,以及哈佛大学、北京大学在内的国内外高校建立了合作关系,协助客户发表了多篇中英文文章,包括Cell等多家高水平期刊。公司自主检测平台发展至今,已覆盖蛋白质组学、代谢组学、生物制药、生信分析等多组学检测平台,积累了丰富的实践经验,凭借专业的技术和优质的服务水平,客户覆盖北京大学、清华大学、中科院等多所知名院校,也与国内外多家药物研发企业建立合作关系。公司始终致力于为各科研院校、企业和机构提供高效、准确、高性价比的蛋白质(组)研究技术包裹,助力客户在基础研究、分子诊断及其他生命科学研究领域取得突破,为生命科学的发展做出贡献。百泰派克技术平台检测分析平台:多台高分辨率质谱仪、高效液相色谱、气相色谱,NMR。蛋白质组分析平台:Label-free、iTRAQ、SILAC、SWATH、MRM;蛋白质定性定量鉴定、蛋白质差异分析、发现疾病标记物、发现药物靶标。代谢组分析平台:靶向代谢组学、非靶向代谢组学、脂质组学分析;通量达1000种代谢分子、代谢通路分析、代谢靶标鉴定。流式细胞多因子检测平台:CBA、FlowCytomix;微量样品需求,分析多种细胞因子。 蛋白质从头测序平台:Obitrap Fusion Lumos质谱仪、PEAKS软件分析;100%序列测定,精准蛋白、抗体测序。生物制药分析平台:生物药物鉴定、变异性分析、纯度分析。流式细胞多因子检测平台:CBA、FlowCytomix;微量样品需求,分析多种细胞因子。
    留言咨询
  • 北京青莲百奥生物科技有限公司是一家基于蛋白质组学研究的创新性、平台型CRO企业,致力于临床样本的蛋白质标志物发现和检测,聚焦于低丰度、超微量的血液、外泌体、显微切割等样品类型。全力打造新一代蛋白质组学平台,拥有独特纳米磁珠富集低丰度蛋白技术及蛋白质组学全流程全自动样本处理智能机器人及全自动大数据分析软件,不仅提供上游工具标准化解决方案,还提供临床质谱的诊疗Biomarker开发服务,从临床需求到诊疗产品落地,提供一站式闭环研发服务。 新一代蛋白质组学平台以临床问题为导向、以源头创新为核心驱动力,为诊、疗蛋白质生物标志物在临床端和药企端落地转化,提供完整的解决方案。
    留言咨询
  • 400-860-5168转6112
    质谱佳科技是国内专业从事分析仪器维修等技术服务、进口二手分析仪器销售和租赁的领先企业,原厂工程师团队为客户在色谱、光谱、质谱仪的维护保养、维修、仪器认证、技术升级、仪器搬迁,软硬件操作培训等多方面提供完善的技术支持和整体解决方案。 质谱佳科技在美国、欧洲、日本有着良好的合作伙伴,凭借优质的进货渠道和专业的选品团队为客户提供优质的二手仪器。主营品牌有:Thermo(赛默飞)、AB Sciex(爱博才思) 、Agilent (安捷伦)、Waters(沃特世)、Shimadzu(岛津)等,另外质谱佳科技还提供分析仪器配件、耗材的销售。 质谱佳科技总部位于长沙,通过设在上海、海口等地的分公司,形成服务全国的网络。为制药、食品、环保、三方检测、新能源等多个行业以及高校、科研院所、政府实验室等客户提供方便快捷的本地化服务。
    留言咨询

质谱蛋白标记方法相关的仪器

  • 蛋白组学样本前处理工作站是一款具备高通量、高回收率、安全性能强、抗干扰能力强,适用范围广等优势,适用大队列样本的高通量处理设备,可实现质谱蛋白样本前处理的全自动化和标准化操作。蛋白组学样本前处理解决方案适用于血浆、血清、尿液、细胞、组织等类型样本从蛋白到多肽混合物的质谱检测前处理工作,试剂盒利用新型固相烷基化试剂SPA材料与蛋白的特异性共价反应,实现蛋白质的高效捕获,通过清洗磁珠表面,快速去除干扰物质,并进行原位固相酶解,获得蛋白酶解产物,仪器整合制冷模块、磁吸附模块、加热振荡模块、抓扳手,进而实现蛋白质组提取、还原、烷基化、酶解等流程自动化操作,提高蛋白质样品的处理效率和回收率。 优势特点高通量■96通道移液头,一次可处理最多96个样本,高效完成实验流程中吸废等步骤;■兼具8通道移液功能,可以实现试剂的精准分装;■ 全流程4-5小时可完成96个蛋白样本的前处理(具体时间根据具体实验流程);自动化程度高■ 整合抓板手,用于对标准SBS板子的转移;■ 整合蛋白前处理所需的试剂制冷模块、磁吸附模块、加热振荡模块等功能模块;■均一化操作,减少实验过程中的误差,提高准确性和稳定性;灵活性强■ 盘面包含18个SBS标准盘位,除功能模块外,有15个盘位放置试剂和耗材;■开放式平台,配有多样化适配器,可适配多种不同品牌试剂耗材;■软件界面人性化设计,拖拽式布局,操作简单,每个步骤可独立进行参数设置,实验流程可进行存储,按键式启动运行;安全性■可配置避光外罩,搭配紫外消毒灯;■可根据实验需求选配正、负压HEPA过滤系统,有效避免交叉污染; 数据测试样本批内测试数据材料:293T 细胞实验方法:手工操作3 组,仪器操作3 组Q Exactive质谱结果如下:表1:手工操作和仪器操作后蛋白数及零漏切率对比图1 Venn diagram(蓝色:手工;绿色:仪器)试验总结手工操作和仪器操作蛋白样本预处理后可检测到的蛋白数及零漏切率基本一致,达到预期要求;手工操作与仪器操作蛋白种类皮尔斯相关系数大于0.97,与预期一致;样本批间测试数据图2 96孔板检测示意图如图2所示共处理96个样品,分三组进行实验,随机选取36个样品进行Q Exactive质谱检测,结果如下:图3 36个样本检测蛋白数(个)图4 36个样本零漏切率(%)图5 随机样品日间比较实验总结36个随机样本检测蛋白数3074±89个,零漏切率78.32±2.66%,样本预处理的结果正常且稳定;36个样品的皮尔斯相关系数及日间随机样品皮尔斯相关系数均介于0.955-0.989之间,达到指标要求,具有较好的均一性。 应用领域临床诊断/用药指导/病理机制研究/疾病标志物的发现/药物机理研究特别说明,此页面中所有展示的图片和信息仅供参考。
    留言咨询
  • timsTOF Pro 2由平行累积连续碎裂技术( PASEF )驱动,使得 4D-蛋白质组学和 4D-脂质组学为无偏向性细胞和血浆蛋白质组学、液体活检多组生物标志物发现,以及整合基因组学、蛋白质组学和表观蛋白质组学拓宽了道路。4D-组学时代 —— 解锁第四维度的价值4D-组学的重大突破速度:PASEF 技术实现了在不影响分辨率情况下达到超过 120 Hz 扫描速度。深度:额外一维离子淌度提高了数据完整性。高通量:超快数据采集速度使其可以使用短梯度实现生物样本的高通量分析。耐用性:独特的仪器设计使得其可以连续分析数千个样品,仪器保持稳定的性能而无需清洁。4D-Proteomics&trade 的新标准:更快速度实现蛋白质组全覆盖基于质谱( MS )的蛋白质组学一次可实现样本里成千上万蛋白的定性和定量。然而,受到目前质谱仪的扫描速度、灵敏度和分辨率的影响,实现蛋白质组的全覆盖仍然具有挑战性。timsTOF Pro 2 使用平行累积连续碎列( PASEF )的技术可实现极高的扫描速度和灵敏度,只需要少量样本就可以达到蛋白质组学鉴定新深度。双 TIMS 和 CCS 的分析捕集离子淌度谱( TIMS )首先是一项重要的气相分离技术,它是在高效液相色谱( HPLC )和质谱分离的基础上,带来额外一个维度的分离,可大大降低样品分析复杂度,极大提高峰容量和分析物鉴定可靠性。同样重要的是,TIMS 离子淌度管能对离子实现时间和空间上的聚焦,从而独特地提高灵敏度和扫描速度。双 TIMS 技术可以实现近乎 100% 的离子利用率,离子在前一根淌度管内累积,在后一根淌度管内根据离子淌度值分批释放。这种平行累积连续碎裂( PASEF )的过程能够实现碰撞横截面( CCS )的分析。CCS 额外一个维度信息能够提供很多进一步的分析可能性,可以从复杂数据库实现化合物的高可信度库匹配以及更低的错误发现率( FDRs )。4D-Proteomics&trade 的新标准:更快速度实现蛋白质组全覆盖基于质谱( MS )的蛋白质组学一次可实现样本里成千上万蛋白的定性和定量。然而,受到目前质谱仪的扫描速度、灵敏度和分辨率的影响,实现蛋白质组的全覆盖仍然具有挑战性。timsTOF Pro 2 使用平行累积连续碎列( PASEF )的技术可实现极高的扫描速度和灵敏度,只需要少量样本就可以达到蛋白质组学鉴定新深度。双 TIMS 和 CCS 的分析捕集离子淌度谱( TIMS )首先是一项重要的气相分离技术,它是在高效液相色谱( HPLC )和质谱分离的基础上,带来额外一个维度的分离,可大大降低样品分析复杂度,极大提高峰容量和分析物鉴定可靠性。同样重要的是,TIMS 离子淌度管能对离子实现时间和空间上的聚焦,从而独特地提高灵敏度和扫描速度。双 TIMS 技术可以实现近乎 100% 的离子利用率,离子在前一根淌度管内累积,在后一根淌度管内根据离子淌度值分批释放。这种平行累积连续碎裂( PASEF )的过程能够实现碰撞横截面( CCS )的分析。CCS 额外一个维度信息能够提供很多进一步的分析可能性,可以从复杂数据库实现化合物的高可信度库匹配以及更低的错误发现率( FDRs )。极高的稳定性和通量无需清洗许多用于蛋白质组学应用的 MS 仪器需要每月清洁一次,在大样本组中每天 24 小时运行。仪器性能下降即使在较短的时间段内也是显而易见的。timsTOF Pro 2 卓越稳定性意味着仪器可以全天运行很多周,而没有明显的信号和其它性能下降。PaSER Run & Done —— 加快4D-蛋白质组学的鉴定速度PaSER( 实时平行搜索引擎 )是一个结合硬件和软件的解决方案,能够实现基于样本序列管理的实时数据库搜索引擎。PaSER 以很快的速度就能提供结果,包括 PTM 搜索。通过使用基于 GPU 的搜索,PaSER 在实时或离线模式下可以提供相同的结果,而无需使用简化的算法或中间步骤。PaSER 极快的搜索速度使得在数据采集结束后数秒就能同步拿到搜库结果,真正实现运行并完成! PaSER 有效地打破了大队列样本数据分析通量壁垒。此外,实时蛋白组学的非标记定量也可以跨越 PaSER 获得的数据结果集,使其瞬间能过渡到定量蛋白质组学。通过 TIMS Viz 使得淌度偏移质量对齐( MOMA )变得可视化 ,从而用户可以鉴定和识别只有 4D-Omics 才能看到的共洗脱多肽。 dia-PASEF 增加鉴定可信度dia-PASEF比传统的 DIA 方法有更高灵敏度和选择性,是因为它将 PASEF 原理也应用进来,结合了 DIA 的优点和 PASEF 离子利用率高的优势。TIMS 分离提高了选择性,而且可以将单电荷母离子排除掉,从而降低本底噪音干扰。利用分子量和碰撞横截面 CCS 值的相关性,dia-PASEF 能够实现高可信度化合物鉴定。在 LC-MS/MS分析中, dia-PASEF 能够采集包含 m/z,离子淌度值( CCS ),保留时间和离子强度的 4D 数据。前所未有的蛋白质覆盖深度凭借强大的 SRIG( 不锈钢堆叠环形离子向导 )装置和新优化的 dda-PASEF 方法 ,timsTOF Pro 2 单针能够达到前所未有的蛋白组学覆盖深度。使用自制 HEK 酶切样本, 上样 200 ng,使用 Aurora - 25cm 色谱柱,在 60 分钟梯度下能够鉴定 超过 7,000个 蛋白和 60,000 条多肽。因此 timsTOF Pro 2 可以通过数据库搜索和运行之间的匹配,无需任何谱图库,在一些日常细胞系蛋白组定量实验中实现很高的蛋白覆盖深度。超高灵敏度的高通量靶向蛋白质组学和常规的靶向蛋白组学分析技术( SRM 和 PRM )相比,prm-PASEF 在单针中可极大提高监测多肽数目,同时不影响仪器选择性或灵敏度。靶向质谱( MS )技术是蛋白质组学实验中一种强大的技术,用来验证大队列样本中的候选生物标志物。与数据依赖采集( DDA )和数据非依赖采集( DIA )相比,这可以增加检测灵敏度。可是该技术受到在单针中监测离子数目和液相分离出峰时长以及整体灵敏度间的折中限制。只有通过更长的色谱分离时长或降低质谱的灵敏度和选择性,才能获得大量目标肽的完整数据。prm-PASEF 可以极大地提高单针中靶向监测的多肽数目,这得益于布鲁克 timsTOF Pro 2 的第四维分离可以极大提高选择性和灵敏度, PASEF 技术带来的速度可以增加靶向分析离子数量。超高灵敏度应对最困难的分析挑战随着某些特定细胞、少量细胞群或生物穿刺样本的生物研究越来越重要,低样本量蛋白组定量变得至关重要。而如此低的样本量对于质谱灵敏度提出了很高要求。使用高灵敏度的质谱仪对如此低的样本量进行原型定量至关重要。timsTOF Pro 2 上样 200 ng HeLa 样本,使用 Aurora - 25cm 色谱柱,在 30 分钟梯度下使用 PaSER 能够鉴定超过 74,200 个蛋白和接近 30,000 条多肽。dia-PASEF —— 高通量定量蛋白质组学中实现无与伦比的数据完整性和分析深度使用标准 dia-PASEF 方法多针测试结果有着很高重复性。三种不同的 dia-PASEF 窗口设置下使用 Aurora-25cm 柱在 60 分钟梯度下可实现接近 8,000 个蛋白定量和超过 70,000 条多肽,而且有极高的定量准确性。高灵敏度磷酸化蛋白组学分析和同分异构体分离支持 CCS 的近邻位磷酸化位点定量dia-PASEF 在 timsTOF Pro 2 上的高灵敏度、扫描速度和重现性甚至可以实现低样本量的磷酸化蛋白质组学分析。例如可以实现小鼠脑样本起始总蛋白仅为 25 μg 的磷酸化蛋白质组的非标记定量。使用 Evosep 每天 30 个样本的分析方法,三次重复可鉴定出多达 4,473 个 unique 磷酸化多肽。这些结果为针刺活检的应用带来了希望,可以用信号转导的信息补充癌症蛋白质基因组学数据。这些结果为针刺活检的应用带来了希望。此研究结果由 Stefan Tenzer 教授提供。分析样本量有限时的细胞信号传导当肽段在色谱上发生共洗脱时,由于等重性和信号重合,不能测量 CCS 值的传统蛋白质组学是不能实现磷酸化肽异构体的定量的。PASEF 技术使得基于 TiO2 富集时,使用 150 ug 蛋白富集起始量就能够鉴定 27,768 个磷酸化肽,展现了淌度偏离质量对齐( MOMA )的优点。1,946 条鉴定的共洗脱异构体中,20% 的异构体可以被TIMS 完全分离,这可以使得我们可以更好地理解邻位蛋白磷酸化位点信息。
    留言咨询
  • Thermo Scientific LTQ XL质谱与Ultimate 3000高速液相色谱系统联用,是高通量分析的最佳工具。结合多种解离技术,包括脉冲碰撞解离(PQD)和电子转移解离(ETD),LTQ XL提供最丰富的结构信息。广泛应用于蛋白质组学、代谢物鉴定、药物研发定量分析、法医和临床分析等领域。LTQ XL功能简介:1.可升级的电子转移裂解(ETD)模块可以提供传统裂解方法无法得到的蛋白质翻译后修饰信息;2.脉冲碰撞能量诱导解离(PQD)功能可以提供低质量端碎片离子信息;3.高选择MS/MS分析给谱图在数据库和谱库检索更好的匹配,提高了结构确证的可靠性。另外快速极性切换,母离子相关MS3数据关联扫描,可以对翻译后修饰和代谢物组成的鉴定进行智能、快速分析,还可以和高端的回旋共振质谱组合成最先进的多级高分辨杂交质谱仪;4.自动数据依赖性多级质谱采集技术不仅为用户提供预测代谢物(母离子列表)结构信息,也能提供未预测到的代谢物结构信息。此外使用自动固定中性丢失数据依赖性(CNL)扫描触发三级质谱扫描能检测某一类的代谢物。使用MetworksTM 和Mass Frontier分析软件增强复杂基质中代谢物筛选和鉴别功能,使谱图解析更简便。离子化技术:* IonMax离子源:ESI(电喷雾电离),APCI(大气压化学电离)和APPI(大气压光电离)探头都是基于革新的Ion Max离子源而设计。它具有超高性能,结构简单以及无需工具就可进行ESI和APCI探头更换的特点,探头在x,y,z三个方向均可调节。无论对于低流速还是高流速,都可以优化最佳位置获得最好的灵敏度。* 满足各种需要的离子源配置:ESI(电喷雾电离源),APCI(大气压化学电离源),APPI(大气压光电离源),纳喷电离源(NSI)。主要应用:* 应对代谢物鉴定和确证,LTQ系列质谱可自动查找到所有可能的代谢物。* 基于离子/离子化学的电子转移解离(ETD),LTQ XL离子阱是实现此技术的最完美仪器。ETD与CID互为补充,提高蛋白序列覆盖率;保护不稳定PTM翻译后修饰基团,简化数据分析;单次进样自动启动CID和ETD。* 母离子智能选择:自动数据依赖多级质谱采集技术不仅能为用户提供预测代谢物(母离子列表)结构信息,也能提供提供未预测的代谢物结构信息。此外,使用自动固定中性丢失数据依赖性(CNL)扫描触发三级质谱扫描能检测某一类的代谢物。使用MetWorks和MassFrontier分析软件增强复杂基质钟代谢物筛选和鉴别功能,使谱图解析更加简便。* 应对蛋白质组学和生物标记问题,ETD解离技术使LTQ XL成为蛋白质组学研究更强大的分析工具。* LTQ和LTQ XL质谱均可配置ETD裂解源,ETD能够为线性离子阱提供类似ECD(电子捕获解离)的裂解碎片,在生成大量肽段碎片的同时,保护不稳定的PTM翻译后修饰集团,例如磷酸化翻译后修饰。ETD功能与赛默飞世尔线性离子阱的高离子储存量相结合,是蛋白质和肽类分析的新型有效工具。
    留言咨询

质谱蛋白标记方法相关的资讯

  • 基于离子淌度质谱对完整蛋白质形态进行非标记定量
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,Improved Label-Free Quantification of Intact Proteoforms Using Field Asymmetric Ion Mobility Spectrometry [1],文章的通讯作者是美国俄克拉荷马大学的Luca Fornelli教授。完整proteoforms的非标记高通量定量方法的应用对象通常为从整个细胞或组织裂解物中提取的0 - 30 kDa质量范围内蛋白质。然而当前,即使通过高效液相色谱或毛细管电泳实现了proteoforms的高分辨率分离,可鉴定和定量的proteoforms的数量也不可避免地受到固有的样品复杂性的限制。近年来,随着质谱技术的发展,自上而下蛋白质组学质谱(top-down proteomics)研究中蛋白质的鉴定数量大大提升,生成了包含数万种proteoforms的数据集,但在proteoforms的量化能力方面并没有得到相应的性能提升。为克服这一问题,本文中作者通过应用场不对称离子迁移谱法(Field asymmetric ion mobility spectrometry, FAIMS)对大肠杆菌中的proteoforms进行了非标记定量。由此产生的改进允许在单次LC-MS实验中采用多个FAIMS补偿电压(Compensation voltages, C.V.),而不会增加整个数据采集周期。与传统的非标记定量实验相比,FAIMS的应用在不影响定量准确性的情况下,大大增加了鉴定和定量的proteoforms数量。首先,作者优化了质谱stepped-C.V.数据采集方法对Orbitrap Eclipse性能的影响,并从中筛选出了最优条件(−40、−20、0 V组合)。所有最新的基于Orbitrap的质谱仪(包括Exploris platform和Orbitrap Ascend)都可以采用single time-domain transients(即单次微扫描)在top down FTMS实验中生成高质量的质谱图。作者认为这对于在单次LC - MS2运行期间应用多个C.V.值的采集策略特别有益。接下来,作者应用该方法对大肠杆菌中的蛋白质进行了检测,并与传统的LC - MS2 DDA采集方法进行了比较(图1)。如图所示,每个C.V.值下的总离子流图都不同,且这一额外的分离导致在LB(Luria broth)和M9(醋酸钠处理)样品中鉴定到的proteoforms的数量显著提升。  图1. 样本制备方法和proteoforms鉴定结果总结虽然在LC-FAIMS和LC-only数据集中,大多数鉴定到的proteoforms质量都小于15 kDa,但其中约20%的质量大于18 kDa甚至高达33.3 kDa(图2)。对已鉴定的proteoforms列表的深入分析表明,达到鉴定低丰度proteoforms的关键参数之一是在串联质谱(MS2)中有足够的时间注入离子。  图2. A. FAIMS和非FAIMS鉴定到的proteoforms的质量分布。B. 鉴定到的proteoforms与注射时间之间的关系。最后,作者采用ProSight PD v 4.2 (Proteineous, Inc)进行了基于MS1的非标定量,结果显示基于FAIMS的数据集在LB样品(蓝色)和M9样品中检测到的差异表达的proteoforms均有所增加(图3)。作者评估了两个数据集之间的差异(使用和不使用FAIMS采集数据),以验证FAIMS的应用是否会对量化准确性产生不利影响,结果只有1个proteoform显示相互矛盾的丰度趋势。这种差异是由于该蛋白和一个共流出蛋白之间质谱峰几乎完全重叠造成的。它们具有非常接近的单同位素质量,这样高水平的信号干扰可以很容易地干扰基于MS1的量化。启用FAIMS可以使MS1谱图简化,因为两种proteoforms可以富集在两种不同的C.V. 值下。  图3. 大肠杆菌proteoforms无标记定量结果分析。作者将LC - FAIMS - MS2数据集与通过BUP在类似样品上获得的非标定量结果进行比较,得出两个主要的结论:1. BUP仍然对蛋白质组提供了更深层次的定量表征 2. BUP提供了与单个基因相关的所有产物的整体丰度水平信息 而TDP方法表明,给定的UniProt accession可以由多个差异表达的proteoforms组成,可能具有不同的行为(即在给定条件下,一些被上调,另一些被下调)。这一额外的信息可能具有潜在的生物学意义,但在基于BUP的定量分析中可能会被遗漏。本文描述的基于FAIMS的定量数据采集方法与PEPPI(Passively eluting proteins from polyacrylamide gels as intact species)蛋白分离技术完全兼容,产生0 - 30 kDa的组分,并且可以方便地根据待分析蛋白的平均质量调整质谱参数(C.V.值),未来在更大的蛋白质定量方面具有广阔的应用前景。  撰稿:张颖  编辑:李惠琳  原文:Kline JT, Belford MW, Huang J, Greer JB, Bergen D, Fellers RT, Greer SM, Horn DM, Zabrouskov V, Huguet R, Boeser CL, Durbin KR, Fornelli L. Improved Label-Free Quantification of Intact Proteoforms Using Field Asymmetric Ion Mobility Spectrometry. Anal Chem. 2023 Jun 13 95(23):9090-9096.  李惠琳课题组网址www.x-mol.com/groups/li_huilin  参考文献  1.Kline JT, Belford MW, Huang J, Greer JB, Bergen D, Fellers RT, Greer SM, Horn DM, Zabrouskov V, Huguet R, Boeser CL, Durbin KR, Fornelli L. Improved Label-Free Quantification of Intact Proteoforms Using Field Asymmetric Ion Mobility Spectrometry. Anal Chem. 2023 Jun 13 95(23):9090-9096.
  • 日本宫崎大学近期获得蛋白酶和基因定位标记方法新进展
    由日本宫崎大学医学部的澤口朗教授率领的研究团队,充分发挥低真空电子显微镜对于光学显微镜用的切片在不做任何减轻荷电处理下就能进行观察的特点,开发了在医学、生物学研究领域有重大意义的蛋白酶和基因的定位标记新方法。关于阐述该方法的论文被刊载在了Nature旗下的一本开放获取期刊「Communications Biology」上面。  之前被大家熟知的包埋后标记法是要首先结合金纳米颗粒进行抗体的调制,然后将包埋在树脂里面的观察对象作成超薄的切片然后进行抗体的标记。这一过程需要很长的时间和熟练的技巧。本次新开发出来的研究方法是要将光学显微镜中被广泛使用的石蜡切片或者冻结切片,通过酵素抗体法标识二氨基联苯胺(DAB)后,通过0.01%氯金酸溶液处理后在DAB标识部分形成金纳米颗粒(平均粒子径=6 nm),然后再37℃下将其保存12小时,通过维持高湿度的环境下培育金纳米颗粒(平均粒子径=47 nm)实现可视化的具有划时代意义的新方法,因此备受关注。 论文中证明了15年前被标记DAB的切片上有进行过金纳米颗粒的形成以及培养,使用电子显微镜对在库房保存的光学电子显微镜标本进行了再论证,还记载了CLEM(Correlative Light and Electron Microscopy)免疫电子显微镜标记和in-situ hybridization电子显微镜标记的实际案例。低真空扫描电子显微可以说填补了光学显微镜与电子显微镜之间的空白,新的方法利用了这个特性,今后会在医学・生物学研究方面广泛的应用,对于加速及促进生物组织、构成细胞的组织及机能等的研究将会发挥巨大作用。 一直以来有使用蛋白质的抗体以及标识RNA的In Situ Hybridization法等多种手法,本次发表的内容是通过培养Nanogold颗粒然后使用电子显微镜来进行可视化定位的新方法。本次论文发表的研究过程中,日立的透射电子显微镜和台式电子显微镜发挥了重大作用。           日立透射电子显微镜HT7800 日立台式扫描电子显微镜TM4000 II Communications Biology volume 4, Article number: 710 (2021) 查看更多图文内容,请点击下方阅读原文:https://www.nature.com/articles/s42003-021-02246-3 公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 蛋白组学研究发现癌症早期诊断新标记物
    胰腺癌的早期症状相对不明显,经常导致癌细胞扩散到其他器官之后才被发现。为了改善胰腺癌病人的预后,开发早期胰腺癌检测方法变得非常重要。为了实现这一目标,来自日本的科学家们在血液中发现了一些蛋白能够加强对胰腺癌的检测。结合传统的生物标记物,能够实现对早期阶段胰腺癌的诊断,这在之前是非常困难的。  为了发现可以用于胰腺癌检测的生物标记物,研究人员决定对已经报道过在胰腺癌组织中高表达的基因进行分析。随后他们利用两种类型的蛋白质组学方法检测了大量临床样本,分析候选基因表达的蛋白在胰腺癌病人和健康人血液中的变化情况。最终在130个候选蛋白中找到23个变化显着的蛋白质。  研究人员使用质谱技术和定量蛋白组学技术对这些胰腺癌候选标记物进行了证实。为了更加高效地对大量临床样本进行分析,他们还开发了一种自动分析系统,对65名健康人和38名早期胰腺癌患者血浆中的候选蛋白进行了比对,发现IGFBP2和IGFBP3这两种蛋白在早期胰腺癌患者体内存在显着变化。除此之外,研究人员借助这两个生物标记物在15名病人中诊断出12名早期胰腺癌患者,这些病人在用另外一种叫做CA19-9的标记物进行诊断时呈阴性结果。  研究人员还发现IGFBP2和IGFBP3对于胃癌,胆囊癌,结直肠癌,十二指肠癌以及肝细胞癌的筛查也十分有效。  癌症早发现能够为实现手术完全治愈癌症提供更好的机会,因此研究人员希望这些诊断标记物的发现能够帮助提高病人的预后。相关研究结果发表在国际学术期刊PLOS ONE上。

质谱蛋白标记方法相关的方案

质谱蛋白标记方法相关的资料

质谱蛋白标记方法相关的论坛

  • 检测生物素标记蛋白的新方法——DiDBiT技术

    [b][font=宋体][color=#060607]前言[/color][/font][/b][font=宋体][font=宋体]在生物医学研究领域,蛋白质的功能性鉴定及其在各种生物过程中的作用机制一直是科研人员关注的焦点。近年来,质谱技术因其高分辨率和高灵敏度在蛋白质组学研究中发挥着越来越重要的作用。然而,传统的质谱策略在鉴定具有特定生物功能的蛋白质亚群时,常常受到标记物与非标记物区分困难的限制。为了解决这一问题,科学家们开发了一种名为[/font][font=宋体]“直接检测含生物素标签的蛋白质”([/font][font=Calibri]Direct Detection of Biotin-containing Tags, DiDBiT[/font][font=宋体])的新技术,显著提高了生物素化蛋白质的直接检测效率。[/font][/font][font=Calibri] [/font][b][font=宋体][font=Calibri]DiDBiT[/font][font=宋体]技术检测方法[/font][/font][/b][font=宋体][font=Calibri]DiDBiT[/font][font=宋体]主要是利用质谱技术([/font][font=Calibri]MS/MS[/font][font=宋体])来直接检测含生物素的肽段,无需额外的实验步骤即可直接鉴定生物素化蛋白质。与传统的生物素蛋白质鉴定方法相比,[/font][font=Calibri]DiDBiT[/font][font=宋体]技术显著提高了检测的灵敏度和效率。[/font][font=Calibri]DiDBiT[/font][font=宋体]技术通过优化样品的预处理和质谱分析步骤来提高生物素化肽段的检测灵敏度。首先对细胞裂解物进行蛋白质消化,然后使用[/font][font=Calibri]NeutrAvidin[/font][font=宋体]珠子富集含生物素的肽段,最后进行质谱分析。这种方法的关键在于通过降低样品复杂性,提高了生物素标记肽段的检出率。[/font][/font][font=Calibri] [/font][b][font=宋体][font=Calibri]DiDBiT[/font][font=宋体]技术的应用[/font][/font][/b][font=Calibri]Lucio Matias[/font][font=宋体][font=宋体]等人采用[/font][font=Calibri]DiDBiT[/font][font=宋体]技术,在啮齿动物的神经系统中标记新合成的蛋白质,结果表明使用[/font][font=Calibri]DiDBiT[/font][font=宋体]技术提高了生物素标记新合成蛋白质的检测,与传统方法相比,检测灵敏度提高了约[/font][font=Calibri]20[/font][font=宋体]倍。他们还成功地应用[/font][font=Calibri]DiDBiT[/font][font=宋体]技术在成年大鼠视网膜中直接检测新合成的蛋白质,显示出前所未有的时间分辨率,短至[/font][font=Calibri]3[/font][font=宋体]小时。[/font][/font][font=宋体][font=宋体]此外,[/font][font=Calibri]DiDBiT[/font][font=宋体]技术具有高度的灵活性和可扩展性。它可以与其他蛋白质组学技术相结合,如蛋白质相互作用研究、蛋白质翻译后修饰分析等,从而为我们提供更为全面和深入的蛋白质功能信息。[/font][/font][font=宋体][font=Calibri]DiDBiT[/font][font=宋体]技术的应用展示了其在蛋白质组学研究中的广泛潜力,尤其是在快速鉴定特定细胞类型或生物学状态下新合成蛋白质的能力。此技术不仅提高了实验的准确性和效率,而且通过直接检测生物素化肽段,显著简化了实验流程,降低了实验的复杂性和成本。[/font][/font][font=Calibri] [/font][b][font=宋体]结论[/font][/b][font=宋体][font=Calibri]DiDBiT[/font][font=宋体]技术提供了一种强大的工具,用于在复杂生物样本中直接鉴定和分析含生物素的蛋白质。这种高灵敏度和高分辨率的策略适用于广泛的生物标记策略和样本准备,显著提高了从样本中区分真实候选物和污染物的能力。此技术特别适用于含量较少的生物素化蛋白质的研究,为蛋白质组学和细胞生物学提供了新的研究工具。[/font][/font][font=Calibri] [/font][font=宋体]本篇文章由义翘神州编辑整理,同时义翘神州提供[/font][url=https://cn.sinobiological.com/category/biotinylated-protein-elite][u][font=宋体][color=#0000ff][b]生物素标记蛋白[/b][/color][/font][/u][/url][font=宋体],更多详情可以点击查看![/font][font=宋体]参考文献:[/font][font=宋体][font=Calibri]Schiapparelli LM, McClatchy DB, Liu HH, Sharma P, Yates JR 3rd, Cline HT. Direct detection of biotinylated proteins by mass spectrometry. J Proteome Res. 2014 13(9):3966-3978. doi:10.1021/pr5002862[/font][/font]

  • 质谱技术在蛋白质组研究中的分析方法

    2003年人类基因组精细图绘制完成,是人类科学史上一个里程碑式的事件。后基因组时代的研究重点自然落在了蛋白质头上。为啥?因为中心法则告诉我们,基因的产物——蛋白质,是生命活动的最终执行者。与基因组类比,研究生物体内全套蛋白质的科学,就是蛋白质组学。基因组计划完成的同年,人类蛋白质组计划启动,令人激动的是,2014年人类蛋白质组的草图也完成了。而蛋白质组学能够飞速发展的最大功臣非质谱莫属。质谱的应用范围非常广泛,但这里只讨论蛋白质组学中的质谱。简单地说,质谱法(mass spectrometry)就是对肽段离子的重量(质荷比,m/z)进行测量的分析方法。样品经质谱仪(mass spectrometer)检测得到质谱图(mass spectrum),通过对质谱图的分析就可以对样品中的蛋白进行鉴定、定量。亲,图1的这种典型的蛋白质组学流程都很熟悉吧。蛋白首先都要被特异性的酶(通常为Trypsin)切割为肽段,再进行后续分析,这在蛋白质组学中被称为“自下而上”的研究策略(Bottom-up proteomics)。我们平时见到的质谱分析基本都是这种类型。提到蛋白质组,即会联想到一系列高大上的名词,iTRAQ、SWATH、SILAC、Shotgun、Label-free等等。很多概念容易弄混淆,下面我们就来理理清楚。图1. 典型的蛋白质组学流程大体上,质谱研究蛋白主要是鉴定和定量。通过二级质谱图(MS2或者MS/MS)进行数据库搜索匹配鉴定蛋白。通过各种标记或非标记的手段对不同样品中的蛋白进行比较就是定量。蛋白定量比较是质谱最重要的用途,图2是对定量方法的一个简单总结。非标定量(Label-free)不需要标记,不同样品分别处理、分别进质谱检测;优点是处理简单、无需标记、价格便宜、可以比较很多组样品,缺点是对操作步骤、LC、质谱稳定性要求严格。SILAC是在细胞培养基中加入稳定同位素标记的氨基酸,在代谢水平标记蛋白,一级质谱图进行定量,可以做到三组样品混合后进行比较,定量准确,但是不能标记组织样本,养细胞成本也较贵。双甲基化标记是通过化学反应的办法在肽段水平进行标记,一级质谱定量,也可以三组对比,标记试剂都比较便宜,而且可以标记任何来源的样品。iTRAQ和TMT是商品化的试剂盒,肽段水平标记,二级质谱定量;分别可以做到最多8组和10组样品间蛋白质组的比较。图2. 质谱定量方法以上这几个是一家的,还有几个名词是属于另外一家,比如Shotgun (DDA)、SWATH/DIA、SRM (MRM)、MRMHR/PRM。质谱进行数据采集的方式大致分为三种:鸟枪法(Shotgun)、选择反应监控(SRM)和全景式的SWATH/DIA。下面对照图3再来简单介绍一下。图3. 质谱扫描方式DDA、IDA、Shotgun和鸟枪法说的是相同的东西,意思是质谱在每个循环的中从一级里挑选丰度高的TopN个肽段去打碎做二级扫描,得到的结果通过与已知数据库中的理论蛋白进行匹配。DDA简单有效,分析流程比较成熟,也是目前质谱分析的主流方式。DDA也有其固有的缺陷,即具有一定的随机性,偏向于检测丰度较高的肽段,而抑制了低丰度肽段的检测。靶向策略被称为质谱领域的Western blot。质谱只去采集目标肽段大小的离子信息,因而提高了灵敏度和特异性。这种方法用来研究感兴趣的特定蛋白,定量准确,但是通量很有限。SWATH/DIA这种全景式的数据采集方式在最近几年突然火了起来,被认为在不远的未来可能会取代DDA的主流位置。该方法采取的策略是将扫描范围内的所有肽段按照质荷比分为若干个窗口,再对每个窗口里所有的肽段一起打碎,采二级,数据分析时通过抽提蛋白的子离子信息进行定量。SWATH/DIA解决了DDA中随机性选择肽段的缺陷,所以重复性更好,定量的准确性基本达到了SRM的水平,而且可以实现大规模定量。借用听来的一个比喻来说明:DDA就像机关枪扫射,数量多、体积大的目标命中的概率要大一些。靶向扫描(SRM或PRM)就像精准狙击,排除干扰,目标明确,每一枪直指目标,但是难以大规模消灭敌人。SWATH/DIA就是地毯式轰炸,只要暴露在我方攻击范围内的敌人,不管三七二十一,全部炸完。图4. 定量方法与采集方式结合如果将上述的定量方法(图2)和质谱数据采集方式(图3)结合起来,就得到了现在基于质谱的蛋白质组学研究的各种策略(图4)。再打个比方,保证吃货们一听就懂:鸡、鱼、肉、蛋、蔬菜要通过炒锅、烤箱、高压锅、微波炉等烹调之后才能变为美食,填饱肚子。同样的,各种定量方法(非标的和标记的)处理的样品,要通过质谱各种采集方式变为电脑中的数据,才能分析并从中得到蛋白的信息。本次的介绍就先到这里了,如果其中有什么问题,欢迎您批评和建议,我们会努力变得更好;如果需要跟我们进行技术交流和讨论,欢迎大家联系武汉金开瑞。后续我们还会继续推出对质谱技术各方面进行解析的文章,敬请期待。ReferencesA draft map of the human proteome. Nature 509: 575–581 (2014)Mass-spectrometry-based draft of the human proteome. Nature 509: 582–587 (2014)A review: Annu. Rev. Biochem. 80: 273–99 (2011)SILAC: Molecular & Cellular Proteomics 1: 376-386 (2002)iTRAQ: Molecular & Cellular Proteomics 343: 91–99 (2010)SRM: Nature Methods 9: 555–566 (2012)SWATH: Molecular & Cellular Proteomics 11: 1–17 (2012)

  • [推荐]蛋白质谱分析方法特点及其在蛋白组学研究领域中的应用zz

    褚福亮,王福生, 中国人民解放军第302医院全军艾滋病与病毒性肝炎重点实验室 北京市 100039项目负责人 王福生, 100039 ,北京市丰台路26号, 中国人民解放军第302医院全军艾滋病与病毒性肝炎重点实验室. fswang@public.bta.net.cn电话:010-66933332 传真:010-63831870收稿日期 2002-08-15 接受日期 2002-09-03摘要新近广泛应用蛋白质芯片(ProteinChipâ Array)系统成功鉴定出了一些重要疾病(如肿瘤和危害性较大的传染病)新的、特异性的生物标记(biomarkers),后者不仅在生物医学的基础方面具有重要的科学价值,而且在临床疾病的诊断、治疗和预防发挥重要的指导作用,显示了良好的发展前景.本文就表面增强的激光解析电离-飞行时间-质谱(SELDI-TOF-MS)相关的原理、特点、在临床和基础研究中的应用新进展和未来的发展趋势做一综述.此外,我们就蛋白质谱分析技术在病毒性肝炎、肝硬化和肝癌等一系列肝病方面的应用策略和前景进行了分析.褚福亮,王福生. 蛋白质谱分析方法特点及其在蛋白组学研究领域中的应用.世界华人消化杂志 2002 10(12):1431-14350 引言人类基因组计划已经进入后基因组时代-即功能基因组时代[1],作为基因功能的直接体现者-蛋白质,及其之间的相互作用越来越引起基础和临床科学家们的关注[2-6] .因为要彻底了解生命的本质,只把基因测出来还是不够的,还必须要了解其在生物生长、发育、衰老和整个生命过程中的功能、不同蛋白质之间的相互作用以及他们与疾病发生、发展和转化的规律[7-14] .正因为如此,有关上述问题的蛋白质组学研究成了今天生命科学最重要的焦点之一[15] .为了阐明蛋白质在上述生命现象中的作用和相关机制,人们设计了许多新的方法技术,如:二维电泳、质谱分析、微距阵列、酵母双杂交和噬菌体展示等,这些方法在一些特定的情况下,虽然显示出了他们各自不同的优点,但是同样也存在着较大的局限性,难以开展大规模、超微量、高通量、全自动筛选蛋白质等方面的分析,因而设计更全面、同时研究多种蛋白质相互作用的技术,在功能基因组和蛋白组学的研究中建立一个更有效的技术平台,成为本领域中优先关注的问题[16] .近来,美国Ciphergen(赛弗吉)公司研制的ProteinChipâ Array的仪器,并建立了一种新的蛋白质飞行质谱-表面增强的激光解析离子化-飞行时间-质谱(surface-enhanced laser desorption/inionation-time of flight-mass spectra, SELDI-TOF-MS),已取得可喜的进展,筛选出了许多与疾病相关的新型生物标志,不仅为临床疾病的诊断和治疗等提供了新的选择,而且在基础科学、新药研制和疾病预防等方面具有广泛的应用前景[16-18] .本文就SELDI-TOF-MS相关的原理、特点、在临床和基础研究中的应用新进展和未来的发展趋势做一综述.1 ProteinChipâ Array系统和SELDI-TOF-MS的特点1.1 蛋白质芯片系统的组成和原理 蛋白质芯片系统由三部分组成:蛋白质芯片、芯片阅读器和芯片软件.供研究用芯片上有6-10芯池,不同的芯片表面上的化学物质不同,芯片表面分为两大类:一类为化学类表面,包括经典的色谱分析表面,如:结合普通蛋白质的正相表面,用于反相捕获的疏水表面,阴阳离子交换表面和捕获金属结合蛋白的静态金属亲合捕获表面;另一类称为生物类,特定的蛋白质共价结合于预先活化的表面阵列,可以用来研究传统的抗体一抗原反应,DNA和蛋白质作用,受体、配体作用和其他的一些分子之间的相互作用[19] . 根据检测目的不同,可以选用不同的芯片,或者自己设计芯片.将样本和对照点到芯池上以后,经过一段时间的结合反应,用缓冲液或水洗去一些不结合的非特异分子,再加上能量吸收分子(energy absorbing molelule,EAM)溶液,使样本固定在芯片表面.当溶液干燥后,一个含有分析物和大量能量吸收分子“晶体”就形成了.能量吸收分子对于电离来说非常重要.经过以上步骤,就可经把芯片放到芯片阅读器中进行质谱分析. 在阅读器的固定激光束下,芯片上、下移动,使样本上每一个特定点都被“读”到.激光束的每一次闪光释放的能量都聚集在该区一个非常小的点上(focused laser beam,聚焦激光束).这样,每个区都含有丰富的,可寻址(addressable)的位置.蛋白质芯片处理软件精确控制激光寻读过程.当样本受到激发,就开始电离和解除吸附.不同质量的带电离子在电场中飞行的时间长短不同,计算检测到的不同时间,就可以得出质量电荷比,把他输入电脑,形成图像[19].Ball et al [20]采用一种称为人工神经网络(artifical neural network,ANN)的算法处理出现的成千上万的峰,鉴定出三个分子量为13 454、13 457和14 278的生物标记分子,使疾病预测率达到97.1 %.1.2 ProteinChipâ Array芯片和SELDI-TOF-MS的特点 新型蛋白芯片与以往的蛋白芯片不同之处:SELDI-TOF-MS,他是在MALDI(matrix-assisted laser desorption/inionation)[21,22]基础上,改进后实行表面增强的飞行质谱.SELDI-TOF-MS优于MALDI-TOF表现为他不会破坏蛋白质,或使样本与可溶的基质共结晶来产生质谱信号.对SELDI-TOF来说,可以直接将血清、尿液、组织抽取物等不需处理直接点样检测[40] 由于一部分非特异结合的分析物被洗去,因而出现的质峰非常一致,有利于后期分析[23,24] . 与二维电泳相比:二维电泳分析蛋白质的分子量在30 KDa以上时电泳图谱较清楚,对在组织抽提物中占很大比例的低丰度的蛋白质不能被检出;其次,二维电泳胶上的蛋白质斑点很大一部分包含一种以上的蛋白质;而且,二维电泳耗时长,工作量大,对象染色转移等技术要求高,不能完全实现自动化.而SELDI-TOF在200 Da-500 KDa区间都可以给出很好的质谱,对一个样本的分析在几十分钟内就可以完成[19],处理的信息量远远大于二维电泳;对于低丰度物质,即使浓度仅attomole(10-18)的分子,只要与表面探针结合,就可以检测到,这也是二维电泳所不具备的[24,25] . 对于微距阵蛋白芯片来说,需要一种不破坏折叠的蛋白质构象的固定技术,再与另外的蛋白质反应,经检测莹光来观察蛋白质之间的作用[26] .而基于SELDI-TOF-MS的ProteinChip分析蛋白质不需溶解、不需染色、廉价、针对性强. 因而蛋白质芯片仪具有以下优势:(1)可直接使用粗样本,如:血清、尿液、细胞抽提物等[27] .(2)使大规模、超微量、高通量、全自动筛选蛋白质成为可能;(3)他不仅可发现一种蛋白质或生物标记分子,而且还可以发现不同的多种方式的组合蛋白质谱,可能与某种疾病有关[28] (4)推动基因组学发展,验证基因组学方面的变化,基于蛋白质特点发现新的基因.可以推测疾病状态下,基因启动何以与正常状态下不同,受到那些因素的影响,从而跟踪基因的变化[2,14,15] . 其存在的问题:对于不同的样本,根据检测的目标采取或者设计几种芯片,理论上可以把所有的相同性质蛋白质捕获,但是实际上仍有少量的分子没与表面探针结合.使用SELDI-TOF-MS,仅能给出蛋白质的分子量,不能给出C端、N端的序列,也没法知道蛋白质的构型,因此需要将蛋白质充分纯化后,用蛋白酶消化芯片上的蛋白质,分析肽段,再用生物信息学方法鉴定蛋白质序列[18,24] .另外,在国内,该芯片费用较高,分析质谱需要大量后续工作支持.

质谱蛋白标记方法相关的耗材

  • MassPREP糖蛋白分析包
    MassPREP糖蛋白分析包1、使用RapiGest SF表面活性剂优化蛋白质的去糖基化反应2、使样品操作最少化3、有效的脱盐/样品净化方法4、与MALDI质谱分析和其它糖苷分析技术兼容5、有助于分离2-AB标记糖苷糖基化(Glycosylation)是真核蛋白质最重要的翻译后修饰(PTM:post-translational modification)类型之一。执行有效的样品去糖基化和样品制备是成功进行高灵敏的糖苷分析的关键点。此外,对糖蛋白释放的2-AB标记糖苷进行制备和纯化也是成功分析的一个重要步骤。MassPREP糖蛋白分析包,提供简单而耐用的样品制备方法,且并不牺牲样品回收率。如下图所示,在使用了MassPREP糖蛋白分析包之后,未标记的糖苷或2-AB标记糖苷能够用MALDI-MS或配备荧光检测器的LC进行成功分析。对来自糖蛋白的组分进行样品制备获得纯化的2-AB标记糖苷对天然和2-AB标记IgG糖苷进行MALDI质谱分析所得的质量轮廓图MassPREP糖蛋白分析包及配件产品描述 规格/数量 部件号MassPREP糖蛋白分析包(包括:MassPREP HILIC uElution样品处理板、RapiGest SF,以及MassPREP MALDI Matrix DHB) — 186002817MassPREP HILIC μElution样品处理板 96孔板 186002780RapiGest SF 1mg样品瓶 186001860
  • MO-L018 | 最常用 RED-tris-NTA 蛋白标记试剂盒(His-Tag 标记-RED Channel)
    NanoTemper 推出 MO His-Tag 蛋白标记试剂盒,通过产生更高的结合振幅和优化的信噪比,提高了 MST 数据质量,使得研究比较复杂样品结合亲和力变得更容易。该试剂盒可特异性地标记含有组氨酸标签的蛋白或多肽。此试剂盒既可以标记纯化的蛋白,亦可标记粗提蛋白样品(如细胞裂解液),所含的染料最多可做 500 MST 数据点。红色染料适用于配备有红色探测器的 MO NT.115 和 MO NT.Automated 仪器 (Nano 和 Pico)。
  • MO-L003 | BLUE-NHS 蛋白标记试剂盒(氨基标记--BLUE Channel)
    NanoTemper 推出 MO BLUE-NHS 蛋白标记试剂盒(氨基标记),包含所需的标记和染料去除试剂。该染料活性 NHS 酯基可与伯胺(赖氨酸残基)反应形成共价键。该试剂盒适用于标记分子量大于 5 kDa 且浓度介于 2–20 μM 之间的蛋白样品。该染料适用于配备有蓝色探测器的 MO NT.115 系列和 MO NT.Automated 仪器 (Nano 和 Pico)。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制