气密腔真空腔冷热台

仪器信息网气密腔真空腔冷热台专题为您提供2024年最新气密腔真空腔冷热台价格报价、厂家品牌的相关信息, 包括气密腔真空腔冷热台参数、型号等,不管是国产,还是进口品牌的气密腔真空腔冷热台您都可以在这里找到。 除此之外,仪器信息网还免费为您整合气密腔真空腔冷热台相关的耗材配件、试剂标物,还有气密腔真空腔冷热台相关的最新资讯、资料,以及气密腔真空腔冷热台相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

气密腔真空腔冷热台相关的厂商

  • 贰零壹捌科技(天津)有限公司是一家专业从事纳米颗粒与纳米薄膜制备设备以及复杂真空系统设计、开发、制造、销售的高科技公司。创始人曾在德国和美国的高水平大学学习与工作,致力于团簇束流沉积技术和质谱、能谱等复杂真空系统的研究和设备开发。因此,公司以纳米团簇束流技术见长,拥有雄厚的复杂真空系统设计、制造及研发能力。开发完成的纳米团簇束流源及质量选择和沉积系统设备达到了国际先进水平,拥有研究型和生产型两个系列。擅长纳米团簇束流沉积技术在工业应用领域的方案设计、技术服务与产品代工,尤其适合于纳米光电与传感器件、微机电器件工业制程领域提供系统解决方案。公司采用国际上先进的“设备与工艺相结合”模式进行研发、生产与销售,引领世界先进技术。公司拥有良好的售前服务平台、完善的售后服务体系、广泛的技术支持能力,致力于向广大的国内外用户提供性能高、稳定性强、安全可靠的产品。公司配备了优秀的科研人员,为用户提供售前、售后工艺服务与工艺技术支持,包括:设备选型实验、设备考察实验、项目预研与立项、合作攻关、工艺指导、工艺培训等。 广泛应用在光学、半导体、离子束、真空设备、真空机械、科研仪器及相关控制软件。镀膜、沉积设备、超高真空设备、复杂系统联动控制、低维材料制备、石墨烯传感器及系统集成:v v沉积设备:化学(催化)、材料、新材料、电极材料(新能源)(磁控溅射(单靶或多靶)、热型、电子束轰击型) v复杂真空系统:超高真空环境下,材料制备、原位表征、材料转移、集成LEED,角分辨激光光电子能谱(磁瓶和动量谱仪型)、高分辨质谱、医用质谱、各类离子与团簇源(离子源包括高电荷态ECR、中等离子态强流ECR离子源、磁控溅射强流团簇源、整发型团簇源)、不同功能光谱、质谱、电子能谱的多功能系统集成。 v抛光:荷能纳米颗粒超光滑表面抛光 v超高真空系统设计、超高真空系统相关联动系统软件、超高真空腔体与部件的加工、离子光学系统的设计 v真空部件加工
    留言咨询
  • 杭州大和热磁电子有限公司成立于1992年,是由日本磁性流体技术控股有限公司(Ferrotec Holdings Corporation)在华投资的全资子公司,注册资金93.88亿日元,下设热电、真空、石英三大事业部,主要生产磁性流体、热电半导体制冷材料与器件、精密半导体石英制品、精密真空密封传动装置及大型腔体、电子束蒸发器等产品,广泛应用在集成电路、电动汽车/高铁、家电医疗、显示面板、光纤通信等领域。得益于不断完善的全球营销体系,旗下各事业部产品畅销海内外,获得了良好的口碑。大和热磁传承日本总部的科研实力,与浙江大学等多所知名院校合作,设立了“浙江省博士后工作站”,并建立了稳定的战略合作伙伴关系。立足于特定应用方向,大和热磁深耕半导体材料领域数十年,获得了LAM、TEL、AMAT等多家全球TOP5知名半导体厂商的认证,不断专注产品质量的持续改善与提升,满足并超越客户需求。大和热磁以“满足客户要求,美化地球环境,给社会注入梦想和活力”为宗旨,遵循“勤勉、立志、开拓、创优”的经营理念,坚持“质量为企业生存之根本,质量为企业发展之灵魂;以质量树企业之信誉,以质量赢全球之宾朋”的质量方针,以技术创新为动力,以人才发展为重点,不断招揽大量人才,引进吸收先进生产技术,研制开发具有国际水准的高科技产品,并逐步成为一家多产业协调发展的大型制造企业。
    留言咨询
  • 北京麦迪森科技有限公司是一家集成真空、光电、测试系统的创新科技型企业,为科研用户和企业提供高性能产品及专业的测试系统集成方案,长期与该领域知名的国内外制造商密切合作,共同解决用户的技术难题。 我们的产品主要包含真空、光学、测试系统三大类。真空类产品涵盖各种真空泵、真空腔体、真空法兰、真空阀门、真空接头及相关附件。光学类产品涵盖光谱仪、激光器、光学支架、减震台、高精度位移台、光学镜片等相关附件。测试系统涵盖电阻率测试系统、霍尔测试系统、半导体性能测试系统、磁光测试系统、变温光电测试系统及相关的高精密测试仪表。
    留言咨询

气密腔真空腔冷热台相关的仪器

  • Instec来自液晶先驱院校美国科罗拉多大学的精密温控装置与液晶检测设备" _ue_custom_node_="true" 功能特点 可编程精密控温。可独立控制,也可从上位机软件控制帕尔贴原理温控,使用时无需耗材支持透射光观察与反射光观察以载玻片作为样品,可提前制备样品以节省时间台体内置干燥气体管道,用于负温时对视窗的除霜视窗可拆卸与更换,可用不同材质窗片实现不同波段光观察内盖,提升样品温度均匀度支持垂直和水平姿态的固定安装软件可拓展性强,可提供LabView等语言的SDK#选择项# 气密腔/真空腔,用保护气体/真空来保护实验样品#选择项# 样品XY移动型号,内置XY微分移动尺#可选项# 2条导线拖至腔内接线柱,用于加电检测可做改动或定制,详询上海恒商 应用领域 常规应用X射线衍射液晶和高分子冷冻干燥生物学/低温生物学食品科学光谱学材料科学 " _ue_custom_node_="true" 技术参数 温控性能温度范围-40℃ ~ 120℃温度分辨率0.001℃温度稳定性±0.05℃(at 37℃) 可提升稳定性加热速度+80℃/分钟(at 37℃)制冷速度-35℃/分钟(at 37℃)控温速度±0.1℃/小时温度传感器100Ω铂质RTD温控方式直流式PID (变直流形式(LVDC)输出)结构尺寸物镜工作距离5.1 mm聚光镜工作距离17.5 mm样品腔面积25 mm x 75 mm样品腔高度3.5 mm样品观察范围(透光)2mm 可选5,8 mm样品观察范围(反光)26.5mm (TS102G);38.5mm(TS102V)X-Y移动尺(XY型号)10μm分辨率真空接口(TS102V)KF16 " _ue_custom_node_="true" 配置列表 标准TS102G 气密冷热台 不含XY微分移动尺选1TS102V 真空冷热台 不含XY微分移动尺TS102GXY 气密冷热台 含专用XY微分移动尺TS102VXY 真空冷热台 含专用XY微分移动尺mK2000温度控制器 软件免费,控制线有多种接口供选√线性可变直流电源(LVDC) 装在温控器里,抑制电噪音√外壳水冷配件 用常温水或冰水循环防止外壳过热√选配件可对样品加电的电极与导线 2组冷热台支架 把冷热台固定在显微镜等仪器上,防止滑动长工作距离聚光镜 更好的聚光,防止视场变暗温控联动显微镜相机 温度-图像联动工作,附软件真空系统 真空泵、真空计、真空管路 *注:产品有多种配置变化,详询上海恒商 " _ue_custom_node_="true" 帕尔贴温控原理 冷热台的帕尔贴温控片由许多PN结蛇形串联而成,通过电流方向和大小来控制载流子的宏观运动,从而实现温控片上下两端之间的热量搬运,实现样品端的温控。冷热台使用时需要循环水来带走温控片下端的废热。帕尔贴原理冷热台的特点:①在样品区不大时具有明显的低成本优势;②制冷时不需要耗材,使用方便;③温控,使用方便直接由温控片流经的电流决定,温控更加准。 欲咨询产品请访问本公司官网联系我们
    留言咨询
  • Instec来自液晶先驱院校美国科罗拉多大学的精密温控装置与液晶检测设备" _ue_custom_node_="true" 功能特点 可编程精密控温。可独立控制,也可从上位机软件控制帕尔贴原理温控,使用时无需耗材支持反射光观察台体内置干燥气体管道,用于负温时对视窗的除霜视窗可拆卸与更换,可用不同材质窗片实现不同波段光观察内盖,提升样品温度均匀度支持垂直和水平姿态的固定安装软件可拓展性强,可提供LabView等语言的SDK#选择项# 气密腔室 or 真空腔室气密腔室:2个通向腔内的快速自锁接头,可充入保护气体真空腔室:台体上有2根通向腔内的真空管,KF16真空接口#可选项# 2条导线拖至腔内接线柱,用于样品加电检测可做改动或定制,详询上海恒商 " _ue_custom_node_="true" 技术参数 温控性能温度范围-40℃ ~ 90℃温度分辨率0.001℃温度稳定性±0.05℃(at 100℃) 可提升稳定性加热速度+50℃/分钟(at 37℃)制冷速度-50℃/分钟(at 37℃)控温速度±0.1℃/小时温度传感器100Ω铂质RTD温控方式直流式PID (变直流形式(LVDC)输出)结构尺寸物镜工作距离4.9 mm样品腔面积25.4 mm x 25.4 mm(使用内盖1)25.4 mm x 25.4 mm(使用内盖2)33 mm x 91 mm(卸载内盖)样品腔高度0.76 mm(使用内盖)样品观察范围26.6 mm 反光孔径10.0 mm 反光孔径(使用内盖)腔室接口快速接头 (气密型号)KF16 (真空型号) " _ue_custom_node_="true" 配置列表 标准TP102G冷热平板 气密腔室选1TP102V冷热平板 真空腔室mK2000温度控制器 软件免费,控制线有多种接口供选√线性可变直流电源(LVDC) 装在温控器里,抑制电噪音√外壳水冷配件 用常温水或冰水循环防止外壳过热√选配件用于对样品加电的腔内接线柱 2个安装支架 把台体固定在使用平台上,防止滑动长工作距离聚光镜 更好的聚光,防止视场变暗温控联动显微镜相机 温度-图像联动工作,附软件 真空系统(真空腔型号适用) 真空泵、真空计、真空管路 *注:产品有多种配置变化,详询上海恒商 " _ue_custom_node_="true" 帕尔贴温控原理 冷热台的帕尔贴温控片由许多PN结蛇形串联而成,通过电流方向和大小来控制载流子的宏观运动,从而实现温控片上下两端之间的热量搬运,实现样品端的温控。冷热台使用时需要循环水来带走温控片下端的废热。帕尔贴原理冷热台的特点:①在样品区不大时具有明显的低成本优势;②制冷时不需要耗材,使用方便;③温控,使用方便直接由温控片流经的电流决定,温控更加准。 欲咨询产品请访问本公司官网联系我们
    留言咨询
  • 产品简介 HCS421VXY专为显微镜/光谱仪设计。此款冷热台可在 -190℃ ~ 400℃ 范围内控温,同时允许光学观察和样品气体环境控制。热台上盖与底壳构成一个可抽真空的密封腔,亦可内充入氮气等保护气体,来防止样品在负温下结霜,或高温下氧化。功能特点 适用于 显微镜/光谱仪-190℃~400℃ 可编程控温(负温需配液氮制冷系统)28 mm x 30 mm带通光孔的加热区在XY方向移动样品的微分移动尺可抽真空的腔体,亦可充入保护气体使用可从温控器或电脑软件控制,可提供软件SDK*可做定制或改动,详询上海恒商温控参数 温度范围-190℃ ~ 400℃(负温需配液氮制冷系统)加热块材质银传感器/温控方式100Ω铂RTD / PID控制最大加热/制冷速度+100℃/min (100℃时)-60℃/min (100℃时)最小加热/制冷速度±0.01℃/min温度分辨率0.01℃温度稳定性±0.05℃(25℃),±0.1℃(25℃)软件功能可设温控速率,可设温控程序,可记录温控曲线光学参数 适用光路透射光路 和 反射光路窗片可拆卸与更替的窗片最小物镜工作距离5 mm *截面图中WD最小聚光镜工作距离11.5 mm *截面图中CWD透光孔φ2 mm *截面图中φVA上盖窗片观察窗片范围φ27mm,最大视角±65° *截面图中θ1底部窗片观察窗片范围φ27mm,最大视角±19.0° *截面图中θ2负温下窗片除霜吹气除霜管路结构参数 加热区/样品区28 mm x 30 mm*使用XY移动尺时样品区由样品衬底决定样品腔高2.8 mm*样品最大厚度 = 样品腔高 – 样品衬底厚度样品衬底默认为石英坩埚(内径9mm/厚0.5mm)*可根据用户使用需求更换为其他放样水平抽出上盖后置入样品样品XY移动尺可从密封腔外移动样品,分辨率10μm,行程10mm气氛控制可抽真空的腔体,亦可充入保护气体使用外壳冷却可通循环水,以维持外壳温度在常温附近安装方式水平安装 或 垂直安装台体尺寸/重量153 mm x 90 mm x 22 mm / 1350g
    留言咨询

气密腔真空腔冷热台相关的资讯

  • XRD冷热台助力我国零膨胀钛合金特殊材料研发
    在航空航天、微电子器件、光学仪器等精密仪器设备中应用的结构部件,对尺寸稳定性有极为严苛的要求。由于温度升高或降低而导致的材料形状变化对其功能特性和可靠性有着很大影响。因此,具有近零热膨胀性能的钛合金在需要高尺寸稳定性的结构中具有极高的应用价值。例如,美国国家航空航天局已针对太空望远镜所需的超高稳定性支撑结构,使用这类钛合金制造了镜体支架。在激光加工领域,已有使用这种材料制造的光学透镜筒体,解决了透镜焦点热漂移的问题。这类材料特殊的热膨胀性能与其内部αʺ马氏体物相的各向异性热膨胀行为有关。但是,现有的通过冷加工工艺获得的低热膨胀系数限制于单相马氏体相区,即使用温度上限通常小于~100℃,限制了其在工程领域的广泛应用。近期东莞理工学院中子散射技术工程研究中心王皓亮博士在冶金材料领域的TOP期刊《Scripta Materialia》上发表题目为《Nano-precipitation leading to linear zero thermal expansion over a wide temperature range in Ti22Nb》的研究论文。论文介绍了在宽温域线性零膨胀钛合金特殊热膨胀性能形成机理方面取得的新的进展。论文第一作者为东莞理工学院机械工程学院王皓亮博士,通讯作者为机械工程学院孙振忠教授,共同通讯作者为比利时鲁汶大学Matthias Bönisch博士,合作作者有中国散裂中子源殷雯研究员和徐菊萍博士等。王皓亮博士主要从事金属材料物相晶体结构、微观组织及应力分析;钛合金固态相变及功能性研究;高等级耐热钢焊接接头蠕变失效预测研究。1.拉曼光谱在材料研究中的应用(图1.Ti22Nb合金通过析出纳米尺寸第二相获得的宽温域零膨胀性能)研究人员利用中子衍射技术表征材料微观结构的巨大优势,配合使用XRD冷热台(变温范围 -190℃到600℃ ,温控精度±0.1℃,文天精策仪器科技(苏州)有限公司)实现测试样品的温度变化,精确鉴定了线性零膨胀Ti22Nb钛合金中的物相组成,证实了依靠溶质元素扩散迁移形成的等温αʺiso相也具备调控热膨胀系数的功能。相对于冷加工材料,该研究中通过机械+热循环处理获得的双相复合材料,其低热膨胀行为的作用范围被拓宽至300℃。结合其他原位X-ray衍射和EBSD/TKD电子显微表征技术,在纳米到微米尺寸范围内全面分析了材料微结构要素,澄清了热循环过程中纳米尺寸αʺiso相的形成路径,揭示了微观晶格畸变/相变应变、晶体学取向参量和宏观热膨胀系数的之间的定量关系,为设计具有较宽使用温度范围的低/负热膨胀钛合金提供了新的途径,是从理论研究向技术和产品层面跃进的重要依据和前提。 (图2.(a)不同状态Ti22Nb合金中子衍射谱线,(b)原位升降温XRD谱线(c)母相及析出相衍射峰强度随温度演化规律)(图3.原位升降温XRD测试)图4.原位XRD冷热台
  • 文天精策原位拉伸试验机冷热台助力超低温金属材料研究
    文天精策原位拉伸试验机冷热台助力超低温金属材料研究随着现代各行业的飞速发展,越来越多的金属材料需要在低温环境中使用,如低温压力容器、桥梁、建筑材料等,因此对于这些材料的各项力学性能的准确测量也就显得至关重要,尤其是试样的屈服强度、抗拉强度、延伸率和面缩率等拉伸性能指标。如:液体火箭发动机的结构材料除了承受高温冲击外,由于液氢(沸点-253℃)、液氧(沸点-183℃)等低温贮存推进剂的存在,还有超低温(-100℃以下)环境要求,故液体火箭发动机理想的结构材料需要具备优良的低温力学性能;用于低温手术的医疗器械,使用液氮对患者的局部肉体进行低温瞬时低温冷冻,使得肉体固化后进行快速和无痛手术。文天精策仪器科技原位拉伸试验机冷热台,作为可适配多数拉伸试验机的低温试验平台,通过准确控温,实现不同环境温度下材料的力学性能测试,从而准确的考察不同变形温度下材料的力学性能,为其在复杂环境温度下的服役,提供数据支撑。原位拉伸试验机冷热台降温过程超低温单向拉伸试验对金属材料而言,其服役温度显著影响其力学性能。部分金属在超低温(77 K)条件下时,其断裂强度、延伸率等会显著提升。并且相比高温成形工艺会造成材料的氧化的缺点,低温下的成形工艺则不存在这样的问题,这为金属材料成形工艺的成形能力提升,提供了新的途径。Ÿ 材料的硬化、脆化Ÿ 材料的塑性变形能力改变Ÿ 材料的应变分布演化更加均匀Ÿ 材料的塑性变形机制发生变化超低温单向拉伸试验检测试样在单向应力状态下,温度对其力学性能与变形机制的影响。降温程序控制过程295 K与77 K下纯铜的单向拉伸应力-应变曲线研究内容及关键点:Ÿ 原位拉伸试验机冷热台的温控算法可准确控制变形所需温度;Ÿ 原位拉伸试验机冷热台可适配大多数万*能试验机实现低温拉伸试验,准确测试材料的低温力学性能;Ÿ 原位拉伸试验机冷热台的氮气回流除雾技术与可视窗口,可结合DIC测试技术实现超低温变形过程中应变的实时监测;Ÿ 通过设置拉伸试验机参数,可实现变温单向拉伸试验,测试复杂温度环境下材料的力学性能。试验表明:文天精策仪器科技研发的原位拉伸试验机冷热台,可与各种万*能试验机适配,在试验过程中通过文天精策原位拉伸试验机冷热台中的温控程序,实现实时控温,进行不同变形温度下的单向拉伸试验力学性能测试。并且,通过设置拉伸过程中的实验参数,完成试样在复杂变温环境下的力学性能测试,指导在复杂温况下材料的服役。
  • 强化与高校技术合作优势凸显 冷热冲击试验箱月售百台
    在2012年,东莞市勤卓环境测试设备有限公司为提升恒温恒湿试验箱,冷热冲击试验箱,高低温试验箱,恒温箱等设备的制造技术,先后来到上海交大、复旦大学两所高校寻求技术合作,获得了两所高校的认可和肯定。双方就环境试验设备的制冷技术、温控系统调节等方面,达成了合作意向。 在长达一年多的时间里面,东莞勤卓科技先后派遣三批技术人员赴学校学习深造,并要求学校权威导师来授课解惑。术业有专攻,经过一年多的学习合作,勤卓环测科技制造的恒温恒湿试验箱,冷热冲击试验箱,高低温试验箱,恒温箱等设备,技术飞速猛进,多项技术指标进过第三方的检测,均一次性获得通过。 技术的提升,最好的检验方式是获得市场的认可,进过2013年,东莞勤卓品牌冷热冲击试验箱作为市场主推产品,以精湛的技术,先后中标三重、中科大等大型企事业单位,在4月份,更是获得了光电,五金,数码,化工,通讯等各大行业的认可,仅4月份,签约销售冷热冲击试验箱102台,突破了行业月售冷热冲击试验箱百台大关,勤卓冷热冲击试验箱逐步成为行业领军品牌。

气密腔真空腔冷热台相关的方案

气密腔真空腔冷热台相关的资料

气密腔真空腔冷热台相关的试剂

气密腔真空腔冷热台相关的论坛

  • 气密真空冷热台的真空度精密控制

    气密真空冷热台的真空度精密控制

    [align=center][img=冷热台真空度控制,690,451]https://ng1.17img.cn/bbsfiles/images/2022/03/202203071147131858_3924_3384_3.png!w690x451.jpg[/img][/align][color=#990000]摘要:针对气密真空冷热台目前存在的真空度控制精度差和配套控制系统价格昂贵的问题,本文介绍采用国产产品的解决方案,介绍了采用数控针阀进行上游和下游双向控制模式的详细实施过程。此方案已经得到了应用和验证,可实现宽范围内的真空度精密控制,真空度波动可控制在±1%以内,整个控制系统具有很高的性价比。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px][color=#990000]一、问题的提出[/color][/size]气密真空冷热台是同时可用于真空和气密环境的精密温控冷热平台,具有加热和制冷功能,适合显微镜和光谱仪等应用对样品在可控的真空度环境下进行精确加热或制冷。根据用户要求,针对目前的各种气密真空冷热台,在真空度控制方面,还需要解决以下几方面的问题:(1)无论是进口还是国产真空冷热台,真空度测量和控制还采用皮拉尼真空计,使得配套的控制系统无法实现真空度的精密控制,如无法满足研究和模拟冷冻干燥过程的精度要求。(2)气密真空冷热台普遍体积较小,在宽泛的真空度范围内,实现精确控制一直存在较大难度,真空度的波动性较大,而真空度的波动性又反过来影响温度的稳定性。(3)进口配套的真空度控制系统,不仅控制精度达不到要求,而且价格昂贵。针对气密真空冷热台存在的上述问题,本文将介绍采用国产产品并具有高性价比的解决方案,并介绍了详细的实施过程。[size=18px][color=#990000]二、解决方案[/color][/size]气密真空冷热台真空度精密控制系统的整体结构如图1所示,整个系统主要包括真空计、数控针阀、PID控制器和真空泵。[align=center][color=#990000][img=冷热台真空度控制,690,396]https://ng1.17img.cn/bbsfiles/images/2022/03/202203071148328248_6901_3384_3.png!w690x396.jpg[/img][/color][/align][align=center][color=#990000]图1 冷热台真空度精密控制系统结构示意图[/color][/align]为提高真空度测控精度,采用了测量精度更高(可达满量程0.2%)的电容式真空计,可覆盖0.01~760Torr的真空度区间。如果需要更高真空度环境,也可以同时采用皮拉尼真空计进行测控。为实现全宽量的真空度控制,将两只数控针阀分别安装在冷热台的进气口和排气口。通过分别采用上游和下游控制模式,可实现全量程波动率小于±1%的精密控制。控制器是精密控制的关键,方案中采用了24位A/D和16位D/A的高精度PID控制器,独立的双通道便于进行上游和下游气体流量调节和控制。总之,通过此经过验证的真空度控制方案,可实现高性价比的精密控制。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 显微镜冷热台真空度的精密控制

    显微镜冷热台真空度的精密控制

    [align=center][img=真空冷热台,500,326]https://ng1.17img.cn/bbsfiles/images/2022/03/202203060829340674_8408_3384_3.png!w690x451.jpg[/img][/align]摘要:针对气密真空冷热台目前存在的真空度控制精度差和配套控制系统价格昂贵的问题,本文介绍采用国产产品的解决方案,介绍了采用数控针阀进行上游和下游双向控制模式的详细实施过程。此方案已经得到了应用和验证,可实现宽范围内的真空度精密控制,真空度波动可控制在±1%以内,整个控制系统具有很高的性价比。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=18px]一、问题的提出[/size]气密真空冷热台是同时可用于真空和气密环境的精密温控冷热平台,具有加热和制冷功能,适合显微镜和光谱仪等应用对样品在可控的真空度环境下进行精确加热或制冷。根据用户要求,针对目前的各种气密真空冷热台,在真空度控制方面,还需要解决以下几方面的问题:(1)无论是进口还是国产真空冷热台,真空度测量和控制还采用皮拉尼真空计,使得配套的控制系统无法实现真空度的精密控制,如无法满足研究和模拟冷冻干燥过程的精度要求。(2)气密真空冷热台普遍体积较小,在宽泛的真空度范围内,实现精确控制一直存在较大难度,真空度的波动性较大,而真空度的波动性又反过来影响温度的稳定性。(3)进口配套的真空度控制系统,不仅控制精度达不到要求,而且价格昂贵。针对气密真空冷热台存在的上述问题,本文将介绍采用国产产品并具有高性价比的解决方案,并介绍了详细的实施过程。[size=18px]二、解决方案[/size]气密真空冷热台真空度精密控制系统的整体结构如图1所示,整个系统主要包括真空计、数控针阀、PID控制器和真空泵。[align=center][img=真空冷热台,690,396]https://ng1.17img.cn/bbsfiles/images/2022/03/202203060828037872_2582_3384_3.png!w690x396.jpg[/img][/align][align=center]图1 冷热台真空度精密控制系统结构示意图[/align]为提高真空度测控精度,采用了测量精度更高(可达满量程0.2%)的电容式真空计,可覆盖0.01~760Torr的真空度区间。如果需要更高真空度环境,也可以同时采用皮拉尼真空计进行测控。为实现全宽量的真空度控制,将两只数控针阀分别安装在冷热台的进气口和排气口。通过分别采用上游和下游控制模式,可实现全量程波动率小于±1%的精密控制。控制器是精密控制的关键,方案中采用了24位A/D和16位D/A的高精度PID控制器,独立的双通道便于进行上游和下游气体流量调节和控制。总之,通过此经过验证的真空度控制方案,可实现高性价比的精密控制。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 【原创大赛】高温半球发射率测量装置真空腔体温度均匀性的有限元热仿真分析

    【原创大赛】高温半球发射率测量装置真空腔体温度均匀性的有限元热仿真分析

    [align=center][size=18px][color=#000099]高温半球发射率测量装置真空腔体温度均匀性的有限元热仿真分析[/color][/size][/align][align=center][size=18px][color=#999999]Finite Element Thermal Simulation Analysis of the Temperature Uniformity of the Vacuum Chamber of the High-Temperature Hemispheric Emissivity Measurement Device[/color][/size][/align]摘要:在高温半球发射率测量装置中,真空腔体温度均匀性是保证半球发射率测量精度和测试设备安全运行的重要技术参数。本文介绍了采用SolidWorks软件对水冷真空腔体上各处法兰温度分布的有限元计算过程和获得的结果,以指导确定真空腔体设计参数和制造工艺的确定。关键词:半球发射率,有限元,热仿真,温度均匀性,真空腔体,高温,测量装置,法兰, Hemispherical emissivity, finite element, thermal simulation, temperature uniformity, vacuum chamber, high temperature, measuring device, flange[align=center][img=高温发射率测量,690,338]https://ng1.17img.cn/bbsfiles/images/2021/09/202109290630151571_4563_3384_3.png!w690x338.jpg[/img][/align]  [size=24px][color=#000099]1. 问题的提出[/color][/size]  在采用稳态量热法测量材料高温半球发射率过程中,要求被测样品处于高真空环境中,作为量热计的真空腔体始终恒定在较低温度(如水温或液氮温度),真空腔体内表面要保持较高的发射率数值,从而保证作为量热计的真空腔体是一个黑体能吸收样品辐射出的所有热量。  在高温半球发射率测量装置中,真空腔体的冷却和温度控制方式是在真空腔壁内部布置流道让冷却介质(水或液氮)按照一定方式进行流动,并由此带走腔壁吸收的热量并使得腔壁温度始终恒定。但由于真空腔体上还布置有各种法兰(如引线法兰、抽气法兰和炉门法兰等),这使得真空腔壁内部流道就要绕开这些法兰,造成冷却液并不能直接冷却到这些部件,这些法兰吸收和积累的热量就需要通过法兰材料自身的热传导方式将热量传递给冷却液,由此往往会在这些法兰部件上形成比真空腔体其他位置更高的温度。为了保证高温半球发射率测量装置的安全性和测量准确性,在设计过程中需要准确了解这些法兰处的温度分布并进行优化。  本文将介绍水冷真空腔体上各处法兰温度分布的计算过程和获得的结果,以指导确定真空腔体的具体参数和制造工艺设计。[color=#000099][size=24px]2. 热仿真模型[/size][size=18px]2.1. 常规模型[/size][/color]  高温半球发射率测量装置的主要结构是一个卧式水冷真空腔体,双测开门。真空腔体的外径为840mm,长度为800mm,两侧腔门直径为920mm。腔体和腔门都为双层不锈钢结构,中间布置冷却水流道,腔体和腔门的总壁厚都为20mm,腔体和腔门分别独立水冷。被测样品悬挂在真空腔体的中心位置,最大样品尺寸为直径100mm×12mm。  针对上述规格尺寸的高温半球发射率测量装置建立热仿真模型,建模和仿真计算采用SOLIDWORKS软件。为了简化计算工作量,针对此对称结构的真空腔体,在一半真空腔体的基础上建立热仿真模型,如图2-1所示。[align=center][color=#000099][img=高温发射率测量,690,344]https://ng1.17img.cn/bbsfiles/images/2021/09/202109290635288234_3762_3384_3.png!w690x344.jpg[/img][/color][/align][align=center][color=#000099]图2-1 仿真模型及其剖面图[/color][/align]  如图2-1所示,在热仿真建模中做了以下几方面的设计假设:  (1)对于外径840mm、长度400mm、壁厚20mm的一半真空腔体,假设水流道直接覆盖的区域长度为350mm,剩余50mm为“侧壁无水冷段”,此段上的热量完全靠不锈钢材质的导热传递给冷却液。  (2)同样,对于外径920mm、厚度20mm的腔门,假设水流道直接覆盖腔门的中心区域,此水冷区域直径为720mm,剩余宽度为100mm的实心圆环为“腔门的无水冷段”,此段上的热量完全靠不锈钢材质的导热传递给冷却液。  (3)真空腔体和腔门之间设计有一个腔门法兰,用于放置密封圈和安装腔门转动合页。此腔门法兰无任何水冷,热仿真模型设计为宽度为100mm、外径为920mm的圆环。  (4)模型中样品尺寸为直径100mm、厚度6mm的圆片,为实际最大样品尺寸的一半。为计算出样品最大辐射能力时对无水冷部件的影响程度,样品温度设置为最高温度1200℃,样品热辐射面(表面和侧面)的半球发射率设置为1,样品背面为绝热面。  (5)整个真空腔体和腔门的内壁,都涂有高发射率黑色涂料,在热模型中它们的表面发射率也都设置为1。水冷侧壁和水冷腔门温度设置为水冷温度20℃。模型中所有材质设计为304不锈钢,由于真空腔体自身温度不会处于高温状态,所以模型中不锈钢的热物理性能参数都采用常温数据。  (6)对于高温半球发射率测量装置而言,测试过程中真空腔体内部始终为0.001Pa量级的高真空,因此真空腔体内部的传热形式设定为只有辐射传热,样品上的热量只通过热辐射形式传递给侧壁、法兰和腔门。[size=18px][color=#000099]2.2. 简化模型[/color][/size]  为进一步减小网格尺寸和提高热仿真精度,将上述模型进行了简化,即去掉占用面积最大的水冷部件(水冷侧壁和水冷腔门),将于水冷侧壁和水冷腔门接触部件的接触面温度设定为20℃恒温。由此得到的简化后模型如图2-2所示,这种简化后的仿真模型只考虑高温样品对无水冷部件的辐射加热,最终得到无水冷部件在1200℃高温样品辐照下达到的最高温度。[align=center][img=高温发射率测量,690,574]https://ng1.17img.cn/bbsfiles/images/2021/09/202109290635418127_4767_3384_3.png!w690x574.jpg[/img][/align][color=#000099][/color][align=center]图2-2 简化后热仿真模型[/align][size=18px][color=#000099]2.3. 增加引线法兰后的模型[/color][/size]  在实际高温半球发射率测量装置中,在水冷腔门上安装有引线法兰和抽气法兰,而循环水冷直接触及这些法兰,在1200℃高温样品辐照时会使得这些法兰温度升高。为了解这些法兰在高温辐照时温度升高的最大温度,专门在上述第二种简化模型的基础上增加了两个引线法兰,如图2-3所示。同样,在此模型中,去掉了面积最大的水冷部件,但水冷接触面处同样需要设定20℃恒温。[align=center][img=高温发射率测量,690,505]https://ng1.17img.cn/bbsfiles/images/2021/09/202109290635531233_8765_3384_3.png!w690x505.jpg[/img][/align][color=#000099][/color][align=center]图2-3 增加引线法兰后的简化模型[/align][size=24px][color=#000099]3. 热仿真结果[/color][/size]  对于上述三种仿真模型分别进行了有限元计算。[size=18px][color=#000099]3.1. 常规模型仿真结果[/color][/size]  对于图2-1所示的第一种常规模型,采用稳态形式进行了有限元计算,有限元网格形成则采用标准网格和自动过渡形式,最终热仿真结果如图3-1所示。从图3-1所示仿真结果可以看出,水冷区域温度始终处于20℃,无水冷区域会有一定温升,温升最高处位于腔门和法兰的边缘位置,最高温度为29.5℃,即温度比水冷温度升高了近10℃。[align=center][color=#000099][img=高温发射率测量,690,533]https://ng1.17img.cn/bbsfiles/images/2021/09/202109290636108069_1760_3384_3.png!w690x533.jpg[/img][/color][/align][align=center][color=#000099]图3-1常规模型仿真结果[/color][/align][align=center][color=#000099][/color][/align][align=left][size=18px][color=#000099]3.2. 简化模型仿真结果[/color][/size][/align]  对于图2-2所示的第二种仿真模型,采用稳态形式进行了有限元计算,有限元网格形成则采用基于曲率的网格,最大单元大小和最小单元大小都设置为20mm,最终热仿真结果如图3-2所示。从图3-2所示仿真结果可以看出,水冷区域接触面温度始终处于20℃,无水冷区域会有一定温升,温升最高处同样位于腔门和法兰的边缘位置,最高温度为29.3℃,即温度比水冷温度升高不到10℃,与常规模型仿真结果相差0.2℃。[align=center][color=#000099][img=高温发射率测量,630,585]https://ng1.17img.cn/bbsfiles/images/2021/09/202109290636218021_996_3384_3.png!w630x585.jpg[/img][/color][/align][align=center][color=#000099]图3-2 简化模型仿真结果[/color][/align][size=18px][color=#000099]3.3. 增加引线法兰后的简化模型仿真结果[/color][/size]  对于图2-3所示的第三种仿真模型,采用稳态形式的有限元计算,有限元网格形成则采用基于曲率的网格,最大单元大小和最小单元大小都设置为20mm,最终热仿真结果如图3-3所示。  从图3-3所示仿真结果可以看出,水冷区域接触面温度始终处于20℃,无水冷区域会有温升。其中腔门法兰和腔门边缘处温升还是与简化模型结果一致,最高温度为29.2℃。增加引线法兰后,中心引线法兰圆心处温度最高,达到了55.5℃,温升达到了25.5℃;而底部引线法兰中心处温度最高为42.4℃,温升达到了22.4℃。由此可见,腔门上的引线法兰会给真空腔体的整体温度均匀性带来严重影响,这就要求在真空腔体法兰的设计中设法规避这种现象。[align=center][img=高温发射率测量,690,634]https://ng1.17img.cn/bbsfiles/images/2021/09/202109290636320070_2959_3384_3.png!w690x634.jpg[/img][/align][color=#000099][/color][align=center]图3-3 增加引线法兰后的模型仿真结果[/align][size=24px][color=#000099]4. 总结[/color][/size]  通过对高温半球发射率测量装置中真空腔体的建模,针对不同模型进行了有限元热仿真计算,得到以下结论:  (1)对于现有尺寸和结构形式的双侧开门卧式真空腔体,如果冷却循环水控制在20℃时,样品温度处于高温1200℃,腔门边缘处无水冷区域内的最高温度不会超过30℃,此10℃的温升可以忽略不计,对设备的测试和安全运行没有影响。  (2)为了保证测量装置的加工和运行的便利性,会在两个腔门上布置各种引线法兰和抽气法兰。如果这些法兰的无水冷区域为直径200mm尺寸,那么距离高温1200℃样品最近处的法兰中心温度会达到近56℃,其他位置处的法兰中心温度也会达到42℃左右,这将严重影响真空腔壁温度的整体均匀性,因此在设计和制造中必须设法解决此问题。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

气密腔真空腔冷热台相关的耗材

  • 气密真空冷热台配件
    气密真空冷热台配件是全球首款同时可用于真空和气密环境的精密温控冷热平台,具有加热和制冷功能,非常适合显微镜,光谱仪等应用对样品进行精确加热或制冷。气密真空冷热台配件具有宽广的温度范围,可以很轻易地合并到任何复杂的高科技仪器中使用,可用于地质科学,流体包裹体,半导体,光电,或其他材料科学应用提供最佳解决方案。 MicrOptik的MHCS622-V / G工作台研发用于温度范围-190℃?600℃的真空和/气密应用。 MHCS622-V / G工作台配备有高精度MTDC600可编程温度控制器。 MTDC600温度控制器,可通过软件或手动操作。这增加了系统的适应性和灵活性。对于在低于环境温度下操作的应用,提供液氮冷却系统LN2-SYS。气密真空冷热台配件特点:* 真空或气密环境 * 温度范围宽 * 可编程温度控制器 * 软件或手动控制 * 观察孔范围宽 * 可移动盖子,方便样本进入 * 水平和垂直安装 * 高精确度和高分辨率的温度测量和控制 * 水制冷架 * 真空口,气口,抽真空4/6或8引脚电引入 MTDC600是一款高性能温度控制器,分辨率和精确度为0.10℃。控制器MTDC600有一个内置电源,可以手动或通过一个USB2.0通信端口进行控制。软件为所有可能的实验提供了一个方便的平台。通过相应菜单,轻松选择PID参数,温度限制和控制要点。气密真空冷热台配件规格 温度范围 -190°C至 600°C (低于环境温度需要制冷配件) 温度分辨率 0.1°C 温度控制方法 切换 PID-PID 温度控制传感器 RTD 样本区域 40mm x 40mm (其他样本区域可选) 室高度 标准 4mm (其他最高可达 20 mm 根据要求 ) 样本观察孔 32mm (其他根据要求 ) 最小物镜工作距离 6mm (更短工作距离可选) 电引入 4 电引入 (其他根据要求)
  • 气密真空冷热台配件 FPMIC-MHCS622-V/G
    气密真空冷热台配件是全球首款同时可用于真空和气密环境的精密温控冷热平台,具有加热和制冷功能,非常适合显微镜,光谱仪等应用对样品进行精确加热或制冷。 气密真空冷热台配件具有宽广的温度范围,可以很轻易地合并到任何复杂的高科技仪器中使用。 气密真空冷热台配件可用于地质科学,流体包裹体,半导体,光电,或其他材料科学应用提供最佳解决方案。 MicrOptik的MHCS622-V / G工作台研发用于温度范围-190℃?600℃的真空和/气密应用。 MHCS622-V / G工作台配备有高精度MTDC600可编程温度控制器。 MTDC600温度控制器,可通过软件或手动操作。这增加了系统的适应性和灵活性。对于在低于环境温度下操作的应用,提供液氮冷却系统LN2-SYS。 气密真空冷热台配件特点: * 真空或气密环境 * 温度范围宽 * 可编程温度控制器 * 软件或手动控制 * 观察孔范围宽 * 可移动盖子,方便样本进入 * 水平和垂直安装 * 高精确度和高分辨率的温度测量和控制 * 水制冷架 * 真空口,气口,抽真空4/6或8引脚电引入 MTDC600是一款高性能温度控制器,分辨率和精确度为0.10℃。控制器MTDC600有一个内置电源,可以手动或通过一个USB2.0通信端口进行控制。软件为所有可能的实验提供了一个方便的平台。通过相应菜单,轻松选择PID参数,温度限制和控制要点。 气密真空冷热台配件规格 温度范围 -190°C至 600°C (低于环境温度需要制冷配件) 温度分辨率 0.1°C 温度控制方法 切换 PID-PID 温度控制传感器 RTD 样本区域 40mm x 40mm (其他样本区域可选) 室高度 标准 4mm (其他最高可达 20 mm 根据要求 ) 样本观察孔 32mm (其他根据要求 ) 最小物镜工作距离 6mm (更短工作距离可选) 电引入 4 电引入 (其他根据要求)
  • 质谱仪真空腔体
    质谱仪核心部件高真空腔体,材料选用6060-T6,通过五轴一体加工成型,再结合精密的抛光和表面处理工艺,综合公差保证0.01以内,不仅可以保证长期保压状态下的真空度,而且可以满足在设备里长期使用的稳定性。支持不同规格及不同材质的定制。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制