高分辨率细胞显微镜

仪器信息网高分辨率细胞显微镜专题为您提供2024年最新高分辨率细胞显微镜价格报价、厂家品牌的相关信息, 包括高分辨率细胞显微镜参数、型号等,不管是国产,还是进口品牌的高分辨率细胞显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高分辨率细胞显微镜相关的耗材配件、试剂标物,还有高分辨率细胞显微镜相关的最新资讯、资料,以及高分辨率细胞显微镜相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

高分辨率细胞显微镜相关的厂商

  • 原FEI公司,2016年被赛默飞世尔科技收购,成为赛默飞材料与结构分析(MSD) 电镜事业部,是显微镜和微量分析解决方案的创新者和供应商。 我们提供扫描电子显微镜SEM,透射电子显微镜TEM和双束-扫描电子显微镜DualBeam?FIB-SEM,结合先进的软件套件,运用最广泛的样本类型,通过将高分辨率成像与物理、元素、化学和电学分析相结合,使客户的问题变成有效可用的数据。更多信息可在公司官网上找到:http://thermofisher.com/EM 或扫描二维码,关注我们的微信公众号
    留言咨询
  • 全国免费销售咨询热线:400-630-7761公司官网:https://www.leica-microsystems.com.cn/徕卡显微系统(Leica Microsystems)是德国著名的光学制造企业。具有160年显微镜制造历史,现主要生产显微镜, 用户遍布世界各地。早期的“Leitz”显微镜和照相机深受用户爱戴, 到1990年徕卡全部产品统一改为“Leica”商标。徕卡公司是目前同业中唯一的集显微镜、图像采集产品、图像分析软件三位一体的显微镜生产企业。公历史及荣誉产品1847年 成立光学研究所 1849年 生产出第一台工业用显微镜 1872年 发明并生产出第一台偏光显微镜 1876年 生产出第一台荧光显微镜 1881年 生产出第一台商用扫描电镜 1887年 生产出第10,000台 1907年 生产出第100,000台 1911年 世界上第一台135照相机 1921年 第一台光学经纬仪 1996年 第一台立体荧光组合 2003年 美国宇航局将徕卡的全自动显微镜随卫星送入太空,实现地面遥控 2005年推出创新的激光显微切割系统:卓越的宽带共聚焦系统。内置活细胞工作站: 2006年组织病理学网络解决方案:徕卡显微系统公司第三次获得“Innovationspreis”(德国商业创新奖): 2007年徕卡 TCS STED 光学显微镜的超分辨率显微技术超越了极限。 徕卡显微系统公司新成立生物系统部门:推出电子显微镜样本制备的三种新产品 2008年徕卡显微系统公司成为总部设于德国海德堡的欧洲分子生物学实验室 (EMBL) 高级培训中心的创始合作伙伴。徕卡 TCS SP5 X 超连续谱共聚焦显微镜荣获2008年度《科学家》杂志十大创新奖。徕卡显微系统公司凭借 FusionOptics 融合光学技术赢得 PRODEX 奖项,该技术能够形成高分辨率、更大景深、3D效果更佳的图像。推出让神经外科医生看得更清楚、更详细的徕卡 M720 OH5 小巧的神经外科显微镜, 2009年新一代光学显微镜取得独家许可证:Max Planck Innovation 为徕卡显微系统的全新 GSDIM(紧随基态淬灭显微技术的单分子返回)超分辨率技术颁发独家许可证。 2010年远程医疗服务概念奖:徕卡显微系统公司在年度互联世界大会上获得 M2M 价值链金奖,Axeda Corporation 被誉为徕卡获得此奖项的一大助力。Kavo Dental 和徕卡显微系统在牙科显微镜领域开展合作。Frost & Sullivan 公司颁发组织诊断奖:徕卡生物系统公司获得研究和咨询公司 Frost & Sullivan 颁发的北美组织诊断产品战略奖。 2011年学习、分享、贡献。 科学实验室 (Science Lab) 正式上线:徕卡生物系统(努斯洛赫)公司荣获2011年度卓越制造 (MX) 奖:徕卡生物系统公司获得2011年度“客户导向”类别的卓越制造奖。 2012年徕卡显微系统公司总部荣获2012年度卓越制造奖:位于德国韦茨拉尔的徕卡显微系统运营部门由于采用看板管理体系而荣获“物流和运营管理”卓越制造奖。徕卡 GSD 超分辨率显微镜获得三项大奖:《R&D》杂志为卓越技术创新颁发的百大科技研发奖、相关的三项“编辑选择奖”之一、美国杂志《今日显微镜》(Microscopy Today) 颁发的2012度十大创新奖。 2013年徕卡 SR GSD 3D 超分辨率显微镜获奖徕卡生物系统公司和徕卡显微系统公司巩固在巴西的市场地位:收购合作超过25年的经销商 Aotec,推动公司在拉丁美洲的发展。 2014年超分辨率显微镜之父斯特凡黑尔 (Stefan Hell) 荣获诺贝尔奖:斯特凡黑尔因研制出超分辨率荧光显微镜而荣获诺贝尔化学奖。 他与徕卡显微系统公司合作,将该原理转化为第一款商用 STED 显微镜。徕卡 TCS SP8 STED 3X 荣获两大奖项:《科学家》杂志十大创新奖和《R&D》杂志百大科技研发奖均将超分辨率显微镜评定为改变生命科学家工作方式的创新成果之一。日本宇宙航空研究开发机构的宇航员若田光一 (Koichi Wakata) 使用徕卡 DMI6000 B 研究用倒置显微镜在国际空间站进行了活细胞实验。 2015年首台结合光刺激的高压冷冻仪是一项非常精确的技术徕卡显微系统公司收购光学相干断层扫描 (OCT) 公司 Bioptigen: 2016年徕卡显微系统公司独家获得了哥伦比亚大学 SCAPE 生命科学应用显微技术许可证,同时独家获得了伦敦帝国理工学院 (Imperial College) 的斜面显微镜 (OPM) 许可证。徕卡 EZ4 W 教育用体视显微镜获得世界教具联合会 (Worlddidac) 大奖:新的图像注入技术可引导外科医生进行手术:CaptiView 技术可将来自图像导航手术 (IGS) 软件的图像注入显微镜目镜。 2017年全新 SP8 DIVE 系统的推出,徕卡显微系统公司提供了世界上首个可调光谱解决方案,可实现多色、多光子深层组织成像。 徕卡的 DMi8 S 成像解决方案将速度提高了5倍,并将可视区域扩大了1万倍。为获得超分辨率和纳米显微成像而添加的 Infinity TIRF 模块能够以单分子分辨率同时进行多色成像, 由此开启宽视场成像的新篇章。 2018年LIGHTNING 从以前不可见或不可探测的精细结构和细节中提取有价值的图像信息,将传统共焦范围以内和衍射极限以外的成像能力扩展到120纳米。SP8 FALCON(快速寿命对比)系统的寿命对比记录速度比以前的解决方案快10倍。 细胞培养实验室的日常工作实现数字化PAULA(个人自动化实验室助手)有助于加快执行日常细胞培养工作并将结果标准化快速获取阵列断层扫描的高质量连续切片ARTOS 3D ,标志着超薄切片机切片质量和速度的新水平。随着 PROvido 多学科显微镜的推出,徕卡显微系统公司在广泛的外科应用中增强了术中成像能力。 2019年实现 3D 生物学相关样本宽视场成像THUNDER 成像系统使用户能够实时清晰地看到生物学相关模型(例如模式生物、组织切片和 3D 细胞培养物)厚样本内部深处的微小细节。 2020年STELLARIS是一个经彻底重新设计的共聚焦显微镜平台,可与所有徕卡模块(包括FLIM、STED、 DLS和CRS)结合使用。术中光学相干断层扫描(OCT)成像系统EnFocus 2021年Aivia以显微镜中的自动图像分析推动研究工作,强大的人工智能(AI)引导式图像分析与可视化解决方案相结合,助力数据驱动的科学探索。Cell DIVE超多标组织成像分析整体解决方案是基于抗体标记的超多标平台,适用于癌症研究。Emspira 3数码显微镜——启发灵感的简单检查方法该系统荣获2022年红点产品设计大奖, 不仅采用创新的模块化设计,而且提供广泛的配件和照明选项。2022年Mica——徕卡创新推出的多模态显微成像分析中枢,让所有生命科学研究人员都能理解空间环境LAS X Coral Cryo:基于插值的三维目标定位,沿着x轴和y轴对切片进行多层扫描(z-stack)。这些标记可在所有相关窗口中交互式移动具有高精度共聚焦三维目标定位功能的Coral Cryo工作流程解决方案徕卡很自豪能成为丹纳赫的一员:丹纳赫是全球科学与技术的创新者,我们与丹纳赫在生物技术、诊断和生命科学领域的其他业务共同释放尖端科学和技术的变革潜力,每天改善数十亿人的生活。
    留言咨询
  • 400-860-5168转4893
    彩科生物为生命科学创造先进工具 提高对生命认知的分辨率Enlighten life by chips公司简介Company profile彩科生物由多位美国海归博士于2018年在苏州生物医药产业园创立,致力于为广大生命科学研究人员提供先进研究工具,挖掘海量高分辨率生命科学数据。公司以微尺度下多物理场耦合μ-MPF(Micro-scaled Multi Physics coupled Force)技术及高端生物芯片设计为核心,自主研发生产了高通量单细胞光导系统、单分子阵列免疫分析仪及多重磁性荧光编码微球等高科技产品,在单分子及单细胞水平大大提升了生命科学研究人员对生命认知的分辨率。
    留言咨询

高分辨率细胞显微镜相关的仪器

  • 产品简介蔡司晶格光切超高分辨率显微镜Lattice SIM 3利用晶格结构光照明的组织穿透力强的优势,针对组织样品对于分辨率、速度和灵敏度的三重需求进行光学设计,适用于细胞团、类器官、组织切片和小型模式动物等样品的超高分辨率成像,快速获取更精细的组织三维结构全貌,兼顾分辨率、成像速度、成像深度和灵敏度。产品特点&bull 低倍物镜下的大视野超高分辨率成像&bull 近各向同性分辨率的高质量光学切片&bull 以宽场成像的快速和低光毒性实现超高分辨率成像应用领域&bull 类器官发育&bull 组织切片&bull 3D细胞培养模型&bull 胚胎发育应用案例细胞球状体样品,利用25x物镜进行Lattice SIM成像,绿色标记线粒体 (MitoTracker Green),红色标记细胞核(NucRed Live 647)。果蝇胚胎 Fasciclin II (颜色深度编码) 和HRP (青色) 标记神经系统,样品来自英国约克大学Ines Hahn
    留言咨询
  • 产品简介蔡司晶格结构光超高分辨率显微镜Lattice SIM 5针对亚细胞结构成像进行优化,实现60nm分辨率高质量活细胞超高分辨率成像。在活细胞超高分辨率成像中不仅实现三维空间分辨率的全面提升,更能快速真实的捕获亚细胞结构的动态变化。产品特点&bull 60 nm的分辨率精确捕获快速动态过程&bull 灵活多样的物镜和成像方式,满足不同样品的需求&bull 高速图像采集模式,提高速度和实验效率应用领域&bull 活细胞快速动态超高分辨率成像&bull 固定样品的超微结构应用案例固定的小鼠睾丸联会复合体,三色荧光标记,蓝色为SYCP3 SeTau647,红色为SYCP1-C Alexa 488,黄色为SYCP1-N Alexa568,两通道间距离60nm,成像物镜:63x/1.4 Oil。样品来自Marie-Christin Spindler, University of Würzburg, Germany.Cos 7活细胞成像,Calreticulin-tdTomato 标记内质网(品红),EMTB-3xGFP标记微管(绿色),右图显示放大区域样品细节分辨率。
    留言咨询
  • 蔡司跨尺度超高分辨率显微镜Elyra 7以更丰富的成像模式满足您各种样品、各种尺度、各种分辨率的成像需求。无论是组织样品的快速光学切片成像,还是60nm活细胞超高分辨率成像,甚至是用于分子水平研究的TIRF和SMLM(单分子荧光定位,Single-Molecule Localization Microscopy)。您可以采用多种成像方式探索样品,并将多尺度的成像数据进行关联,获得从组织-细胞-亚细胞结构-蛋白的多尺度信息。产品特点&bull Lattice SIM成像解析低至 60 nm 的超微结构&bull 使用 SMLM 探索分子细节&bull 在同一设备上实现组织-细胞-亚细胞结构-蛋白图像的多尺度关联应用领域&bull 单分子荧光定位&bull 活细胞快速动态超高分辨率成像&bull 固定样品的超微结构应用案例小鼠小肠切片,在 A-ha 聚合物中标记血管(Alexa 488,橙色)和神经(Alexa 647,青色),以10x/0.3物镜拍摄样品全貌,以63x/1.4物镜拍摄局部细节。样品来自台湾国立清华大学生物科技研究所暨医学系 Shiue-Cheng (Tony) Tang 教授。固定的小鼠睾丸联会复合体,三色荧光标记,蓝色为SYCP3 SeTau647,红色为SYCP1-C Alexa 488,黄色为SYCP1-N Alexa568,两通道间距离60nm,成像物镜:63x/1.4 Oil。样品来自Marie-Christin Spindler, University of Würzburg, Germany.Cos-7细胞双色2D STORM, 品红色标记微管(anti-tubulin-Alexa Fluor 647),黄色标记线粒体(anti-TOMM20-CF568).
    留言咨询

高分辨率细胞显微镜相关的资讯

  • 世界首台可观察活体细胞的超高分辨率生物显微镜问世
    近日,德国IBIDI公司成功开发出一款超高分辨率生物显微镜。该公司宣称基于新型随机光学重建显微技术“(d)STORM”,利用该公司独创的特殊塑料底板“μ-Slides”可实现超高分辨率观察活体细胞。  STED,SIM,(F)PALM 和(d)STORM等新型光学显微技术可有效避免衍射极限,获得纳米级水平的超高分辨率成像。这些超高分辨率显示技术可应用到生物实验研究,观察了解组织细胞分子结构。IBIDI公司采用了创新性的含有亲水性膜涂层的塑料材质底板“μ-Slides”替代传统玻璃底板,首次实现了“活体细胞”超高分辨率观察。这种被成为“ibi-Treat”的亲水性膜涂层性能可以与标准的细胞培养瓶和培养皿相媲美。  IBIDI公司相关研发工作受到了德国联邦教研部《生命科学领域光学技术—基本细胞功能》项目的资助。
  • 苏州医工所将推出超高分辨率显微镜、流式细胞仪等新品
    p  CT、磁共振,几乎是苏州各大医院的“标配”医疗器械,凭借这些先进的设备,医生能够快速、准确地诊断患者的病症。br/br/  不知道患者们在接受检查时,有没有留意过这些医疗器械上的LO-GO——如果他们留意,会发现这些医疗器械的LOGO几乎全是英文字母——目前中国医疗机构使用的绝大多数大型高档医疗器械,都依赖于进口,这些“洋机器”高昂的价格,在一定程度上增加了中国患者的经济负担。br/br/  在苏州医工所,中国医疗器械市场“洋垄断”的尴尬局面正在被打破,他们自主研发的一些设备,已经达到并正在超越世界巨头的水平。医工所所长唐玉国梦想着:在未来的某一天,我国的老百姓去医院就医的时候,用上的都是苏州医工所自主研发和生产的医疗仪器,产品性能优于国外同行,价格还便宜很多。br/br/  美国的“GPS”曾经垄断了中国的卫星导航市场,直到几年前中国自己的北斗卫星导航系统横空出世。br/br/  而目前,另一个“GPS”在中国仍处于垄断地位——GE (通用电气)、PHILIPS(飞利浦)、SIEMENS(西门子)等外资巨头生产的CT类、磁共类、核医学类以及血管造影类等大型高精尖医疗器械,牢牢地占据着全国的医疗系统。br/br/  在苏州科技城科灵路边上一个外观低调的灰色建筑群里,一个400多人的科技创新团队正铆足了劲,向以“GPS”为代表的国际医疗器械巨头发起挑战,这里就是中国科学院苏州生物医学工程技术研究所(简称“苏州医工所”),中科院旗下唯一以医疗仪器为主要研发方向的国立研究机构。br/br/  “我们要耐得住寂寞,沉下心来踏踏实实地工作。我相信,在不久的将来,中国的医生将用中国人自己研发的医疗器械造福人民。”苏州医工所所长唐玉国说。br/br/strongspan style="color: rgb(0, 112, 192) "尴尬:高端医疗器械遭遇“洋垄断”/span/strongbr/br/  科技城医院,苏州最年轻的三甲医院,拥有各种高科技医疗设备。“我们在医疗设备上总共投资了2亿多元,”该院相关负责人介绍,但其中高端大型设备几乎全是进口的、贴着“GPS”的标签,“作为一名中国医生,我觉得有些悲哀。”br/br/  科技城医院只是全国医疗机构的一个缩影。span style="color: rgb(0, 112, 192) "据统计,我国约80%的CT市场、90%的超声波仪器市场、85%的检验仪器市场、90%的磁共振设备、90%的心电图机市场、80%的中高档监视仪市场、90%的高档生理记录仪市场被外资企业垄断。/spanbr/br/  2008年9月,时任中国科学院长春光学精密机械与物理研究所光栅技术研究室主任、国家光栅制造与应用工程技术研究中心常务副主任的唐玉国,被委派到苏州参与筹建医工所,经过4年的努力,2012年11月26日,苏州医工所通过了验收,正式成为了中科院序列的研究所。br/br/  苏州医工所定位于“面向生物医学的重大需求,开展先进生物医学仪器、试剂和生物材料等方面的基础性、战略性、前瞻性的研究工作,引领我国生物医学工程技术的发展,建成医疗仪器科技创新与成果转化平台”。br/br/  完成了筹建工作后,唐玉国留在了苏州,担任医工所所长。br/br/  “简而言之,苏州医工所的主要使命是破解中国医疗器械行业自主创新能力弱、高端医疗器械依赖进口的尴尬。我们要全力以赴培养自己的人才,研发自己的产品,从而打破国外巨头的技术垄断。”唐玉国说。br/br/strongspan style="color: rgb(0, 112, 192) "曙光:“中国之光”撕开垄断“夜幕”/span/strongbr/br/  苏州医工所的主要攻关方向是医用光学类器械、临床检验器械和康复类器械。br/br/  “CT、磁共振被‘GPS’垄断,高端显微镜则被‘LZO’垄断——徕卡、蔡司、奥林巴斯。”唐玉国说,长期以来,我国高端显微光学仪器全部依赖进口,这已经成为制约我国前沿科学研究和科研仪器行业发展的“瓶颈”。br/br/  “要挑战,就要挑战国际顶级权威。”唐玉国和他的团队直接瞄准了“LZO”,2010年,苏州医工所启动了超高分辨率显微镜的研制专项。br/br/  研发高端显微镜最难的是镜头。唐玉国说,这种镜头的分辨率要达到纳米级(1纳米等于10亿分之一米),由10多块镜片组成,能够看清人的脑神经结构。br/br/唐玉国坚信“德国人、日本人能做到的,中国人也能做到,而且会做得更好”。“5+2”、“白+黑”,唐玉国和他的伙伴们拼命工作,他的头发在短短的几年中熬得花白了。br/br/  两年多后,苏州医工所成功地研发出能够媲美“LZO”的超高分辨率镜头,“超高分辨率镜头和我们独到的电子学软件相结合,我们的超高分辨显微镜,在检测速度上比徕卡的同类产品快1-2倍,”唐玉国自豪地说。br/br/  在超高分辨率显微镜的研发过程中,苏州医工所还收获了“副产品”——显微镜中有一个部件叫样品载物台,以前,国产的一个售价9万,奥林巴斯生产的一个售价几十万,但国产的质量远远不如奥林巴斯,于是,苏州医工所的科研人员“顺便”研发出了和奥林巴斯同级别的产品。br/br/  span style="color: rgb(0, 112, 192) "如今,苏州医工所的共聚焦显微镜已经进入工程化;STED显微镜已经完成原理样机,实现超分辨成像,分辨率达到50纳米;完成了3套完整的双光子生物在体功能显微成像系统样机的研制和指标测试。这些项目使我国一举走到世界高端光学显微镜研制的前列。/spanbr/br/  苏州医工所研发的超高分辨率显微镜系列产品,被命名为“中国之光”,这个名字有两重寓意:第一,它是中国人自己研发的;第二,它就像一束曙光,刺破了国外巨头垄断的“夜幕”。br/br/  如今,“中国之光”已经进入国内的多家科研机构和医院,并出口到以色列、德国、美国。br/br/span style="color: rgb(0, 112, 192) "strong梦想:中国人用的医疗器械“苏州智造”/strong/spanbr/br/  超高分辨率显微镜的成功,只是苏州医工所打破国外巨头垄断的开端。br/br/  span style="color: rgb(0, 112, 192) "2015年,苏州医工所又成功研发了拥有10多项国家发明专利和实用新型专利的流式细胞仪。/span流式细胞仪是一种综合了激光技术、计算机技术、流体力学、微弱信号处理技术、细胞化学和生物探针技术等众多领域先进技术和成果的高科技仪器,它可以对细胞的生物物理和生物化学性质(如大小、内部结构,DNA、RNA、蛋白质、抗原等)快速测量并可以分类收集,速度可以达到每秒10000个细胞的多参数高通量测量,被誉为“细胞CT”。br/br/  当前的国内流式分析仪器市场主要由BD、beckman两大公司占有。span style="color: rgb(0, 112, 192) "苏州医工所研制的流式细胞仪是我国第一款面向个性化普及应用的轻便型产品,目前已进入产业孵化阶段。/spanbr/br/  苏州医工所还成功研发了目前世界上最小的超声探头,其体积和一粒米差不多,可以直接插进人体血管,这项成果,震惊了世界医疗器械巨头们。br/br/  在“GPS”所垄断的领域,苏州医工所也有所突破,他们设计了全球首款坐式脑部磁共振仪,即将投入样品制造阶段;他们正在研发专用肺CT、手术机器人……苏州医工所的目标是,到2022年能够在一两个领域处于国际领先地位,10-20种产品投入实际使用。br/br/  唐玉国有一个梦想:在未来的某一天,我国的老百姓去医院就医的时候,用上的都是苏州医工所自主研发和生产的医疗仪器,产品性能优于国外同行,价格还便宜很多。br/br/span style="color: rgb(0, 112, 192) "strong建言:创新“高峰”需要才与财做基础/strong/spanbr/br/  作为省党代会的代表,去年11月,唐玉国和省委书记李强坐在一起,探讨创新话题,关于李强对苏州提出的“创新四问”,唐玉国有着自己的独特见解。br/br/  “人才是创新的基础,没有人才,一切都是空谈。”苏州医工所筹建之初,唐玉国手下只有十几个刚刚毕业的研究生,在他的努力下,十几位“中科院百人计划”专家陆续从欧美来到了苏州医工所,苏州医工所还聘请了德国慕尼黑工业大学神经科学研究所所长和其团队来苏州工作。除了全职引进国外团队,还大胆尝试以“半入职”形式引进国外科技人才,在与一名剑桥大学的博士后谈合作时,唐玉国干脆要求他一年只需要三个月到苏州医工所工作,其他时间可以在英国。截至2016年5月底,苏州医工所拥有“千人计划”专家5人,“万人计划”专家1人,“百人计划”专家14人,江苏省双创人才14人,中科院“青年促进会会员”8人;研究员35人,副研究员50人;高访、客座25人;在学研究生141人。有了人才,苏州医工所在短短几年内发展突飞猛进,“江苏省医用光学重点实验室”、“中国科学院生物医学检验技术重点实验室”等省级和国家级的实验室纷纷建立。唐玉国认为,苏州目前创新人才集聚度不够,政府应该重视人才“造血”,下功夫培养本土创新人才。br/br/  唐玉国认为,科技创新还必须要有坚实的资金后盾,政府应该在这方面舍得投入。他告诉记者,苏州医工所的重大创新成果,基本上是用钱“砸”出来的,仅超高分辨率显微镜一个项目,国家财政部就“砸”了2亿多。“苏州在科技创新方面‘有高原没高峰’,我觉得政府只要舍得‘砸钱’,是可以‘砸’出高峰来的。”/p
  • 超高分辨率荧光显微镜的应用
    超高分辨率荧光显微镜正在不断改变我们对细胞内部结构及运作的认识。不过在现阶段,显微镜技术还是存在着种种不足,如果人们希望显微镜能在生物研究领域发挥重要作用,就必须对其加以改进和提高。  光学显微镜的出现及其影响  自荷兰博物学家、显微镜创制者Antonie van Leeuwenhoek(1632-1723)在17世纪第一次将光线通过透镜聚焦制成光学显微镜并用它观察微生物(microorganisms or animalcule)以来,显微镜就一直是生物学家从事研究工作、探寻生命奥秘必不可少的利器。正是因为有了Leeuwenhoek的这项伟大发明及其后继者对显微镜技术的不断改进和发展,人们才能够对细胞内部错综复杂的亚细胞器等结构的形态有了初步的了解。  此后,研究人员对显微镜技术的追求从未停歇过,他们总是希望能得到分辨率更高的显微镜,从而更好地观察细胞内部更细微的结构。最近,《自然-方法》(Nature Methods)杂志上报道的超高分辨率成像技术(super-resolution imaging, SR imaging)终于使得人们可以在单分子水平上进行观察研究。  SR技术的发展过程  在达到今天SR技术水平的过程中,承载了许许多多研究人员辛勤劳动的汗水,也面临着诸多亟待解决的难题。  在以上这些光学SR成像技术中有两种技术&mdash &mdash 受激发射减损显微镜(stimulated emission depletion microscopy, STED)和饱和结构光学显微镜(saturated structured illumination microscopy,SSIM)最受关注。  最近,基于探针SR成像技术的光敏定位显微镜(PALM)和随机光学重建显微镜(STORM),以及借助荧光基团随机激活特性的荧光光敏定位显微镜(FPALM)都已经取得了成功。  通过基于探针的SR成像技术,可以获得多张原始图像。在每一张原始图像中,细胞内只有一部分被荧光标记的分子能发出荧光,即这些荧光分子都处于不断激活和灭活的交替状态,每一次都只有部分分子能被观察并成像。而且由于每次发出荧光的分子都分散得较为稀疏,因此相互之间不会受到影响,也就避免了因相邻分子发出荧光而无法分辨的问题。最后将这些原始图片叠加、重合在一起就得到了最终的高分辨率图像。这样,就能使得那些以前由于荧光点太密以至于无法成像的结构的分辨率达到纳米级水平,而且成像的分子密度也相当高,可以达到105个分子/&mu m2。  这种分辨率对于生物学家来说,意味着现在可以在分子水平上观察细胞内的结构及其动态过程了。  虽然显微镜技术已经发展到了如此高度,但它仍然只是生物学家研究中使用的一种工具。因此还需要将显微镜获得的图像与其它的试验结果互相参照,才能获得准确的结果。人们需要认清SR显微镜的优势与劣势,为操作以及判断SR图像制定出标准化的操作规范,只有这样才能最大限度地发挥SR显微镜的作用。  现在,由于人们对细胞内各组份的组织结构以及它们的动态变化过程都只有一个概念上的认识,因此,借助显微镜从纳米水平上对这些结构及过程进行真实的观察能让人们发现许多以往所不了解的东西。例如,以前人们通过电镜发现细胞骨架是由大量丝状网格样组织构成时,就有人对此现象持怀疑态度。那些认为细胞骨架是一种用来稀释细胞内生化物质浓汤这样一种结构的细胞生物学家把这种观测结果称作僵化的人为试验结果。  除非最新的SR显微镜图像或者其它的试验结果都能证明细胞骨架是由大量的丝状网格样组织构成的,否则还会有人持上述的怀疑观点。不过已经有其它的生化试验结果证实了早期的电镜观察结果是正确的。当然新兴的SR技术也需要其它传统的生化试验结果予以佐证才有价值,同时还需要电镜的辅助。因为电镜能提供纳米级的观察结果,这对于佐证具有同样分辨率的SR显微镜观测结果来说是最有价值的。  今后,大家在逐步了解、接受和广泛使用SR显微镜的同时,需要注意将会出现的各种问题,以下的表格列出了部分与SR显微镜使用相关的缺点及其目前的解决方法。  最近几年,就如何处理图像已经有了非常严格的操作规范。不过迄今为止,对于怎么处理SR图像还没有一个标准的操作规范。尤其需要指出的是,PALM和STORM数据在某些重要因素上,graph方面的共性要多于image方面。在一张SR图像上,分子的不确定性和密度都能用颜色表示出来,这种图像把细胞内该分子有可能出现的任何地点都标示出来了。而且只有被标记的分子按照一定的标准(发出的光子数)判断它的确是一个单分子并且定位准确之后才显示出来。必须对获得的图像进行这样的标准化处理之后才能分析结果。同样,对于试验数据也需要如此进行标准化处理。要提高分辨率不仅需要分子定位、分布得比较好,还需要分子数目够多,以致能达到尼奎斯特判断法(Nyquist criterion)的要求,即分子间的平均距离要小于显微镜分辨率的一半。虽然上述问题都不会影响SR显微镜的应用,但由于存在这些问题,所以我们应该时刻提醒自己,一定要仔细判读、分析SR显微镜的图像结果,只有这样才能得到有价值的生物学结论。  SR荧光显微镜在生物学研究中的应用  到目前为止,人们还很难得知,SR荧光显微镜会对生物学界的哪一个领域带来重大变革,但已经有几个领域出现了明显的改变。这些研究领域是动态及静态的细胞组织结构研究领域、非均质分子组织研究领域、蛋白动态组装研究领域等。这几个领域都有一个共同的特点,那就是它们研究的重点都是分子间如何相互作用、组装形成复合物。因此,能在纳米水平观察这些分子对它们来说具有重大的意义。  通过观察蛋白质之间的组合关系来了解它们的作用,并能为后续的细胞功能试验打下基础  结构生物学研究在这方面已经取得了很大的进展,目前已经发现了4-8纳米大小的分子间相互作用组装成细胞微管、肌丝、中间丝这些超过10微米大小聚合物的机制。不过对于核孔复合体、中心体、着丝点、中间体、粘着斑这些由许多不同蛋白经过复杂的三维组装方式组合起来的复合体,还需要更好的办法来进行研究。目标就是要达到分子水平的分辨率,这样就可以观察大复合体形成过程中的单个分子,也就能对这些分子的化学计量学有所了解了。要得到更多的生物学信息就需要SR显微镜这样的三维成像技术,例如可以使用活体细胞SR成像捕捉细胞骨架的动态重构过程等等。  SR成像有助于人们更好地了解分子间的差异  细胞膜蛋白组织方式的经典模型已经从随机分布的液态镶嵌模型转变成了脂筏模型、穴样内陷模型或特殊蛋白模型。这种差异与细胞不同功能相关,例如在高尔基体、cargo蛋白和高尔基体酶蛋白之间必须发生相互作用,但最终它们会按照各自的功能分开,发挥各自的作用。有很多试验手段,例如免疫电镜技术、荧光共振能量转移技术(FRET)等都已经被用来研究这种膜不均一性问题了。多色PALM技术(Multicolor PALM)为人们提供了一种新的手段用来观察膜蛋白集合、组织的过程,并且还能定量分析不同蛋白间的空间距离关系。因为有了PALM提供的单分子信息,人们就可以清楚地了解蛋白分子间的空间关系,甚至有可能计算出相隔某一距离的分子之间发生相互作用的可能性。这种方法除了用于研究膜蛋白之外,还能用于许多非随机分布的生物系统研究,例如研究微管上的马达蛋白。  SR成像技术还能用于在单分子水平研究蛋白动态组装过程  细胞对外界刺激信号的反应起始于胞膜,在胞膜上受体蛋白之间发生动态的集合,用来调节细胞的反应活性。像HIV这种有被膜病毒也是在细胞膜上完成病毒颗粒组装过程的病毒,也是利用了细胞的物质转运机制。尽管现在蛋白组装的物理模型还远远没有完成,但研究人员知道膜蛋白的动态组装过程是不均一的,所以通常使用荧光试验手段很难获得分子水平上的信息。同样,单分子测量技术(Single molecule measurements)也存在着类似的局限,因为单分子测量技术只能观察细胞内的几个分子,所以缺乏整体的信息。因此由于缺乏空间分辨率,很难动态地研究蛋白质组装过程。SR荧光成像技术与活细胞成像技术和单分子示踪技术(sptPALM)结合就能解决这一问题。我们可以借助分子密度准确地看出PALM图像中的蛋白质簇,蛋白质簇动态的统计数据和形态学数据能帮助我们了解蛋白质动态组装的机制。  上面只是选了生物学研究中的3个方面来说明SR技术的用途,但这已经很好的展示了我们是如何从Leeuwenhoek最初对于生命组成的假设一步一步走到了今天,使用SR显微镜来证实构成生命体的最基本材料&mdash &mdash 分子的组合过程。STED和PALM的商业化产品已经上市了,这标志着SR显微镜的时代来临了。我们相信SR显微镜在充满创造力的生物学家们手中,一定会充分发挥它的作用,帮助我们发现更多生命的奥秘。  原文检索:  Jennifer Lippincott-Schwartz & Suliana Manley. Putting super-resolution fluorescence microscopy to work. Nature Methods, 17 December 2008 doi:10.1038/nmeth.f.233

高分辨率细胞显微镜相关的方案

高分辨率细胞显微镜相关的资料

高分辨率细胞显微镜相关的试剂

高分辨率细胞显微镜相关的论坛

  • 德国开发出首台可观察活体细胞的超高分辨率生物显微镜

    近日,德国IBIDI公司成功开发出一款超高分辨率生物显微镜。该公司宣称基于新型随机光学重建显微技术“(d)STORM”,利用该公司独创的特殊塑料底板“μ-Slides”可实现超高分辨率观察活体细胞。 STED,SIM,(F)PALM 和(d)STORM等新型光学显微技术可有效避免衍射极限,获得纳米级水平的超高分辨率成像。这些超高分辨率显示技术可应用到生物实验研究,观察了解组织细胞分子结构。IBIDI公司采用了创新性的含有亲水性膜涂层的塑料材质底板“μ-Slides”替代传统玻璃底板,首次实现了“活体细胞”超高分辨率观察。这种被成为“ibi-Treat”的亲水性膜涂层性能可以与标准的细胞培养瓶和培养皿相媲美。 IBIDI公司相关研发工作受到了德国联邦教研部《生命科学领域光学技术—基本细胞功能》项目的资助。

  • 【新闻】美国研制高分辨率光学显微镜

    美国科学家称,利用世界上最先进的高分辨率光学显微镜,他们观察到了H2AX蛋白质在细胞核内的团状分布情况,以及DNA受损后它们如何移动到所需地方对基因进行“急救”或修复。 目前,有许多生物过程都是无法用视觉观察到的,原因是高分辨率电子显微镜常常因样品制备问题出现偏差,而光学显微镜虽然容易制备且能观察活细胞,但其分辨率却比较低。然而,通过对光波进行适当的操作,生物科学家扩展了光学显微镜的能力,成功地研制出4Pi显微镜,并通过它观察到了细胞的成分,其中包括细胞核的内部结构。 在新出版的美国《国家科学院学报》上,美国杰克逊实验室分子生物物理学所研究人员乔尔格• 毕瓦斯多夫及其合作者联合发表文章介绍说,借助4Pi光学显微镜,他们观察到了DNA双螺旋结构断裂情况下细胞的反应,并发现了DNA双螺旋结构断裂(即遗传物质严重受损)后引发的细胞内H2AX蛋白质一系列验证和修复损伤动作。如果细胞成分在修复过程中出现缺陷,则存在着发生癌症和免疫问题的危险,因此细胞内的反应十分重要。 H2AX是一种组蛋白。作为结构蛋白质,它们能缠绕在受损的DNA上,同时它们具有基因管理和基因修复的功能。H2AX在DNA受损后能快速做出反应,转变成γ-H2AX,这对协调发信号和修复等极其重要。 利用选择性着色技术和4Pi显微镜,毕瓦斯多夫还观察到H2AX组蛋白成团状均匀地分布在细胞核内。他认为,这种团状结构或许决定了DNA发生断裂时,γ-H2AX进行对应扩散的边界。 毕瓦斯多夫说:“H2AX团状分布也许为迅速和有效地应对DNA受损提供了平台。下一步,我们将分析H2AX团的位置及与其他细胞核成分的关系。”

  • 【原创】普通生物显微镜可变成媲美共焦显微镜的高分辨率显微镜

    分子级高分辨率的激光扫描共焦显微镜和结构照明显微镜是在细胞生物学和其他相关领域强有力的研究工具,但是它们高昂的价格也使很多潜在用户望而却步。波士顿大学的科学家最近开发出一种显微新技术 (HiLo Microscopy),能够将普通的广域荧光显微镜变成可与激光扫描共焦显微镜和结构照明显微镜相媲美的高分辨率生物显微镜。这一技术包括一个简单的可以在均衡光源和结构光源之间自由转换的显微镜附件和一套功能强大的图像处理软件。该软件仅通过处理在均衡光源和结构光源条件下拍摄的两张分辨率不同的照片就可以得到全分辨率的三维图像。这一技术可用于任何现有的广域荧光显微镜,而成本大大低于激光扫描共焦显微镜和结构照明显微镜。由于成像机理简单,该技术的成像速度是常用的生物显微技术中最快的,而且操作简便,不受样本移动的影响。波士顿大学目前正在积极寻求企业合作,争取早日将这一突破性的技术推向市场。

高分辨率细胞显微镜相关的耗材

  • BrightLine® λ /2 平整度超高分辨率激光
    BrightLine® λ/2 平整度超高分辨率激光显微镜激发块盒超高分辨率显微镜激发块盒为基于激光器的显微镜设立了新标准。这些激发块盒经过了优化处理,可以装配λ/2 平整度的1 mm 厚的超高分辨率二向色镜分光镜。zui大化信噪比、zui小化以下应用的失真。如TIRF、共聚焦、PALM、STORM、SIM 及其他超高分辨率技术。1)使用 1 mm厚的二向色镜分光镜,装配后保证达到 λ/2 P-V 每英寸的平整度2)zui大化切换速度、zui小化光斑变形、zui小化发射光的散射3)即使在使用较大直径的照明光斑时,也可zui小化反射波前扭曲4)可广泛应用于常规的激光线 & 显微镜激发块盒 (例如 奥林巴斯 U-MF2 & U-FF, 蔡司 FL Cube EC P&C, 尼康 TE 2000)传统的显微镜镜盒会显著降低二向色镜分光镜的平整度,因此会带来偏差,但是超高分辨率成像系统对光学波前扭曲非常敏感,需要zui高质量的部件以取得zui佳的系统敏感度。相对于标准的二向色镜分光镜,我们新推出的工业ling先的λ/2 平整度(厚度 1 mm )的激光二向色镜分光镜可以zui小化聚焦偏移、zui小化反射光斑的变形,但是,为了实现这些产品的全部平整度性能,这些二向色镜分光镜需要小心的安装进显微镜激发块盒中。Semrock 研发了合适的方法,可以在激发块盒中安装 λ/2 平整度的超高分辨率 1 mm 厚的二向色镜分光镜,从而保证平整度性能。该产品作为标准目录产品提供,亦可购买适用于通用显微镜型号的激发块盒。单带通 & 长通滤光片组Olympus U-MF2Olympus U-FFZeiss FL Cube& EC P&CNikon TE 2000LF405-C现货库存现货库存现货库存现货库存LF405/LP-C现货库存现货库存现货库存现货库存LF442-C现货库存现货库存现货库存现货库存LF488-D现货库存现货库存现货库存现货库存LF488/LP-D现货库存现货库存现货库存现货库存LF514-C现货库存现货库存现货库存现货库存LF561-C现货库存现货库存现货库存现货库存LF561/LP-D现货库存现货库存现货库存现货库存LF594-D现货库存现货库存现货库存现货库存LF594/LP-D现货库存现货库存现货库存现货库存LF635-C现货库存现货库存现货库存现货库存LF635/LP-C现货库存现货库存现货库存现货库存多带通滤光片组Olympus U-MF2Olympus U-FFZeiss FL Cube& EC P&CNikon TE 2000LF488/561-B现货库存现货库存现货库存六月发布LF488/561-2X-C现货库存现货库存现货库存六月发布LF488/561-2X2M-C现货库存现货库存现货库存六月发布LF405/488/532/635-B现货库存现货库存现货库存六月发布LF405/488/532/635-4X-B现货库存现货库存现货库存六月发布LF405/488/561/635-B现货库存现货库存现货库存六月发布LF405/488/561/635-4X-B现货库存现货库存现货库存六月发布LF405/488/561/635-4X4M-B现货库存现货库存现货库存六月发布
  • HR4000高分辨率光谱仪
    HR4000高分辨率光谱仪我们的新一代的高分辨率光谱仪,是全新的光学和电子学器件组合。适合应用于激光特征分析,气体吸光度测量和确定原子散射线等领域。HR4000配有全新的Toshiba3648像素CCD阵列探测器,光学分辨率可达0.2 nm(FWHM)。特点: 高分辨率,最高分辨率可达0.02nm(FWHM) 电子快门避免饱和度问题 板载微控制器 即插即用USB接口 光学平台 采样附件光谱分辨率(FWFM)可达0.02nmHR4000是我们新一代高分辨率的光谱仪,它采用了Toshiba的3648像元的线阵CCD,光学分辨率可达0.02nm(FWHM)。HR4000光谱范围为200-1100nm,具体的光谱范围和分辨率配置取决于实际光栅和狭缝的选择。HR4000适用于激光测量、气体吸收测量以及原子辐射线的测量等领域。电子快门避免饱和度问题软件中积分时间的可由用户设定,它类似于一个照相机的快门速度:积分时间值即是探测器“察看”所进入光子的总体时间。因为,Toshiba探测器有一个电子快门,你可通过软件设定最小积分时间到3.8毫秒,这样就允许你可以测量像激光脉冲如此短暂的事件。使光谱仪的积分时间缩短的能力也消除了在高光水平应用领域如激光分析的饱和度问题。板载微控制器 HR4000的板载微控制器使得对光谱仪的控制非常方便。通过一个30针的连接器,您可以在软件中设置所有的光谱仪操作参数:控制光源、操作进程以及从外部对象获取信息等。配备有10个用于外部设备接口的用户可编程I/O端口、一个模拟输入和一个模拟输出接口,以及一个用于触发其它设备的脉冲发生器。即插即用USB HR4000通过USB2.0或RS-232串口和PC、PLC或其它嵌入式系统相连。在串口模式下,HR4000需要额外的5伏供电电源(不包含在产品中)。每台光谱仪特有的参数被编程存储在系统的内存芯片中,可以非常方便地被光谱仪操作软件读取。光学平台 用户通常要求光谱仪可以适合他们的特殊需要,所以HR4000光谱仪可以根据您的应用需要配置光学平台。您可以选择狭缝尺寸,探测器,滤光片和光栅等。采样附件 HR4-BREAKOUT 是一个被动模块,提供HR2000+不同功能的接口。BREAKOUT盒可与多种与光谱仪的连接如:外触发器、GPIO、光源、RS-232和模拟输入/输出。Specifications
  • Envirogel 高分辨率净化柱
    Envirogel 高分辨率净化柱:GPC还可用于样品净化制备!Envirogel?高分辨GPC净化柱,内径为19mm,专门设计用于从环境样品中除去低挥发性的、高分子量干扰物,如脂类和天然树脂,按EPA 3640A方法所述。与自行所填装的37-75 μm(200-400目)的低效树脂柱相比,能够提高净化速度、分辨率,并同时降低了溶剂损耗。订货信息:色谱柱规格部件号(二氯甲烷)部件号(己烷/乙酸乙酯)Envirogel GPC净化柱19mm×150mmWAT036555186001915Envirogel GPC净化柱19mm×300mmWAT036554186001916Envirogel GPC保护柱4.6mm×30mm186001913186001914*EPA 方法3640A要求上述两种柱子色谱柱: 2根Envirogel GPC色谱柱19mm×300mm和19mm×150mm样品: 2000ul溶剂: 二氯甲烷流速: 5mL/min检测: UV254nm,1.5AUFS1. 玉米油,62.5mg/mL2. 二(2-乙基已基)临苯二甲酸酯,2.5mg/mL3. 甲氧氯,0.5mg/mL4. 二萘嵌苯,0.05mg/mL5. 硫磺,0.2mg/mL
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制