紫外飞秒激光放大器

仪器信息网紫外飞秒激光放大器专题为您提供2024年最新紫外飞秒激光放大器价格报价、厂家品牌的相关信息, 包括紫外飞秒激光放大器参数、型号等,不管是国产,还是进口品牌的紫外飞秒激光放大器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合紫外飞秒激光放大器相关的耗材配件、试剂标物,还有紫外飞秒激光放大器相关的最新资讯、资料,以及紫外飞秒激光放大器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

紫外飞秒激光放大器相关的厂商

  • 华日激光坚持以市场需求引领新产品的研发,为客户提供纳秒、皮秒、飞秒等多种脉冲宽度,红外、绿光、紫外、深紫外等多种波长的激光器产品,所有产品均具备自主产权,同时产品通过欧盟CE质量安全认证,完全满足严苛条件下的工业加工要求,是超精细加工领域的理想光源。同时通过与全球高端激光设备制造商在电子电路、硬脆材料、半导体、新能源、生命科学等领域开展紧密合作,为用户提供全面的激光技术解决方案。
    留言咨询
  • 以色列Ofil紫外成像仪是光学和数字紫外线检测和成像技术的世JIE领XIAN制造商。成立于1993年,总部在以色利。Ofil紫外成像仪开发和销售创新解决方案,这些解决方案正在全球范围内用于监测电气装置和环境危害。我们的数字检测系统对于电气故障的诊断、预防和预测是不可或缺的。我们的紫外线偏振系统有助于绘制海上溢油扩散图并控制其清洁效果。Ofil紫外成像仪利用其紫外线光学专有技术,不断开发紫外线增强成像解决方案,以应对全球电网不断变化的需求。多年来,Ofil以其创新、高质量和快速响应的方法赢得了全球的认可。DayCor?系列产品提供以下解决方案:电力设施的维修操作电动列车的预测性维修操作以色列Ofil紫外成像仪介绍石油化工电网部件制造商高压实验室和研究所用于国土安全的紫外线信号检测环境组织的漏油监测
    留言咨询
  • 广州神科光电有限公司广州神科光电科技有限公司主要从事国内外各知名品牌激光、光电子、光纤、光学仪器和光纤通讯等高校/研究所以及企业所需产品的设计、引进、咨询和经销。我们以品种齐全,交货快捷,价格合理,服务周到,逐渐得到广大科研用户的认可和支持。经过数年的勤奋拼搏,目前已经成为中国最大的光电子产品供应商之一。公司自主研发产品:分布式光纤温度感温器——被大量的应用到智能建筑的防火监控;未来数字家电产品的相关温度/湿度/压力等的传感;消防/隧道/大坝/科研/石油勘探等各个行业领域 锁相放大器——微弱信号检测,在科研和工业领域有大量应用 公司主营产品:各种超快光纤激光器(如大功率光纤激光器、纳秒/皮秒/飞秒光纤激光器,窄线宽光纤激光器等)半导体激光器(连续/脉冲激光器)光纤放大器(EDFA)特种光纤(掺铒光纤,非线性光纤,保偏光纤,聚酰亚胺涂层光纤等)光无源器件(光纤合束器MFPC,光纤耦合器,波分复用器WDM,隔离器,法拉第镜,环形器,谐振腔等)光测量产品(光纤识别仪,可视故障仪,TIA光电转换器,光时域发射仪OTDR,光学斩波器,光纤激光转计,模拟数字光纤链接机,光谱仪等)光纤传感器(Snkoo分布式光纤感温系统)光纤通信器件(数字可调/手动可调衰减器,录波器,偏正控制器,光纤延迟线,保偏耦合器,偏振旋转片,光纤光电探测器,偏振合束器/分束器。其他光电应用解决方案与产品DTS 分布式光纤感温系统/FBG 光纤光栅温度/FBG 光纤光栅应变系统光学精密位移台/光学机械附件/光学实验仪器/光纤调节架等应用光学/近代物理光学等实验室课程解决方案OTDR 光纤测量系统/锁相放大器系统实验室用各种SOI 硅/Si/Ge/GaAs/GaSb/蓝宝石/InAs 片激光防护镜,各种光学用滤光片如需深入了解可联系:13760786617 联系人:罗先生 QQ:1284920222公司网页:www.snkoo.com
    留言咨询

紫外飞秒激光放大器相关的仪器

  • 卓立汉光的ZL-OPA系列参量放大器,基于稳定的光学设计和机械设计,能够灵活实现可调谐的飞秒激光脉冲输出,波长范围可覆盖紫外(短至200nm)到中红外(长至10μm)。ZL-OPA系列产品兼容市面上标准的光纤或者固体Yb超快激光器,泵浦能量接受范围为10μJ至2mJ,脉冲宽度接受范围在35fs至1.5ps之间。除此之外,我们可以根据用户的特定需求,提供全方位个性化的定制方案。ZL-OPA系列掺镱类激光泵浦参量放大器技术参数 参数ZL-OPA-HPZL-OPA-HE调谐范围630-1030nm(信号)1030-2500nm(闲频)650-900nm(信号)1200-2600nm(闲频)泵浦脉冲能量> 200uJ@100kHz> 200uJ@100kHz输出脉冲宽度500fs100fs长期功率稳定性1% @750nm over 8h1% @750nm over 8h峰值输出能量15 µ J@ 750nm10 µ J@ 750nm偏振线偏振线偏振可拓展波长325-515nm 紫外波段515-650nm 绿光波段325-450nm 紫外波段600-650nm 绿光波段
    留言咨询
  • 深紫外飞秒激光器概述以可调谐的锁模钛宝石激光器作为基频光源,经过多级倍频/和频来产生192-200nm波段的深紫外超短脉冲激光(图1)。 图1. 192-200 nm超短脉冲激光产生方案示意图 基于基频光源的不同选择,激光波长还可以实现大范围的调谐,最大范围可覆盖192-300 nm波段,且连续可调。另外还可输出覆盖二次谐波(375-500 nm)、三次谐波((230-300 nm)波段的可见、紫外超短脉冲激光。另外,基频光源也可选择1 μm波段(1064 nm、1030 nm)锁模激光器,可获得四次谐波(~260 nm)和五次谐波(~210 nm)的紫外激光。 图2. 激光器实物图(192-300 nm连续调谐,尺寸1300*600*200mm3,不含基频源) 技术特点: 覆盖深紫外、紫外、可见光的大范围波长调谐 电动控制波长调谐 高指向稳定性 图形化人机交互界面 波长可扩展深紫外飞秒激光器应用领域: 超快光谱探测 高精密激光加工 荧光寿命探测 非线性光学2. 基频光源技术参数典型的基频光源可选择Coherent公司CHAMELEON 系列钛宝石激光器或Spectra-Physics公司的Maitai HP系列激光器。主要技术指标如下: 技术指标典型参数波长 780 nm或波长可调谐 根据需求固定激光波长,或可调波长脉冲宽度100 fs、50 fs重复频率 80 MHz光束质量M21.3功率 ~2.5W@780 nm 取决于最终需求的深紫外激光功率,2.5W基频光对应于约4mW的195nm激光功率 3. 输出技术指标(1)195 nm激光输出功率约4 mW(基频功率2.5W@780nm).(2)195 nm激光输出功率约0.5 mW(基频功率1.4W@780nm) 技术指标典型参数波长195nm或波长可调谐192-300nm根据需求固定激光波长,或可调波长脉冲宽度~500fs@266nm基频光脉冲宽度100fs时测试结果重复频率80MHz功率~4mW@195nm典型调谐功率见下图((基于MaitaiHP基频源测试)图3.各波段激光输出功率:(a)二次谐波;(b)直接四次谐波;(c)三次谐波;(d)四次谐波(和频)。
    留言咨询
  • 紫外(UV)飞秒激光放大器,型号: TwinAmp TwinAmp 是一款特别设计的具有双放电腔的准分子激光放大器。采用这种系统架构可以实现非常高的整体增益。不仅如此,这种结构光路中还能再两个放大模块之间安装空间滤波器和脉冲压缩器。于是在输出端可以获得脉宽更短,信噪比更高的激光脉冲。这种型号特别适合需要极高聚焦强度的应用场合。表 : 技术指标 波长248 nm单脉冲能量40 mJ (for 50 μJ seed pulse energy @ 248 nm)抖动± 2 ns (relative to trigger pulse)光斑尺寸36 x 36 mm2 光束质量1.5 x diffraction limited (for M2 = 1 at the input)脉冲宽度250 fs (for 180 fs seed pulse)ASE 本底 1010 in the far field系统光路原理图: 紫外(UV)飞秒激光放大器,型号:TwinAmp
    留言咨询

紫外飞秒激光放大器相关的资讯

  • 中国第一世界最亮 大连极紫外自由电子激光光源出光
    大连光源   1月15日,由中科院大连化学物理研究所和上海应用物理研究所联合研制的极紫外自由电子激光装置——大连光源,在经过3个多月的调试后,这个总长100米的大装置发出了世界上最强的极紫外自由电子激光脉冲,单个皮秒激光脉冲产生140万亿个光子,成为世界上最亮且波长完全可调的极紫外自由电子激光光源。  中科院副院长王恩哥评价称:“大连光源是中科院乃至我国的又一项具有极高显示度的重大科技成果。装置中90%的仪器设备均由我国自主研发,标志着我国在这一领域占据了世界领先地位,为我国未来发展更新一代的高重复频率极紫外自由电子激光打下了坚实的基础。”  给分子“拍个电影”  自由电子激光是国际上最先进的新一代先进光源,也是当今世界先进国家竞相发展的重要方向,在科学研究、先进技术、国防科技发展中有着重要的应用前景。先进自由电子激光的发展在前沿科学研究中发挥着越来越重要的作用,特别是近十年来,自由电子激光技术的发展和突破为探索未知物质世界、发现新科学规律、实现技术变革提供了前所未有的研究工具。  “自由电子激光能够给分子‘拍电影’,比如记录化学键断裂的动态过程,具有非常诱人的应用前景。”中科院上海应物所所长赵振堂说。  而要拍好这部“电影”,离不开神奇的极紫外光。  当波长短到100纳米附近时,一个光子所具备的能量就足以电离一个原子或分子而又不会把分子打碎,这个波段的光称为极紫外光。  “在科学实验中,需要探测的原子或分子数量可能非常少,存在时间也非常短,普通的极紫外光源无法满足这个需求,必须要有高亮度的极紫外光源,即极紫外激光。”中科院大连化物所分子反应动力学国家重点实验室研究员戴东旭解释称,“极紫外激光只能在‘特殊物质’中产生,这个‘特殊物质’就是脱离原子核而单独存在的自由状态的电子。”  但是,一台运行在极紫外波段的自由电子激光设备在世界上尚属空白。  这让科学家感到,中国的机会来了。  中国第一 世界最亮  在国家自然科学基金委国家重大仪器专项资助下,由大连化物所和上海应物所联合研制的大连光源项目于2012年初正式启动,2014年10月正式在大连长兴岛开工建设,并于2016年9月底安装完成,首次出光。  至此,大连光源成为我国第一台大型自由电子激光科学研究用户装置,是当今世界上唯一运行在极紫外波段的自由电子激光装置,也是世界上最亮的极紫外光源。  光源的每一个激光脉冲可产生超过100万亿个光子,波长可在极紫外区域完全连续可调,具有完全的相干性 该激光可以工作在飞秒或皮秒脉冲模式,可以用自放大自发辐射或高增益谐波放大模式运行。在这样的极紫外光照射下的区域内,几乎所有的原子和分子都“无处遁形”。  “大连光源属于第四代光源,在化学、能源、物理、生物、环境等重要研究领域有着广泛的应用,我国率先建成这一先进光源,对推动我国乃至世界在这些领域的研究发展有着极其重要的意义。”中科院院士、中科院大连化物所副所长杨学明说,“大连光源的成功研制也为我国未来发展X波段的自由电子激光打下了坚实基础。”  例如,举国关注的雾霾问题,就可以利用大连光源来研究。大气中的化学物质与水分子作用后,形成分子团簇,这些团簇在生长过程中吸附大气中各种污染分子,生长为较大的气溶胶颗粒,并逐渐成长为雾霾。利用大连光源极紫外软电离技术,就可以研究雾霾的生长过程,从根本上理解雾霾形成的机理,为大气污染防治提供科学依据。  在王恩哥看来,在当今世界,大科学工程对于科技发展起着越来越重要的推动作用。大连光源的建成出光,成为我国大科学工程的又一成功范例,将大大促进我国在能源、化学、物理、生物、材料、大气雾霾、光刻等多个重要领域研究水平的提升,为我国科技事业注入新的活力。  一次握手 造就典范  大连光源正式开工建设以来,在两年的时间里完成了基建工程以及主体光源装置的研制,并且在很短的时间内调试成功产生了世界上单脉冲最亮的极紫外激光,创造了我国同类大型科学装置建设的新记录。  这一项目也开创了我国科学研究专家与大科学装置研制专家成功合作的先例,对于未来加快推动大科学装置在科学研究中的应用具有重要的现实意义。  以科学目标为驱动,让大连光源成为我国大科学装置研制的典范。赵振堂告诉《中国科学报》记者,我国早期的大科学装置,往往都是先建好装置,再去找用户,看看哪些科学家能用。“但是大连光源把这个过程反了过来,是科学家先对科研有了需求,再找到工程团队来合作。这要求我们在建装置之前就充分调研,开工之前就要掌握装置的科学目标是什么。”  大连化物所的长处是科学研究,而上海应物所团队在大科学装置建设方面积累了20年的经验,两个团队为了相同的梦想走到了长兴岛,合作顺利得出人意料。  “合作、协同是中科院的优良传统。”赵振堂认为,“现在看来,打破研究所之间藩篱,整合各所力量,集各家之长来建大科学装置,是投入产出比最小、效率最高的一种方式。”  接下来,大连化物所以及上海应物所的项目专家将进一步把大连光源建设成为高水平的实验研究用户装置,为我国乃至世界提供一个独特的科学研究装置。
  • 国仪量子 |“去伪存真”,锁相放大器在量子精密测量系统中的应用
    随着科技的进步,人们想要了解的现象越来越精细、想测量的信号也越来越微弱。而微弱信号常淹没在各种噪声中,锁相放大器可以将微弱信号从噪声中提取出来并对其进行准确测量。锁相放大器在光学、材料科学、量子技术、扫描探针显微镜和传感器等领域的研究中发挥着重要作用。国仪量子,赞1锁相放大器在精密磁测量中的应用在精密磁测量领域,特别是低频磁场测量领域,系综氮-空位(NV)色心磁测量方法发展迅速。其中连续波测磁系统是对NV色心施加连续的微波和激光进行自旋操控,从而实现高精度磁测量的实验系统。其基于NV色心基态的零场分裂和磁共振现象,当没有外磁场时,NV色心的ODMR谱如图所示,对NV色心打入共振频率的微波,其荧光强度最小。当存在外磁场时,外磁场会影响NV色心的塞曼劈裂的能级差,从而产生偏共振现象,使得荧光强度发生变化。我们将微波频率定于NV色心连续波谱的斜率最大处,则当外磁场发生变化,其荧光强度的变化最明显,从而提高测量的灵敏度。NV色心的ODMR谱为了提高测量信号的信噪比,通常采用锁相放大的方法,将微波信号进行频率调制,从而避开电测量系统的1/f噪声,实现更高的测量精度。其系统如下图所示,锁相放大器的参考输出信号和微波源进行频率调制后,通过辐射结构将微波电信号转化成磁场信号,作用于NV色心,然后将NV色心发射的荧光信号进行光电转换后用锁相放大器的电压输入通道进行采集,通过解调后即可得到系综NV色心样品的周围环境的磁场信号大小。参考文献:基于金刚石氮-空位色心系综的磁测量方法研究 -- 谢一进锁相放大器在磁成像——扫描NV探针显微镜中的应用扫描NV探针显微镜是利用金刚石NV色心作为磁传感器的扫描探针显微镜,其将光探测磁共振ODMR和AFM进行了巧妙结合,通过对钻石中NV色心发光缺陷的自旋进行量子操控与读出,来实现磁学性质的定量无损成像,具有纳米级的高空间分辨率和单自旋的超高探测灵敏度。国仪量子推出的量子钻石原子力显微镜其系统结构如下图所示,包括了NV色心成像系统和AFM控制系统。AFM控制系统负责将金刚石NV色心在待测样品上进行平面二维扫描,而NV色心对扫描区域的微弱磁信号进行高分辨率的探测,从而最终形成高分辨率的磁成像。在AFM的扫描过程中,金刚石与样品的距离是通过锁相放大器来进行控制的。金刚石NV色心固定在石英音叉上,形成探针。石英音叉有固定的振动频率,当探针在样品表面移动时,随着样品与探针的距离变化,石英音叉的共振幅度会发生变化。我们使用锁相放大器对音叉的振动信号进行采集和解调后,通过锁相放大器内部的PID反馈控制就可以实现样品位移台垂直方向(Z方向)的动态调节,从而使样品到NV色心探针的距离保持相同。锁相放大器主要用于AFM的控制系统中国仪量子数字锁相放大器LIA001MLIA001M锁相放大器是一款高性能、多功能的数字锁相放大器,基于先进硬件和数字信号处理技术设计,配合丰富的模拟输入输出接口,集可视化锁相放大器、虚拟示波器、参数扫描仪、信号发生器、PID控制器等多种功能于一体,有效的简化科研工作流程和设备依赖,提高科研效率和质量。数字锁相放大器LIA001M
  • 科学家试制新型“激声”放大器
    据美国物理学家组织网9月8日(北京时间)报道,在今年庆贺激光诞生50周年之际,科学家正在研究一种新型的相干声束放大器,其利用的是声而不是光。科学家最近对此进行了演示,在一种超冷原子气体中,声子也能在同一方向共同激发,就和光子受激发射相似,因此这种装置也被称为“激声器”。   声子激发理论是2009年由马克斯普朗克研究院和加州理工学院的一个科研小组首次提出的,目前尚处于较新的研究领域。其理论认为,声子是振动能量的最小独立单位,也能像光子那样,通过激发产生高度相干的声波束,尤其是高频超声波。他们首次描述了一个镁离子在电磁势阱中被冷冻到大约1/1000开氏温度,能生成单个离子的受激声子。但是单个声子的受激放大和一个光子还有区别,声子频率由单原子振动的频率所决定而不是和集体振动相一致。   在新研究中,葡萄牙里斯本高等技术学院的J.T.曼登卡与合作团队把单离子声子激发的概念,扩展到一个大的原子整体。为了做到这一点,他们演示了超冷原子气体整合声子激发。与单离子的情况相比,这里的声子频率由气态原子的内部振动所决定,和光子的频率是由光腔内部的振动所决定一样。   无论相干电磁波,还是相干声波,最大的困难来自选择系统、频率范围等方面。曼登卡说,该研究中的困难是要模仿光波受激放大发射的机制,但产生的是声子,而不是光子。即通过精确控制超冷原子系统,使其能完全按照激光发射的机制来发射相干声子。   新方法将气体限定在磁光陷阱中,通过3个物理过程产生激态声子。首先,一束红失谐激光将原子气体冷却到超冷温度 然后用一束蓝失谐光振动超冷原体气体,生成一束不可见光,最后使原子形成声子相干发射,此后衰变到低能级状态。研究人员指出,最后形成的声波能以机械或电磁的方式与外部世界连接,系统只是提供一种相干发射源。   关于给声子激发命名,科学家先是沿袭“镭射(laser)”之名使用了“声射(saser)”,即声音受激放大发射。但曼登卡认为使用“激声(phaser)”更准确,它强调了声子的量子特性而不是声音,也暗示了其发射过程类似于光子受激发射。   高相干超声波束的一个可能用途是,在X光断层摄影术方面,能极大地提高图像的解析度。曼登卡说:“激光刚开发出来时,仅被当做一种不能解决任何问题的发明。所以,对于激声,我们现在担心的只是基础科学方面的问题,而不是应用问题。”

紫外飞秒激光放大器相关的方案

紫外飞秒激光放大器相关的资料

紫外飞秒激光放大器相关的论坛

  • 【转帖】分布式拉曼光纤放大器的应用

    【转帖】分布式拉曼光纤放大器的应用

    摘要 随着社会的发展,人们对信息的依赖越来越严重,信息传输的需求急剧膨胀,大幅度提升现有光纤系统的容量,增加无电再生中继的简单传输距离,已经成为光纤通信领域的热点。在这种背景下,拉曼放大器由于其固有的低噪声和几乎无限的带宽特性而得到广泛关注摘要 随着社会的发展,人们对信息的依赖越来越严重,信息传输的需求急剧膨胀,大幅度提升现有光纤系统的容量,增加无电再生中继的简单传输距离,已经成为光纤通信领域的热点。在这种背景下,拉曼放大器由于其固有的低噪声和几乎无限的带宽特性而得到广泛关注。本文介绍了拉曼光纤放大器的基本概念,重点分析了拉曼光纤放大器的应用前景和存在的问题。1 拉曼放大器介绍1.1 拉曼放大当一定强度的光入射到光纤中时会引起光纤材料的分子振动,进而调制入射光强,产生间隔恰好为分子振动频率的边带。低频边带称斯托克斯线,高频边带称反斯托克斯线,前者强度较高。这样,当两个恰好频率间隔为斯托克斯频率的光波同时入射到光纤时,低频波将获得光增益,高频波将衰减,其能量转移到低频段上,这就是受激拉曼散射(SRS)。光纤拉曼放大器是SRS的一个重要应用。由于石英光纤具有很宽的SRS增益谱,且在13THz附近有一个较宽的主峰。如果一个弱信号和一个强的泵浦波在光纤中同时传输,并且它们的频率之差处在光纤的拉曼增益谱(见图1)范围内,则弱信号光即可得到放大,这种基于SRS机制的光放大器称为光纤拉曼放大器。http://ng1.17img.cn/bbsfiles/images/2011/01/201101181034_274815_1759541_3.gif1.2 拉曼放大器的类型(1)集总式拉曼放大器,即放大过程发生在含有掺铒光纤的封闭模块中。主要作为高增益、高功率放大,可放大EDFA所无法放大的波段(图2中的绿色曲线)。http://ng1.17img.cn/bbsfiles/images/2011/01/201101181034_274817_1759541_3.jpg(2)分步式拉曼放大器。拉曼泵浦位于每级跨距的末端,泵浦方向与信号的传输方向相反(图2中的蓝色曲线)。采用分布式拉曼光纤放大辅助传输可大大降低信号的入射功率,同时保持适当的光信号信噪比(OSNR)。这种分布式拉曼放大技术由于系统传输容量提升的需要而得到快速发展。1.3 拉曼放大(DRA)增益谱的调整拉曼增益谱的形状依赖于泵浦波长,最大增益波长比泵浦波长高100nm左右。这种特性使得在具有可用泵浦波长的条件下,放大任何波长区间的光信号成为可能。通过使用不同的泵浦波长组合可以在一个很宽的波长区间获得平坦的增益谱型(见图3)。http://ng1.17img.cn/bbsfiles/images/2011/01/201101181035_274818_1759541_3.jpg1.4 拉曼泵浦模块图4中的绿色框图部分是一个为后向泵浦配置应用的拉曼泵浦激光器模块示意图。在这种配置中,DRA一般和系统的EDFA联合使用,用作EDFA的前级放大器(Pre-amplifier)。这就是大家熟知的RAMAN/EDFA混合放大器。http://ng1.17img.cn/bbsfiles/images/2011/01/201101181035_274819_1759541_3.jpg摘要 随着社会的发展,人们对信息的依赖越来越严重,信息传输的需求急剧膨胀,大幅度提升现有光纤系统的容量,增加无电再生中继的简单传输距离,已经成为光纤通信领域的热点。在这种背景下,拉曼放大器由于其固有的低噪声和几乎无限的带宽特性而得到广泛关注。本文介绍了拉曼光纤放大器的基本概念,重点分析了拉曼光纤放大器的应用前景和存在的问题。1 拉曼放大器介绍1.1 拉曼放大当一定强度的光入射到光纤中时会引起光纤材料的分子振动,进而调制入射光强,产生间隔恰好为分子振动频率的边带。低频边带称斯托克斯线,高频边带称反斯托克斯线,前者强度较高。这样,当两个恰好频率间隔为斯托克斯频率的光波同时入射到光纤时,低频波将获得光增益,高频波将衰减,其能量转移到低频段上,这就是受激拉曼散射(SRS)。光纤拉曼放大器是SRS的一个重要应用。由于石英光纤具有很宽的SRS增益谱,且在13THz附近有一个较宽的主峰。如果一个弱信号和一个强的泵浦波在光纤中同时传输,并且它们的频率之差处在光纤的拉曼增益谱(见图1)范围内,则弱信号光即可得到放大,这种基于SRS机制的光放大器称为光纤拉曼放大器。http://www.gtxren.com/uploads/allimg/100722/0042092A8-0.gif图1 光纤中的受激拉曼增益谱1.2 拉曼放大器的类型(1)集总式拉曼放大器,即放大过程发生在含有掺铒光纤的封闭模块中。主要作为高增益、高功率放大,可放大EDFA所无法放大的波段(图2中的绿色曲线)。http://www.gtxren.com/uploads/allimg/100722/0042092b8-1.gif图2 分布式/集总式光放大器的比较(2)分步式拉曼放大器。拉曼泵浦位于每级跨距的末端,泵浦方向与信号的传输方向相反(图2中的蓝色曲线)。采用分布式拉曼光纤放大辅助传输可大大降低信号的入射功率,同时保持适当的光信号信噪比(OSNR)。这种分布式拉曼放大技术由于系统传输容量提升的需要而得到快速发展。1.3 拉曼放大(DRA)增益谱的调整拉曼增益谱的形状依赖于泵浦波长,最大增益波长比泵浦波长高100nm左右。这种特性使得在具有可用泵浦波长的条件下,放大任何波长区间的光信号成为可能。通过使用不同的泵浦波长组合可以在一个很宽的波长区间获得平坦的增益谱型(见图3)。 http://www.gtxren.com/uploads/allimg/100722/0042093501-2.gif图3 使用多泵浦波长获得平坦的宽带增益谱1.4 拉曼泵浦模块图4中的绿色框图部分是一个为后向泵浦配置应用的拉曼泵浦激光器模块示意图。在这种配置中,DRA一般和系统的EDFA联合使用,用作EDFA的前级放大器(Pre-amplifier)。这就是大家熟知的RAMAN/EDFA混合放大器。http://www.gtxren.com/uploads/allimg/100722/00420943T-3.gif图4 简化的后向泵浦的拉曼放大器应用框图图5表示的是采用某个拉曼泵浦模块在G.652光纤中的测试结果,包括增益谱及噪声指数(NF)随泵浦功率变化的情况。从图5中可以看出,在C-BAND范围,增益可以达到14dB以上,增益平坦度可以控制在1dB以内。http://ng1.17img.cn/bbsfiles/images/2011/01/201101181036_274820_1759541_3.jpg2 分布式拉曼放大器(DRA)的应用掺铒光纤放大器是一种成熟、可靠、经济有效的技术,在光网络中的广泛应用已经超过10年。虽然分布式拉曼放大器在很多应用方面可以弥补EDFA的不足,但是也要考虑DRA应用中的各种挑战。(1)激光安全。由于向传输光纤引入了高的泵浦功率,需要关注激光功率安全问题。(2)端面清洁。为了防止光连接器的损伤、烧毁,影响系统性能,端面的清洁非常重要。(3)拉曼增益对传输光纤的特性敏感,例如光纤类型、光纤衰耗系数等。(4)投入成本与运营成本的考虑。因此,在讨论DRA的应用时,应主要考虑体现其重要价值和优越性的应用,而不是使用传统EDFA产品技术也可以满足的应用。广泛地说,DRA的应用可以分为无法在线路中间放大的长距离光纤通信线路的连接和LH,ULH高容量、长距离传输系统中的应用。2.1 单跨段长距离的通信线路对于2个相距遥远的无法在线路中间使用EDFA等中继设备的通信站点而言,选择使用分布式拉曼放大器产品是必须的,如海缆通信链路,偏远无人区站点间的通信链路,不便设立中继站点或中级放大器的通信链路。一般来说,如果光纤线路距离小于160km,在线路两端使用传统的EDFA即可,对于更长距离的线路,需要考虑使用分布式拉曼放大器(DRA)。图6进一步说明了这个问题。从图6可以看出,在不同的拉曼增益下OSNR与链路损耗的关系。假定每个通道的发送光功率为8dBm,前置EDFA的噪声指数为5dB;同时假定系统容量较低,通道数较少,不考虑色散及非线性效应引起的通道

  • 美造出67阿秒迄今最短极紫外激光脉冲

    中国科技网讯 美国中弗罗里达大学(UCF)一个研究小组9月5日(北京时间)表示,他们造出了仅67阿秒(1阿秒=10-18秒)的极紫外激光脉冲,这是迄今为止最短的激光脉冲,之前纪录是80阿秒。该技术有望带来一种新工具,帮助科学家研究亚原子世界和迄今未知的量子力学行为。这一成果也标志着近4年来激光脉冲领域的首个重大突破。研究结果提前发表在《光学通信》网站上。 该成果的非凡意义还在于他们并没有使用特殊设备,如英里级的粒子加速器、体育场那么大的圆形同步加速器。UCF物理系教授常增虎(音译)和光学与光子学院同事们在该校弗罗里达阿秒科技(FAST)实验室,利用迄今最强激光在更小空间进行了高水平的研究。 常增虎的小组发明了一种叫做“双光栅”的技术,能将极紫外线以特殊方式切断,在尽可能最短的光脉冲内凝聚大量能量。除了生成了激光脉冲,他还制造了迄今最快的摄像机对光脉冲进行了检测。 “该研究造出了迄今最短的激光脉冲,为理解亚原子世界打开新的大门,让我们看到电子在原子、分子中的运动,跟踪化学反应过程。”UCF理学院院长、物理学家迈克尔·约翰逊说,“设想一下,现在我们可能看到量子力学过程了,这是令人震撼的。” 量子力学是研究微观物理学,尤其是微观水平的能量和物质。这一技术能帮助科学家理解构成世界的最小物质是怎样运作,还能帮助研究在特殊物理、生理过程中,如数据传输过程、治疗癌症或诊断疾病时递送标靶药物的过程中是如何利用能量的。 2001年时,科学家首次演示了阿秒级脉冲。自那时起,全世界科学家就在致力于制造这种最短脉冲激光,以往纪录是2008年德国马克斯·普朗克研究院创造的80阿秒脉冲。“自50多年前发明激光以来,人们对激光脉冲的要求越来越短。” UCF光学与光子学中心院长巴哈·萨雷说,“最新进展不仅让中弗罗里达大学跻身该领域前沿,也为人们打开了研究超快动态原子现象的新视野。”(记者毛黎 常丽君) 总编辑圈点 研究小尺度世界的运动规律,需要“超小号工具”。要干预和观察那些稍纵即逝的现象,就需要能量集中在极短时间的光脉冲。如果人们制造不出相应的光学机器,就没办法监测单个粒子,只能对粒子运动做出统计学意义上的描述;而在人们脑海中,基本粒子世界也只能是全景图,而不是精细的工笔画。美国研究小组的成果,让科学家向着观察量子尺度的运动又走近了一步。微观世界不为人知的景色,有望在极短激光的照射下现出真相。 《科技日报》(2012-09-06 一版)

  • 锁相放大器测半导体电极光电流到底如何做啊

    文献中很多都是使用恒电位仪,斩光器,锁相放大器,可是锁相放大器是用来测试微弱信号的,它的读数就是光电流值么?谁有详细的资料可以发给我看看么。谢谢,万分感谢阿。或者给个联系方式,指导我一下更好。我的qq581585,email:mtli@mailst.xjtu.edu.cn

紫外飞秒激光放大器相关的耗材

  • Dragon Series超快钛宝石多通激光放大器
    Dragon? Series超快钛宝石多通激光放大器— Ultrafast Ti:sapphire Amplifiers具有可变频率的短脉冲高能量激光放大器冷却方式是它的独特优势可通过计算机调节重复频率:1kHz 到3kHz,平均功率可达 6W5kHz 到 15kHz,平均功率可达4.5W脉宽从22fs到25fs单级脉冲使用简单方便应用范围光谱仪泵浦-探测技术中红外到近紫外材料研究超快成像阿秒脉冲发生器告辞谐波发生器独特优势短脉冲,高能量? 为非线性过程提供更高的峰值功率? 高重复频率缩短数据采集时间泵浦探测光谱? OPA的理想产品? 更高的能量,整齐的短脉冲,使光参量放大器(OPA)更高效技术参数:
  • 飞秒激光微加工平台配件
    工业级飞秒激光微纳加工系统配件专业为工业微加工研究和生产而研发的成熟的技术,可用于飞秒激光打孔,飞秒激光蚀刻,飞秒激光多光子聚合等微纳加工应用。飞秒激光微纳加工系统配件具有非常绝佳的可靠性和超高的加工速度,飞秒激光器由于激光脉冲超短,提供了常见激光无以伦比的激光功率密度,其加工效果远远超过纳秒和皮秒激光。光束所到之处能够瞬间将材料汽化,由于激光脉冲超短,激光能量无法在如此短的时间内扩散到周围材料中,所以对加工区域周围影响微乎其微,是一种冷加工技术,加工效果堪称一流。飞秒激光微纳加工系统配件采用高达10W的Yb:KGW(1030nm)飞秒激光器作为激光光源,重复频率在1--1000KHz范围内可调,结合一流的精密扫描振镜,提供超高的微加工速度。系统配备Arotech公司高分辨率的定位平台,并同步激光光束扫描振镜和脉冲选择器, 在空间,时间和能量上提供全方位高精度控制。从而提供超高难度的加工能力,并达到亚微米精度的分辨率和重复性。配备机械视图系统,使用高分辨率的相机监控加工过程。飞秒激光微纳加工系统配件使用了贴别为微加工而设计的飞秒激光器,它比市场上出售的商业飞秒激光器具有更多优势,具有更高的稳定性和可靠性,达到工业使用的标准,飞秒激光放大器具有更短的脉冲(振动器80fs, 放大器280fs),飞秒激光器具有更高的平均功率(振荡器高达2W, 放大器为6W),而且激光重复频率可调,计算机监控并控制激光。飞秒激光微纳加工系统配件规格 激光放大器参数 波长 1030nm 平均功率 6W 重复频率 1-1000KHz可调 脉宽 280fs-10ps计算机控制 最大脉冲能量 1mJ 输出稳定性1% 光束质量M2 2 脉冲选择器 多种频率选择 SH, TH,FH可选 激光振荡器参数 功率 1W 脉宽 80fs 重复频率 76MHz飞秒激光微纳加工系统配件特色 超高加工速度:高达350000像素 飞秒微细加工模式下具有最小的热影响区 工作面积高达:150x150mm 使用高性能振镜控制精密激光光束 激光脉冲数可控(1-350KHz)飞 飞秒激光微纳加工系统涉及技术 飞秒激光钻孔,飞秒激光切割,飞秒激光打孔 飞秒激光烧蚀,飞秒激光蚀刻,飞秒激光雕刻 2.5D铣,自定义模型划线, 表面微纳结构价格 改变材料的折射率,飞秒激光材料改性 飞秒激光三维多光子聚合 光学微操作…… MEMS制造掩膜制造和修理微片修复 燃料电池材料制造LIBWE,医疗应用激 光诱导扩散微光学、光子晶体、衍射光学元件制造波导和微透镜的制备
  • 飞秒激光微纳加工系统配件
    工业级飞秒激光微纳加工系统配件专业为工业微加工研究和生产而研发的成熟的技术,可用于飞秒激光打孔,飞秒激光蚀刻,飞秒激光多光子聚合等微纳加工应用。飞秒激光微纳加工系统配件具有非常绝佳的可靠性和超高的加工速度,飞秒激光器由于激光脉冲超短,提供了常见激光无以伦比的激光功率密度,其加工效果远远超过纳秒和皮秒激光。光束所到之处能够瞬间将材料汽化,由于激光脉冲超短,激光能量无法在如此短的时间内扩散到周围材料中,所以对加工区域周围影响微乎其微,是一种冷加工技术,加工效果堪称一流。飞秒激光微纳加工系统配件采用高达10W的Yb:KGW(1030nm)飞秒激光器作为激光光源,重复频率在1--1000KHz范围内可调,结合一流的精密扫描振镜,提供超高的微加工速度。系统配备Arotech公司高分辨率的定位平台,并同步激光光束扫描振镜和脉冲选择器, 在空间,时间和能量上提供全方位高精度控制。从而提供超高难度的加工能力,并达到亚微米精度的分辨率和重复性。配备机械视图系统,使用高分辨率的相机监控加工过程。飞秒激光微纳加工系统配件使用了贴别为微加工而设计的飞秒激光器,它比市场上出售的商业飞秒激光器具有更多优势,具有更高的稳定性和可靠性,达到工业使用的标准,飞秒激光放大器具有更短的脉冲(振动器80fs, 放大器280fs),飞秒激光器具有更高的平均功率(振荡器高达2W, 放大器为6W),而且激光重复频率可调,计算机监控并控制激光。飞秒激光微纳加工系统配件规格 激光放大器参数 波长 1030nm 平均功率 6W 重复频率 1-1000KHz可调 脉宽 280fs-10ps计算机控制 最大脉冲能量 1mJ 输出稳定性1% 光束质量M2 2 脉冲选择器 多种频率选择 SH, TH,FH可选 激光振荡器参数 功率 1W 脉宽 80fs 重复频率 76MHz飞秒激光微纳加工系统配件特色 超高加工速度:高达350000像素 飞秒微细加工模式下具有最小的热影响区 工作面积高达:150x150mm 使用高性能振镜控制精密激光光束 激光脉冲数可控(1-350KHz)飞 飞秒激光微纳加工系统涉及技术 飞秒激光钻孔,飞秒激光切割,飞秒激光打孔 飞秒激光烧蚀,飞秒激光蚀刻,飞秒激光雕刻 2.5D铣,自定义模型划线, 表面微纳结构价格 改变材料的折射率,飞秒激光材料改性 飞秒激光三维多光子聚合 光学微操作…… MEMS制造掩膜制造和修理微片修复 燃料电池材料制造LIBWE,医疗应用激 光诱导扩散微光学、光子晶体、衍射光学元件制造波导和微透镜的制备
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制