色谱浓度型检测器

仪器信息网色谱浓度型检测器专题为您提供2024年最新色谱浓度型检测器价格报价、厂家品牌的相关信息, 包括色谱浓度型检测器参数、型号等,不管是国产,还是进口品牌的色谱浓度型检测器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合色谱浓度型检测器相关的耗材配件、试剂标物,还有色谱浓度型检测器相关的最新资讯、资料,以及色谱浓度型检测器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

色谱浓度型检测器相关的厂商

  • 济宁鲁科无损检测器材有限公司生产产品:超声波测厚仪、超声波探伤仪、X射线机、磁粉探伤机、硬度计、电火花检漏仪、涂层测厚仪、报警仪、光谱仪、观片灯、洗片机、黑白密度计及各种无损检测耗材!质量优,价格低,服务好,一次业务,终身合作。您的支持就是我们最大的动力,您的信任就是我们最好的欣慰。详细资料请参阅公司网站:www.lkndt.com业务:李先生 电话:0537-2613503传真:0537-2638499联系手机15206786887 QQ:67495153 数字式超声波探伤仪,山东,生产厂家,价格,超声波探伤仪超声波试块,山东济宁,厂家,价格,各种超声波试块生产超声波侧厚、探伤,射线机等无损检测器材耗材
    留言咨询
  • 济宁鲁科无损检测器材有限公司生产产品:超声波测厚仪、超声波探伤仪、X射线机、磁粉探伤机、硬度计、电火花检漏仪、涂层测厚仪、报警仪、光谱仪、观片灯、洗片机、黑白密度计及各种无损检测耗材!质量优,价格低,服务好,一次业务,终身合作。您的支持就是我们最大的动力,您的信任就是我们最好的欣慰。详细资料请参阅公司网站:www.lkndt.com业务:李先生 电话:0537-2613503传真:0537-2638499联系手机15206786887 QQ:67495153 数字式超声波探伤仪,山东,生产厂家,价格,超声波探伤仪超声波试块,山东济宁,厂家,价格,各种超声波试块生产超声波侧厚、探伤,射线机等无损检测器材耗材
    留言咨询
  • 深圳通瑞色谱仪器有限公司是一家专业从事液相色谱仪研发、设计、生产与销售的高科技企业, 开发了具有先进水平的GI-3000液相色谱系统、GI-3000XY血药浓度分析仪、GI-5200多功能离子色谱仪系统,产品已在医疗、食品、制药、环境环保、科研、高校科研实训、生物、石油化工等多行业领域使用。通瑞仪器注重于技术创新,紧盯国际新技术,推出了高性能双直线电机驱动精密滚珠丝杆的恒流泵输液系统(第三代技术,与waters,2695、安捷伦1260方案相同),达到国际先进技术水平。目前研发完成GI-3000XY血药浓度分析仪(全智能二维液相色谱系统),系统集成了,医院多科室上百种药物成分及其浓度的测定方法,为儿童的健康成长发育以及需要长期治疗、精准治疗的大病与慢性病患者,制定精准医疗方案,提供了科学支持,本系统也适用于常见药物的临床药物分析研究。 公司主要产品:GI-3000高效液相色谱仪系列产品,研发完成四元低压梯度液相色谱仪,目前是国率先家采用直线电机驱动滚珠丝杆的恒流泵输液系统(同waters2695方案),技术先进,具有完全自主知识产权。
    留言咨询

色谱浓度型检测器相关的仪器

  • 液相色谱流动相漏液检测器微流量流动漏液检测器 ET620微流量流动检测器采用标准工业化产品规范设计,根据用户要求进行更贴切的设计,通过检测废液排出口液体流动情况来判断泵是否正常。系统对液体管路进行适当加热,有废液排除时,温度较低的废液流过管路,会拉低管路温度,系统记录排废液累计时间即低温时间。当排废液累计时间大于 Check time 报警检查时间,即系统一直在排废液,系统报警。停止排废液时,没有液体流过液体管路,管路温度瞬间拉高,系统捕捉到温度升高过程,同时将排废液的累积时间清零,如果之前有报警也会清除报警。如果系统一直处于停止状态,即废液一直不排,系统温度平均温度一直较高,如果高温累计时间达到于Check time 报警检查时间,系统报警。 特点微流量流动检测器稳定性好;采用高安全性加热设计;采用节能设计,待机功率小于 5W;具有泵故障报警信号输出功能,可将该报警信号连接到其他设备上进行联动控制
    留言咨询
  • KH-FL50E超高灵敏度液相色谱荧光检测器 1、使用单光子计数器为检测器,具有极高的灵敏度;2、也可以选配可变电压高灵敏度光电倍增管,范围宽、灵敏度高;3、流通池具有温控功能,防止温度漂移;4、检测器具有制冷功能,背景噪音极低;5、激发光与发射光均有带宽选择器,可以选择适当的带宽;6、使用氙灯光源,能量高、基线稳定、光谱范围宽;7、激发与发射波长分光器均为光栅单色仪,可以精确设定波长;8、单色仪波长范围可达200-900nm,满足不同的分析目的;9、具有模拟输出组件,可与不同厂家的HPLC系统进行联用;10、自动检验光源能量,进行光强校正,减少噪音与漂移;11、使用1200线全息光栅,具有极高的光谱分辨率;12、使用24位AD/DA数模转换器,具有较宽的动态范围;13、可以进行荧光、磷光、化学发光分析,使用范围广;14、具有荧光发射波长时间程序功能,进一步提高选择性;15、具有生物兼容的流通池结构,可以很好的用于生命科学分析;16、带有波长自校正功能,可以自动校正单色仪;17、可以选择闪烁氙灯为光源,进一步降低热效应,提高灵敏度;18、仪器自带控制软件与色谱工作站,可进行仪器控制与定量计算;19、仪器符合GMP/GLP要求,支持LIMS管理系统;20、符合2010/2015版药典中液相色谱荧光分析检测要求;1、激发波长范围:190~900nm;2、发射波长范围:190~900nm;3、检测器响应范围:190~900nm(光电倍增管),300~800nm(单光子计数器);4、光谱带宽:激发5nm/10nm/15nm/20nm,发射5nm/10nm/15nm/20nm;5、波长精确度:±1nm;6、波长准确性:±0.2nm;7、AD/DA转换:24位;8、光源:150W直流氙灯或5W闪烁氙灯;9、单色器:1200线全息光栅;10、温控范围:5~50℃;1、主机:包括光源、检测器、单色器、流通池;2、软件:FM-2000型工作站;3、UV2000+型光衍生化器(选配);4、柱后衍生系统(选配);5、全自动固相萃取仪(选配);KH-FL50E超高灵敏度液相色谱荧光检测器检测对象:黄曲霉毒素 其他真菌毒素 多环芳烃 氨基甲酸酯 尿素 维生素B2 药物 由于技术不断进步,本公司保留设计更改之权利,更改恕不通知敬请谅解。
    留言咨询
  • KH-FL30E药典专用液相色谱荧光检测器 1、使用氙灯光源,能量高、基线稳定、光谱范围宽;2、激发与发射波长分光器均为光栅单色仪,可以精确设定波长;3、使用光电倍增管检测器,具有极高的灵敏度;4、单色仪波长范围可达200-900nm,满足不同的分析目的;5、具有模拟输出组件,可与不同厂家的HPLC系统进行联用;6、自动检验光源能量,进行光强校正,减少噪音与漂移;7、使用1200线全息光栅,具有极高的光谱分辨率;8、使用24位AD/DA数模转换器,具有较宽的动态范围;9、可以进行荧光、磷光、化学发光分析,使用范围广;10、具有荧光发射波长时间程序功能,进一步提高选择性;11、具有生物兼容的流通池结构,可以很好的用于生命科学分析;12、可以加装温控单元,确保重现性且不降低灵敏度;13、带有波长自校正功能,可以自动校正单色仪;14、仪器自带控制软件与色谱工作站,可进行仪器控制与定量计算;15、仪器符合GMP/GLP要求,支持LIMS管理系统;16、符合2010/2015版药典中液相色谱荧光分析检测要求;1、激发波长范围:190~900nm;2、发射波长范围:190~900nm;3、光谱带宽:10nm/15nm;4、波长精确度:±1 nm;5、波长准确性:±0.2 nm;6、AD/DA转换:24位;7、光源:150W直流氙灯;8、单色器:1200线全息光栅;9、温控范围:室温~50℃;1、主机:包括光源、检测器、单色器、流通池;2、软件:FM-2000型工作站;3、流通池温控装置(选配);4、柱后衍生系统(选配);5、全自动固相萃取仪(选配);KH-FL30E检测对象:黄曲霉毒素 其他真菌毒素 多环芳烃 氨基甲酸酯 尿素 维生素B2 药物 由于技术不断进步,本公司保留设计更改之权利,更改恕不通知敬请谅解。
    留言咨询

色谱浓度型检测器相关的资讯

  • 气相色谱检测器选择指南
    p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp strong 气相色谱检测器 /strong (Gas chromatographic detector)是检验色谱柱后流出物质的成分及浓度变化的装置,它可以将这种变化转化为电信号,是气相色谱分析中不可或缺的部分。经过检测器将各组分的成分及浓度转化为电信号并经由放大器放大,最终由记录仪或微处理机得到色谱图,就可以对被测试的组分进行定性和定量的分析了。气相色谱检测器相当于气相色谱的“眼睛”,选择合适的检测器对于应用气相色谱检测目标物质至关重要,仪器信息网编辑对气相色谱检测器相关的分类、性能指标以及常用检测器进行了整理,方便大家在选择检测器时进行参考。 /p p style=" line-height: 1.5em text-align: center " strong style=" text-align: center " span style=" font-size: 20px color: rgb(31, 73, 125) " 检测器分类 /span /strong /p p style=" line-height: 1.5em "   气相色谱检测器种类繁多,有多种分类: /p p style=" line-height: 1.5em "   1、根据对被检测样品的响应范围可以被分为: /p p style=" line-height: 1.5em "    strong 通用型检测器: /strong 对绝大多数检测无知均有响应,如:TCD、PID /p p style=" line-height: 1.5em "   strong  选择型检测器: /strong 对某一类物质有响应,对其他物质的无响应或很小,如:FPD。 /p p style=" line-height: 1.5em "   2、根据检测器的检测方式不同可以分为: /p p style=" line-height: 1.5em "    strong 浓度型检测器: /strong 测量的是载气中某组分浓度瞬间的变化,即检测器的响应值和组分的浓度成正比,如TCD、PID /p p style=" line-height: 1.5em "    strong 质量型检测器: /strong 测量载气中某组分单位时间内进入检测器的含量变化,即检测器的响应值和单位时间内进入检测器某组分的质量成正比。如FID、FPD。 /p p style=" line-height: 1.5em "   3、根据信号记录方式不同进行分类 /p p style=" line-height: 1.5em "   strong  微分型检测器: /strong 微分型检测器的响应与流出组分的浓度或质量成正比,绘出的色谱峰是一系列的峰。 /p p style=" line-height: 1.5em "    strong 积分型检测器: /strong 测量各组分积累的总和,响应值与组分的总质量成正比,色谱图为台阶形曲线,阶高代表组分的总量。 /p p style=" line-height: 1.5em "   4、根据样品是否被破坏可以分为: /p p style=" line-height: 1.5em "    strong 破坏性检测器: /strong 组分在检测过程中,其分子形式被破坏,例如:FID、NPD、FPD /p p style=" line-height: 1.5em "    strong 非破坏性检测器 /strong :组分在检测过程中,保持其分子结构,例如:TCD、PID、ECD。 span style=" text-align: center " & nbsp & nbsp /span /p p style=" line-height: 1.5em text-align: center " strong style=" color: rgb(31, 73, 125) text-align: center " span style=" font-size: 20px " 性能指标 /span /strong /p p style=" line-height: 1.5em "   & nbsp 气相色谱检测器一般需满足以下要求:通用性强,能检测多种化合物或选择性强,只对特定类别化合物或含有特殊基团的化合物有特别高的灵敏度。响应值与组分浓度间线性范围宽,即可做常量分析,又可做微量、痕量分析。稳定性好,色谱操作条件波动造成的影响小,表现为噪声低、漂移小。检测器体积小、响应时间快。 /p p style=" line-height: 1.5em "   根据以上要求,气相色谱检测器的主要性能指标有以下几个方面: /p p style=" line-height: 1.5em "    strong 1. 灵敏度 /strong /p p style=" line-height: 1.5em "   灵敏度是单位样品量(或浓度)通过检测器时所产生的相应(信号)值的大小,灵敏度高意味着对同样的样品量其检测器输出的响应值高,同一个检测器对不同组分,灵敏度是不同的,浓度型检测器与质量型检测器灵敏度的表示方法与计算方法亦各不相同。 /p p style=" line-height: 1.5em "    strong 2. 检出限 /strong /p p style=" line-height: 1.5em "   检出限为检测器的最小检测量,最小检测量是要使待测组分所产生的信号恰好能在色谱图上与噪声鉴别开来时,所需引入到色谱柱的最小物质量或最小浓度。因此,最小检测量与检测器的性能、柱效率和操作条件有关。如果峰形窄,样品浓度越集中,最小检测量就越小。 /p p style=" line-height: 1.5em "    strong 3. 线性范围 /strong /p p style=" line-height: 1.5em "   定量分析时要求检测器的输出信号与进样量之间呈线性关系,检测器的线性范围为在检测器呈线性时最大和最小进样量之比,或叫最大允许进样量(浓度)与最小检测量(浓度)之比。比值越大,表示线性范围越宽,越有利于准确定量。不同类型检测器的线性范围差别也很大。如氢焰检测器的线性范围可达107,热导检测器则在104左右。由于线性范围很宽,在绘制检测器线性范围图时一般采用双对数坐标纸。 /p p style=" line-height: 1.5em "    strong 4. 噪音和漂移 /strong /p p style=" line-height: 1.5em "   噪声就是零电位(又称基流)的波动,反映在色谱图上就是由于各种原因引起的基线波动,称基线噪声。噪声分为短期噪声和长期噪声两类,有时候短期噪声会重叠在长期噪音上。仪器的温度波动,电源电压波动,载气流速的变化等,都可能产生噪音。基线随时间单方向的缓慢变化,称基线漂移。 /p p style=" line-height: 1.5em "    strong 5. 响应时间 /strong /p p style=" line-height: 1.5em "   检测器的响应时间是指进入检测器的一个给定组分的输出信号达到其真值的90%时所需的时间。检测器的响应时间如果不够快,则色谱峰会失真,影响定量分析的准确性。但是,绝大多数检测器的响应时间不是一个限制因素,而系统的响应,特别是记录仪的局限性却是限制因素 。 /p p style=" line-height: 1.5em text-align: center " strong style=" color: rgb(31, 73, 125) font-size: 20px text-align: center " 常用检测器 /strong /p p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 在日常应用中,主要会用到的气相色谱检测器主要有FID、ECD、TCD、FPD、NPD、MSD等,针对这些检测器,梳理一下它们的优缺点和应用范围。 /p p style=" text-align: center line-height: 1.5em " span style=" color: rgb(31, 73, 125) " strong span style=" font-size: 20px " 常见气相色谱检测器汇总 /span /strong /span /p p style=" line-height: 1.5em " strong span style=" font-size: 20px color: rgb(79, 97, 40) " /span /strong /p table style=" border-collapse:collapse " data-sort=" sortDisabled" tbody tr class=" firstRow" td style=" border: 1px solid windowtext word-break: break-all " valign=" middle" rowspan=" 1" colspan=" 2" align=" center" p style=" line-height: 1.5em " 检测器 /p /td td style=" border: 1px solid windowtext word-break: break-all " width=" 145" valign=" middle" rowspan=" 2" colspan=" 1" align=" center" p style=" line-height: 1.5em " 工作原理 /p /td td style=" border: 1px solid windowtext " width=" 145" valign=" middle" rowspan=" 2" colspan=" 1" align=" center" p style=" line-height: 1.5em " 应用范围 /p /td /tr tr td style=" border: 1px solid windowtext word-break: break-all " width=" 145" valign=" middle" align=" center" p style=" line-height: 1.5em " 中文名称 /p /td td style=" border: 1px solid windowtext word-break: break-all " width=" 145" valign=" middle" align=" center" p style=" line-height: 1.5em " 英文缩写 /p /td /tr tr td style=" border: 1px solid windowtext word-break: break-all " width=" 145" valign=" middle" align=" center" p style=" line-height: 1.5em " 火焰离子化检测器 br/ /p /td td style=" border: 1px solid windowtext word-break: break-all " width=" 145" valign=" middle" align=" center" p style=" line-height: 1.5em " FID /p /td td style=" border: 1px solid windowtext word-break: break-all " width=" 145" valign=" middle" align=" center" p style=" line-height: 1.5em " 火焰电离 /p /td td style=" border: 1px solid windowtext word-break: break-all " width=" 145" valign=" middle" align=" center" p style=" line-height: 1.5em " 有机化合物 /p /td /tr tr td style=" border: 1px solid windowtext word-break: break-all " width=" 145" valign=" middle" align=" center" p style=" line-height: 1.5em " 电子俘获检测器 /p /td td style=" border: 1px solid windowtext word-break: break-all " width=" 145" valign=" middle" align=" center" p style=" line-height: 1.5em " ECD /p /td td style=" border: 1px solid windowtext word-break: break-all " width=" 145" valign=" middle" align=" center" p style=" line-height: 1.5em " 化学电离 /p /td td style=" border: 1px solid windowtext word-break: break-all " width=" 145" valign=" middle" align=" center" p style=" line-height: 1.5em " 电负性化合物 /p /td /tr tr td style=" border: 1px solid windowtext word-break: break-all " width=" 145" valign=" middle" align=" center" p style=" line-height: 1.5em " 热导检测器 /p /td td style=" border: 1px solid windowtext word-break: break-all " width=" 145" valign=" middle" align=" center" p style=" line-height: 1.5em " TCD /p /td td style=" border: 1px solid windowtext word-break: break-all " width=" 145" valign=" middle" align=" center" p style=" line-height: 1.5em " 热导系数差异 /p /td td style=" border: 1px solid windowtext word-break: break-all " width=" 145" valign=" middle" align=" center" p style=" line-height: 1.5em " 所有化合物 /p /td /tr tr td style=" border: 1px solid windowtext word-break: break-all " width=" 145" valign=" middle" align=" center" p style=" line-height: 1.5em " 火焰光度检测器 /p /td td style=" border: 1px solid windowtext word-break: break-all " width=" 145" valign=" middle" align=" center" p style=" line-height: 1.5em " FPD /p /td td style=" border: 1px solid windowtext word-break: break-all " width=" 145" valign=" middle" align=" center" p style=" line-height: 1.5em " 分子发射 /p /td td style=" border: 1px solid windowtext word-break: break-all " width=" 145" valign=" middle" align=" center" p style=" line-height: 1.5em " 磷、硫化合物 /p /td /tr tr td style=" border: 1px solid windowtext word-break: break-all " width=" 145" valign=" middle" align=" center" p style=" line-height: 1.5em " 氮磷检测器 /p /td td style=" border: 1px solid windowtext word-break: break-all " width=" 145" valign=" middle" align=" center" p style=" line-height: 1.5em " NPD /p /td td style=" border: 1px solid windowtext word-break: break-all " width=" 145" valign=" middle" align=" center" p style=" line-height: 1.5em " 热表面电离 /p /td td style=" border: 1px solid windowtext word-break: break-all " width=" 145" valign=" middle" align=" center" p style=" line-height: 1.5em " 氮、磷化合物 /p /td /tr /tbody /table p style=" line-height: 1.5em " span style=" font-size: 18px color: rgb(31, 73, 125) " strong FID——火焰离子化检测器 /strong /span br/   FID是多用途的破坏性质量型通用检测器,灵敏度高,线性范围宽,广泛应用于有机物的常量和微量检测。F其主要原理为,氢气和空气燃烧生成火焰,当有机化合物进入火焰时,由于离子化反应,生成比基流高几个数量级的离子,在电场作用下,这些带正电荷的离子和电子分别向负极和正极移动,形成离子流,此离子流经放大器放大后,可被检测。 /p p style=" text-align: center line-height: 1.5em " img src=" http://img1.17img.cn/17img/images/201807/noimg/e368385d-2632-45d8-9d34-f6dcefd84528.jpg" title=" 201506242255_551533_2984502_3.jpg" / /p p style=" text-align: left line-height: 1.5em "    span style=" color: rgb(0, 0, 0) " 火焰离子化检测对电离势低于H sub 2 /sub 的有机物产生响应,而对无机物、永久气体和水基本上无响应,所以 strong 火焰离子化检测器只能分析有机物 /strong (含碳化合物),不适于分析惰性气体、空气、水、CO、CO sub 2 /sub 、CS sub 2 /sub 、NO、SO sub 2 /sub 及H sub 2 /sub S等。 /span /p p style=" text-align: left line-height: 1.5em " span style=" color: rgb(0, 0, 0) " & nbsp & nbsp & nbsp & nbsp FID特别适合于 strong 有机化合物的常量到微量分析 /strong ,是目前环保领域中,空气和水中痕量有机化合物检测的最好手段。抗污染能力强,检测器寿命长,日常维护保养量也少,一般讲FID检测限操作在大于1× 10 sup -10 /sup g/s时,操作条件无须特别注意均能正常工作,也不会对检测器本身造成致命的损失。由于FID响应有一定的规律性,在复杂的混合物多组分的定量分析时,特别对于一般的常规分析,可以不用纯化合物校正,简化了操作,提高了工作效率。 /span /p p style=" line-height: 1.5em " span style=" color: rgb(31, 73, 125) " strong span style=" font-size: 18px " ECD——电子捕获检测器 /span /strong /span /p p style=" line-height: 1.5em "    span style=" color: rgb(0, 0, 0) " 电子捕获检测器是一种高选择性检测器,在分析痕量电负性有机化合物上有很好的应用。它仅对 strong 那些能俘获电子的化合物 /strong ,如卤代烃、含N、O和S等杂原子的化合物有响应。由于它灵敏度高、选择性好,多年来已广泛用于环境样品中痕量农药、多氯联苯等的分析。ECD是气相电离检测器之一,但它的信号不同于FID等其他电离检测器,FID等信号是基流的增加,ECD信号是高背景基流的减小。ECD的不足之处是 strong 线性范围较小 /strong ,通常仅102-104。 /span /p p style=" text-align: center line-height: 1.5em " & nbsp & nbsp & nbsp img src=" http://img1.17img.cn/17img/images/201807/noimg/4dcdf2d1-8cb9-4e96-b3f9-a09ced241d86.jpg" title=" 2015062422302130_01_2984502_3.jpg" style=" text-align: center " / /p p style=" line-height: 1.5em " span style=" color: rgb(31, 73, 125) " strong span style=" font-size: 18px " /span /strong /span /p p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp ECD是浓度型选择性检测器,对电负性的组分能给出极显著的响应信号。用于分析卤素化合物、一些金属螯合物和甾族化合物。其主要原理为检测室内的放射源放出β-射线(初级电子),与通过检测室的载气碰撞产生次级电子和正离子,在电场作用下,分别向与自己极性相反的电极运动,形成基流,当具有负电性的组分(即能捕获电子的组分)进入检测室后,捕获了检测室内的电子,变成带负电荷的离子,由于电子被组分捕获,使得检测室基流减少,产生色谱峰信号。 /p p style=" line-height: 1.5em " & nbsp  由于ECD在常用的几种检测器中灵敏度最高,再加上ECD结构、供电方式和所有操作条件都对ECD主要性能产生影响。可以说,ECD选用在所有常用检测器中也是比较困难的,遇到使用中问题也最多。 br/ /p p style=" line-height: 1.5em "   选择性:从选择性看,ECD特别适合于环境监测和生物样品的复杂多组分和多干扰物分析,但有些干扰物和待定性定量分析的组分有着近似的灵敏度(几乎无选择性),特别做痕量分析时,还应对样品进行必要的预处理,或改善柱分离以防止出现定性错误。 /p p style=" line-height: 1.5em "   灵敏度:ECD分析对电负性样品具有较高的灵敏度,如四氯化碳最小检测量可达到1× 10 sup -15 /sup g。 /p p style=" line-height: 1.5em "   线性范围:传统的认为ECD线性范围较窄,但由于ECD的不断完善,线性范围已优于104,可基本满足分析的需求。同时,针对高浓度样品,可以通过稀释样品后再使用ECD进行分析。 /p p style=" line-height: 1.5em "   操作性:ECD几乎对所有操作条件敏感,其对干扰物和目标物都具有高灵敏度的特性使得ECD的操作难度较大,有很小浓度的敏感物就可能造成对分析的干扰。 /p p style=" line-height: 1.5em "   因此,在使用ECD进行样品分析时,应当了解被分析样品的特点和待定性定量的组分的物理性质,确定选用ECD是否分析合适。 /p p style=" line-height: 1.5em " span style=" color: rgb(31, 73, 125) " strong span style=" font-size: 18px " TCD——热导检测器 /span /strong /span /p p style=" line-height: 1.5em " span style=" font-size: 16px color: rgb(0, 0, 0) " & nbsp & nbsp & nbsp & nbsp 热导检测器是一种通用的非破坏性浓度型检测器,理论上可应用于任何组分的检测,但因其灵敏度较低,故一般用于常量分析。其基于不同组分与载气有不同的热导率的原理而工作。热导检测器的热敏元件为热丝,如镀金钨丝、铂金丝等。当被测组分与载气一起进入热导池时,由于混合气的热导率与纯载气不同(通常是低于载气的热导率),热丝传向池壁的热量也发生变化,致使热丝温度发生改变,其电阻也随之改变,进而使电桥输出端产生不平衡电位而作为信号输出,记录该信号从而得到色谱峰。 /span /p p style=" text-align: center line-height: 1.5em " span style=" font-size: 16px color: rgb(0, 0, 0) " img src=" http://img1.17img.cn/17img/images/201807/noimg/9cfa17ce-9f01-4263-b262-27853bbe7e3f.jpg" title=" 2015062422242303_01_2984502_3.jpg" / /span /p p style=" line-height: 1.5em " span style=" color: rgb(31, 73, 125) " strong span style=" font-size: 18px " /span /strong /span /p p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp TCD通用性强,性能稳定,线性范围最大,定量精度高,操作维修简单,廉价易于推广普及, strong 适合常量和半微量分析 /strong ,特别适合 strong 永久气体 /strong 或组分少且比较纯净的样品分析。 /p p style=" line-height: 1.5em "   对于环境监测和食品农药残留等样品进行痕量分析,TCD适用性不强,其主要原因有:检测限大(常规& lt 10-6g/mL) 样品选择性差,即对非检测组分抗干扰能力差 虽然可在高灵敏度下运行,但易被污染,基线稳定性变差。 /p p style=" line-height: 1.5em " span style=" color: rgb(31, 73, 125) " strong span style=" font-size: 18px " FPD——火焰光度检测器 /span /strong /span /p p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp FPD为质量型选择性检测器,主要用于测定含硫、磷化合物。使用中通入的氢气量必须多于通常燃烧所需要的氢气量,即在富氢情况下燃烧得到火焰。广泛应用于石油产品中微量硫化合物及农药中有机磷化合物的分析。其主要原理为组分在富氢火焰中燃烧时组分不同程度地变为碎片或分子,其外层电子由于互相碰撞而被激发,当电子由激发态返回低能态或基态时,发射出特征波长的光谱,这种特征光谱通过经选择滤光片后被测量。如硫在火焰中产生350-430nm的光谱,磷产生480-600nm的光谱,其中394nm和526nm分别为含硫和含磷化合物的特征波长。 /p p style=" text-align: center line-height: 1.5em " img src=" http://img1.17img.cn/17img/images/201807/noimg/76c52176-d151-497d-be84-393c102e715c.jpg" title=" 2015062422290693_01_2984502_3.jpg" / /p p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp FPD是一种高灵敏度、高选择性的检测器,对含P和S特别敏感,主要用于 strong 含P和S的有机化合物和气体硫化物中P和S的微量和痕量分析 /strong ,如有机磷农药、水质污染中的硫醇、天然气中含硫化物的气体等。 /p p style=" line-height: 1.5em "   FPD火焰是富氢焰,空气的供量只够与70%的氢燃烧反应,所以火焰温度较低以便生成激发态的P、S化合物碎片。FPD基线稳定,噪声也比较小,信噪比高。氮气(载气)、氢气和空气流速的变化直接影响FPD的灵敏度、信噪比、选择性和线性范围。氮气流速在一定范围变化时,对P的检测无影响。对S的检测,表现出峰高与峰面积随氮气流量增加而增大,继续增加时,峰高和峰面积逐渐下降。这是因为作为稀释剂的氮气流量增加时,火焰温度降低,有利于S的响应,超过最佳值后,则不利于S的响应。无论S还是P的测定,都有各自最佳的氮气和空气的比值,并随FPD的结构差异而不同,测P比测S需要更大的氢气流速。 /p p style=" line-height: 1.5em " strong span style=" font-size: 18px color: rgb(31, 73, 125) " NPD——氮磷检测器 /span /strong br/ /p p style=" line-height: 1.5em "    span style=" font-family: 宋体, SimSun font-size: 16px " NPD是一种质量型检测器。 /span span style=" font-family: 宋体, SimSun " NPD工作原理是将一种涂有碱金属盐如Na /span sub style=" font-family: 宋体, SimSun " 2 /sub span style=" font-family: 宋体, SimSun " SiO /span sub style=" font-family: 宋体, SimSun " 3 /sub span style=" font-family: 宋体, SimSun " 、Rb /span sub style=" font-family: 宋体, SimSun " 2 /sub span style=" font-family: 宋体, SimSun " SiO /span sub style=" font-family: 宋体, SimSun " 3 /sub span style=" font-family: 宋体, SimSun " 类化合物的陶瓷珠,放置在燃烧的氢火焰和收集极之间,当氮、磷化合物先在气相边界层中热化学分解,产生电负性的基团。试样蒸气和氢气流通过碱金属盐表面时,该电负性基团再与气相的铷原子(Rb)进行化学电离反应,生成Rb+和负离子,负离子在收集极释放出一个电子,并与氢原子反应,失去电子的碱金属形成盐再沉积到陶瓷珠的表面上,从而获得信号响应。 /span /p p style=" text-align: center line-height: 1.5em " img src=" http://img1.17img.cn/17img/images/201807/noimg/4fe5acfc-2693-4772-8c2a-8d5c225f7ac7.jpg" title=" 2015062422312688_01_2984502_3.jpg" / /p p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp NPD结构简单,成本较低,灵敏度、选择性和线性范围均较好,对含N和P的化合物选择性好、灵敏度高,适合做样品中 strong 含N和P的微量和痕量分析 /strong 。NPD灵敏度大小和化合物的分子结构有关,如检测含N化合物时,对易分解成氰基(CN)的灵敏度最高,其它结构尤其是硝酸酯和酰胺类响应小。 /p p style=" line-height: 1.5em "   NPD铷珠的寿命不是无限的,在一般使用条件下,寿命可保证2年以上。但在操作中,铷珠的退化速度不是均匀的,通常使用初期退化快,后期退化慢。实验表明:前50 h灵敏度可能下降20%,而后1300h,每经过250 h,灵敏度下降20%左右。这也就是为什么新的铷珠开始使用前,为获得高稳定性,必须对其进行老化处理的原因,当做半定量,且灵敏度要求不高时,老化时间不宜太长。 /p p style=" line-height: 1.5em "   NPD的检测器控温和控温精度、气体的流量稳定性、待分析组分分子结构等因素,均对铷珠最佳工作状态有影响,即很难保证性能恒定不变。为保证选择性和灵敏度不变,根据情况需不定时的调整NPD各条件参数。 /p p style=" line-height: 1.5em " br/ /p p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 气相色谱检测器是气相色谱分析法的重要部分,它所涉及的内容应包括两方面:一是检测器的正确选择和使用,二是其他有关条件的优化。一个好的气相色谱检测器,应该是这两方面均处于最佳状态。 br/ & nbsp & nbsp & nbsp & nbsp 建立气相色谱检测方法首先要针对不同样品和分析目的,正确选用不同的检测器,并使检测器的灵敏度、选择性、线性及线性范围和稳定性等性能得到充分的发挥,即处于最佳状态。 br/ 通常用单一检测器直接检测,必要时可衍生化后再检测,或用多检测器组合检测。检测器正确选用和性能达到最佳,不仅得到的定性和定量信息准确、可靠,而且还可简化整个分析方法。反之,不仅得不到有关信息,浪费了时间和精力,而且可能损坏检测器。 br/ & nbsp & nbsp & nbsp & nbsp 一个良好的检测方法除考虑检测器本身性能外,还应该检测到的色谱峰或信号不失真、不变形。因此,要求柱后至检测器峰不变宽、不吸附,以色谱峰宽度保持柱分离状态进入检测器为佳。还要求检测器产生的信号在放大或变换的过程中,或信号传输至记录器、数据处理系统过程中,或在数据处理过程中不失真。另外,为了充分发挥某些检测器的优异性能,还要求正确掌握某些化合物的衍生化方法等等。 /p p style=" line-height: 1.5em " br/ /p p br/ /p
  • 色谱图里的秘密:PFPD检测器硫物质分析
    脉冲式火焰光度检测器PFPD5383硫物质分析——杰出的选择性和灵敏度PFPD对于硫物质具有线性的、等摩尔响应,能够选择性地测定从极低的ppb到ppm级的各个独立硫物质的浓度以及各个独立的硫物质峰加和的总硫浓度。单独一台检测器就能够同时得到硫物质和烃类物质的色谱图,这一独特的功能使其远优于其它的硫物质检测技术。PFPD操作原理氢气和空气的混合燃烧气被引入并且从下向上充满检测器的内腔体和上盖(1)。燃烧混合气在上盖位置被点燃(2)。点燃的火焰沿着内部的流路传播,同时消耗氢气和空气的混合气(3)。由气相色谱仪的柱子分离出来的物质在石英燃烧管内燃烧并且发射出元素特定波长的光(4)。当火焰到达检测器的底部时熄灭,激发出来的物质持续发射荧光长达25毫秒。激发出来的物质发射出来的光沿着一根光管传播,选择性发射出来的光穿过一个滤光片到达光电倍增管进行检测(5)。整个脉冲的火焰周期以大约每秒钟3至4次的频率重复。相比于其他的检测器,PFPD提高了长期稳定性并且只需要极少的维护,避免了其他检测器由于烟尘的沉积干扰了硫发射信号的传播。检测和定量气体中的硫污染物对于工业过程的正常运转以及控制产品品质都是格外重要的。GPC-PFPD已经被证明是实现硫物质分析的高效的手段。&bull 液化石油气(LPG)中的硫物质&bull 乙烯和丙烯原料中的羰基硫&bull 天然气中的硫物质&bull 饮料级CO2中的不纯物质&bull 半导体和工业气体的纯度&bull 气体产物和混合过程中的质量控制乙烯和丙烯原料丙烯是乙烯蒸汽裂化的副产品。羰基硫(COS)是丙烯原料中最主要污染物,如果不能够有效地去除,将损坏用于聚合物生产和其它过程中的昂贵的催化剂床。右侧的色谱图显示了在丙烯和乙烯装置分离之前以及洗刷掉硫物质之前,原料气中存在的烃类物质和COS。天然气天然气中含有硫化氢或者甲硫醇,也称作“酸”气。天然气中的硫化氢的浓度范围从几乎检测不到到高达0.30%(3,000 ppm)。CO2中的不纯硫物质尽早地检测和控制H2S和COS的含量是控制食品级CO2品质的一个重要考虑因素,因为这些物质的存在,将在碳酸饮料中产生不希望的气味和口感。石化产品中的硫分析PFPD已经被广泛应用在实验室以及过程气相色谱仪器上,用于分析液态石化产品中的各个独立的硫物质以总硫的浓度。汽油柴油气态和液态的石化产品&bull 丙烯中的羰基硫(ASTM D5303)&bull 天然气中的硫物质(ASTM D5504&D6228)超低硫浓度的汽油(ULSG)&bull 超低硫浓度的柴油(ULSD)&bull 苯中的噻吩(ASTM D4735-02&D7011)&bull 石油醚液体中的硫物质(ASTM D5623)喷气机燃油&bull 萘&bull 原油和合成油燃料油&bull 轻循环油(LCO)
  • 液相色谱检测新纪元——新一代电喷雾检测器
    在HPLC和UHPLC中,哪一种检测器效果最好?这个问题很难简单回答,因为没有任何一个检测器能够满足所有的检测需要。UV检测器虽然应用最为广泛,但无紫外吸收的化合物无法检测,其它的所谓通用检测器的实际性能也往往达不到多种应用综合后的复杂要求,从而导致检测空白。这就是检测器的局限性。 现在,由ESA采用最新突破性技术研制的电喷雾检测器(CAD)可谓是最佳的解决方案。CAD基于独特的创新检测原理,其问世使得目前需要在不同检测器(如示差折光(RI)、低波长紫外(UV)、蒸发光散射(ELSD)等)上完成的分析任务只需在一台通用型检测器上即可完成,大大提高了分析效率。 目前,CAD检测技术凭借比其它技术更高的灵敏度,更宽的动态监测范围以及更一致的检测结果,已被制药企业广泛接受,它的主要优势如下: ● 灵敏度高 ● 重复性好 ● 信号响应一致 ● 动态监测范围宽 ● 应用范围广 ● 操作直观简单 应用领域广 Corona电喷雾检测技术是UV和质谱检测器的强有力补充,可实际应用于任何非挥发或半挥发性化合物,包括: ● 药物化合物 ● 药物支架分子 ● 碳水化合物 ● 脂类 ● 类固醇 ● 多肽 ● 蛋白质 ● 聚合物 对任何一个检测器来说,被分析物能在很宽的范围内准确测定非常重要,但几乎每种检测器都有它的侧重,这可能会导致同一种分析物在不同的检测器上响应不一样,或流动相的改变对不同的检测器有不一样的影响。 Corona Ultra检测结果与分析物颗粒有关,信号电流与样品中分析物的质量成正比,因此无论何种化合物,只要进样质量相同响应都基本一致,所以Corona Ultra检测器能检测所有非挥发物,包括不含发色团的物质,不论被测物分子结构如何。 工作原理: 步骤一:Corona Ultra检测器将分析物转化成溶质颗粒。颗粒的大小随着被分析物的含量而增加。 步骤二:溶质颗粒与带正电荷的氮气颗粒相撞,电荷随之转移到颗粒上 – 溶质颗粒越大,带电越多。 步骤三:溶质颗粒把它们的电荷转移给收集器,通过高灵敏度的静电检测计测出溶质颗粒的带电量,由此产生的信号电流与溶质的含量成正比。 几款通用型检测器的性能对比 Corona Ultra & ELSD检测器的优势 非线性响应 Corona Ultra和ELSD在全量程范围内都是非线性响应,但Ultra的重现性更好且在小浓度范围内响应基本呈线性。 响应因子 进样量相同的一组难挥发化合物,Corona Ultra的响应值更为接近。 灵敏度与检出限 与ELSD相比,Corona Ultra的灵敏度更高、检出限更低,且检测与化学结构无关,相同进样质量的响应值相似,且全面兼容快速液相,是一款真正意义上的通用型检测器。 常用指标比较 梯度下重现性依然出众—反梯度方法 反梯度即在色谱柱后进入检测器前加入另一与分析溶剂时时组成相同但比例相反的溶剂,使进入检测器的溶剂浓度保持不变,从而使检测条件更加稳定,提高检测效果。 梯度试验中,有机溶剂在洗脱液中的比例不断变化,使得整个洗脱液的挥发性、粘度等一系列性质也不断变化,导致在形成气溶胶过程中的挥发程度不同,从而影响Corona Ultra 检测的结果,导致其与真实值有一定偏差。而反梯度在色谱柱后加入另一反比例的有机溶剂,使得进入Corona Ultra的洗脱液有机组成始终不变,因此保证了检测的真实、准确。 Corona Ultra 应用实例 Corona Ultra检测混合物中的降解产物 检测条件不同(如加热时间长短)可能导致被测物降解,而通过Corona Ultra可以准确分辨样品是否有降解,降解程度多少。另外,此功能也可用于检测许多代谢产物,并可根据已知化合物响应值对未知物进行半定量。 Corona Ultra同时检测阴阳离子 同一样品中的阴阳离子可以同时检测,大大提高了检测效率。 Corona Ultra检测牛奶中三聚氰胺 三聚氰胺可用多种方法测定,但Corona Ultra可快速定性,且前处理简单,方法稳定、可靠,值得推广。 Corona Ultra检测脂肪酸 脂肪酸一般很难用HPLC方法测定,而气相方法又因其高温下不稳定而需要先甲酯化,通过Corona Ultra检测不但简单方便,检测结果同样令人满意。 关于ESA—戴安旗下子公司 有着超过40年的历史,ESA为发展生命科学分析检测做出了大量贡献—已经和很多美国以及国外的合作伙伴的一起研制出了用于分析和诊断的设备。ESA有着全方位的服务,通过了ISO的认证并且在FDA注册了仪器的使用许可,拥有配套的试剂和可以立即投入使用的检测系统。2009年9月16号戴安正式收购ESA,秉承戴安公司技术领先、服务客户的理念,我们会一如既往的为您提供最先进的仪器和最优质的服务,无论是何种级别的需求,您都可以通过我们得到支持—包括从帮助您选择最佳的解决方案,到安装、培训和售后服务等一系列环节。 戴安中国有限公司市场部

色谱浓度型检测器相关的方案

色谱浓度型检测器相关的资料

色谱浓度型检测器相关的论坛

  • 质量型检测器和浓度型检测器的区别

    大家知道什么时候选择用峰高定量,什么时候用峰面积定量吗?还有,有朋友问影响峰高和峰面积的因素。那么首先必须要了解的一个概念就是浓度型检测器和质量型检测器的区别。浓度型检测器浓度型检测器(concentration detector)在一定浓度范围(线性范围)内,响应值R(检测信号)大小与流动相中被测组分浓度成正比(R∝C)。浓度型检测器当进样量一定时,瞬间响应值(峰高)与流动相流速无关,而积分响应值(峰面积)与流动相流速成反比,峰面积与流动相流速的乘积为一常数。绝大部分检测器都是浓度型检测器,如:热导池检测器(TCD)、电子捕获检测器(ECD)、液相色谱法中的紫外-可见光检测器(UVD)、电导检测器与荧光检测器也是浓度型检测器。凡非破坏性检测器均为浓度型检测器。质量型检测器质量型检测器(mass detector)在一定浓度范围(线性范围)内,响应值R(检测信号)大小与单位时间内通过检测器的溶质的量(被测溶质质量流速)成正比,即响应值R与单位时间内进入检测器中的某组分质量成正比R∝dm/dt;。质量型检测器其峰高响应值与流动相流速成正比,而积分响应值(峰面积)与流速无关。这类检测器较少,常见的有氢火焰离子化检测器(FID)、火焰光度检测器(FPD)、氮磷检测器(NPD)、质量选择检测器(MSD)等。浓度型检测器其响应值与载气流速的关系:峰面积随流速增加而减小,峰高基本不变。当组分的量一定时、改变载气流速时,只改变组分通过检测器的速度,即半峰宽,其浓度不变。因此,一般采用峰高来定量。当检测器的响应值取决于单位时间内进入检测器的组分的量时,为质量型检测器,一般破坏性的检测器,如FID,MSD,NPD等均为质量型检测器。其响应值与载气流速的关系是:峰高随流速的增加而增大,而峰面积基本不变.改变载气流速时,只改变单位时间内进入检测器的组分量,但组分总量未变。因此,一般采用峰面积来定量。所以,大家明白了吧,对于浓度型检测器和质量型检测器峰高和峰面积的影响因素是不同的。当然对于定量来讲,在条件一定的情况下,也是都可以用另一种定量方式的。对于峰高和峰面积的影响因素,这是其中之一。不同检测器都有其具体的影响因素。但是流速的影响大家一定要分开,其对于浓度和质量型检测器的区别。(来源:实验之家)

  • 你真的了解质量型和浓度型检测器吗?

    先看教科书的讲述:[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]和液相常见的检测器可分为两大类:即浓度型和质量型检测器。热导检测器(TCD)、电子捕获检测器(ECD)、液相色谱法中的紫外-可见光检测器(UVD)、电导检测器与荧光检测器为浓度型检测器。凡非破坏性检测器均为浓度型检测器。[color=#333333]浓度型检测器当进样量一定时,瞬间响应值(峰高)与流动相流速无关,而积分响应值(峰面积)与流动相流速成反比,峰面积与流动相流速的乘积为一常数。[/color]而质量型检测器其峰高响应值与流动相流速成正比,而积分响应值(峰面积)与流速无关。这类检测器较少,常见的有氢火焰离子化检测器(FID)、火焰光度检测器(FPD)、氮磷检测器(NPD)、质量选择检测器(MSD)等。1. 如何理解? 浓度型和质量型检测器是分析化学中重要的分类,最早概念来至于(Halász, 1964)的Anal.Chem.文章,本意是浓度流速敏感型检测器和质量流速敏感型检测器(Concentration and Mass Flow Rate Sensitive Detectors),定义如下:检测器中待测物浓度 c=V1/(V1+V2)质量型检测器 S=kV1 式(1)浓度型检测器 S=KV1/(V1+V2) 式(2)其中:S 为响应值;V1为待测物流速,单位为mol/s;V2为载气流速,单位为mol/s;K 为比例因子/常数原来质量型检测器是质量流速敏感性检测器。如果定格时间,质量型检测器当时存在于检测器中待测物质量(绝对量),而浓度型检测器就是当时存在于检测器中待测物质浓度(质量浓度)。当S对时间积分后就变成峰面积A,[img=,62,22]http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif[/img] 质量型检测器 A=km 式(3) 浓度型检测器 A=km/(V1+V2) 式(4)(近似,恒定(V1+V2))因此质量检测器的峰面积就是所有进入检测器的质量,式(3),因此与载气流速无关。而浓度型检测器的峰面积就与流速有关,式(4)误解主要来至于定义的理解上,这个二分类本来建立在质量流速上,而现有文献省略了定义的本身,造成理解困难。2. 实际意义和应用。2.1 如果标准和标准和样品在同样的条件下进行,这两个分类对于定量都没有影响,此时V2恒定。2.2 只有在不同的操作条件下(特别是载气流速变化时)想比较不同检测器灵敏度;或不同操作条件下定量时有重要意义,这也是引入这两个概念的初衷。2.3 为降低浓度检测器的流速影响,仪器厂家在浓度型检测器中还加入尾吹技术以降低载气流速对定量的影响: 浓度型检测器 S=KV1/(V1+V2+V3) 其中V3为尾吹流量,此时V3Vi+V2,这样就降低了程序升温中流速影响([url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的仪器上的流速基本是按柱子尺寸,压力和温度算出来的),此时面积只与V3有关。所以当你使用ECD检测器必须打开尾吹,提高重现性。Refence:Halász, I. (1964). Concentration and Mass Flow Rate Sensitive Detectors inGas Chromatography. [i]Analytical Chemistry[/i], [i]36[/i](8), 1428-1430.https://doi.org/10.1021/ac60214a009

色谱浓度型检测器相关的耗材

  • 原创型SimulScan双级检测器
    原创型SimulScan双级检测器原创型双级检测器是EL A NSimulScan?系统的一个必不可少的组成部分。这种电子倍增器可同时测定高浓度和低浓度分析物。这可大幅度减少珍贵或数量有限的样品的用量,不必进行耗时的样品稀释并使您能快速鉴定未知样品。订货信息:所适用的ICP-MS型号部件编号2005年4月之前生产的ELAN 9000/6x00/DRC*N8125001
  • 附件包:离子色谱电流检测器 6.5000.200
    附件包:IC Amperometric Detector(离子色谱电流检测器)订货号: 6.5000.200可选的 IC Amperometric Detector(离子色谱电流检测器)配件,用于测定导电性小的溶液。
  • 离子色谱电流检测器 2.850.9110
    IC Amperometric Detector(离子色谱电流检测器)订货号: 2.850.9110用于智能型离子色谱仪器的紧凑智能型电流检测器。多种可选的不同测量模式:DC、PAD、flexIPAD 和 CV,以及卓越的信号/干扰比例关系和极快进入测量准备就绪状态,这一切确保测量的高度精确性。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制