在线杂质缺陷检测系统

仪器信息网在线杂质缺陷检测系统专题为您提供2024年最新在线杂质缺陷检测系统价格报价、厂家品牌的相关信息, 包括在线杂质缺陷检测系统参数、型号等,不管是国产,还是进口品牌的在线杂质缺陷检测系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合在线杂质缺陷检测系统相关的耗材配件、试剂标物,还有在线杂质缺陷检测系统相关的最新资讯、资料,以及在线杂质缺陷检测系统相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

在线杂质缺陷检测系统相关的厂商

  • 400-860-5168转2434
    杭州万深检测科技有限公司座落在杭州西湖区的高新技术园区内,是一家从事顶尖的检测计量分析软件系统及仪器、智能检测监控系统及工程、软件信息系统及多媒体技术研发、集成、销售与服务的国家级高新技术企业(证书号GR201633001966)。公司在产品线的研发上紧密依托浙江理工大学视觉检测研究所,响应国家对产、学、研整合,开发自主知识产权的号召,只做对人类进步有重要意义的静态、动态机器视觉自动检测产品与研发,可按您的特殊需要定制开发(www.wseen.com)。公司因卓越的博士群体和软硬件工程师的大量加入而自豪,事业蒸蒸日上。公司追求:正气、争气、人气、通气;做一流的研究,出一流的产品。组织管理原则:让每位有志向者充分地展示自我才能。 【万深】被广泛认可、处于领先地位的产品系列有:1、高清晰全自动菌落计数分析仪;全自动抑菌圈测量仪;抗生素药敏效价分析仪;生物显微图像分析系统(细胞计数/形态学分析);AlgaeC型浮游生物(藻类、浮游动物)智能鉴定计数分析系统;智能型β-内酰胺酶测量分析仪系统;全自动LED芯片计数仪。其它还有:生物芯片分析系统;生物显微镜的智能化与镜检图像管理系统;精微颗粒自动视觉分析系统;超大景深多聚焦显微高清成像与自动拼图系统。2、全能型植物图像分析系统(叶面积、病斑叶面积、虫损叶面积、叶色分档分析、根系分析、年轮分析、瓜果剖切面分析);大米外观品质检测分析仪;自动种子考种分析及千粒重仪(含出苗计数、虫口计数);超快自动数粒及千粒重分析仪;超快的鱼虾苗种自动计数仪;小麦品质分析及面粉麸星检测仪;水稻群丛氮肥状态远程自动诊断推荐系统。3、动态环境下的早期烟雾火苗事件视频检测系统;仪表状态智能视觉值班报警系统;警戒线自动监视与报警系统;电器产品冒烟、着火点温度的自动监控记录仪;多目标主动视觉实时跟踪与监控系统。4、服装尺寸自动测量系统;圆周孔组的孔径-位置度自动测量仪;织物缺陷自动在线检测系统;装箱缺瓶自动检测系统;瓶装液洁净度自动检测系统;瓶口瓶盖缺陷自动检测系统;零件尺寸自动测量系统;电镀件表面缺陷检测系统;生产流水线中的异物自动排查系统;平行组合反应器计算机自动控制系统;LCD背光均匀度色差检测系统;多用途自动比色配色系统;学习型印染配色处方服务支持系统,等。【万深】已获认证与荣誉:信息产业部软件产品证书备案,证书编号:浙DGY-2010-0215; 通过浙江省软件评测中心评测,证书编号:(2010)电检软字5173号信息产业部软件产品证书备案,证书编号:浙DGY-2010-0310; 通过浙江省软件评测中心评测,证书编号:(2010)电检软字5174号信息产业部软件产品证书备案,证书编号:浙DGY-2010-0316; 通过浙江省软件评测中心评测,证书编号:(2010)电检软字5175号信息产业部软件产品证书备案,证书编号:浙DGY-2010-1103; 通过浙江省软件评测中心评测,证书编号:(2010)电检软字7480号信息产业部软件产品证书备案,证书编号:浙DGY-2010-1104; 通过浙江省软件评测中心评测,证书编号:(2010)电检软字7478号信息产业部软件产品证书备案,证书编号:浙DGY-2010-1105; 通过浙江省软件评测中心评测,证书编号:(2010)电检软字7479号软件著作权:万深早期烟雾火苗智能视频检测系统软件V1.0(简称:SD-A),证书号:软著登字第0443896号(2012年8月16日授权原始取得全部权利)信息产业部软件产品证书备案,证书编号:浙DGY-201401607; 通过浙江省软件评测中心评测,证书编号:No.14BD1651取得国家发明专利(授权日:2015.9.2),发明专利号:ZL 2013 1 0172280.X【万深】理念与方针:诚信。以人为本、以质取信、以科技创造价值。创造、服务、回报客户。
    留言咨询
  • 主要经营:X射线拍片、超声波UT探伤、MT磁粉探伤、PT渗透探伤、相控阵PA检测、TOFD检测、涡流检测ET、CR、DRX射线实时成像,管道焊缝、铸件、锻件、非金属件缺陷检测至信检测创建于2014年,总部位于宁波,在昆山设有无损检测实验室,先后取得了CMA、 CNAS、TSG等无损检测资质,涵盖200余项各类无损检测标准,可为高铁零部件、汽车零部件、航空航天、压力容器、游乐设施、钢结构等各类行业提供全面的无损检测技术服务,检测报告具有国际公信力。作为细分领域的第三方实验室, ZNDT致力于不断提升公司服务能力,帮助客户及时准确的进行安全风险评估,立志成为国际领先的第三方无损检测技术服务商。
    留言咨询
  • 上海火焱检测技术有限公司是一家专业从事无损检测设备销售,技术服务和检测系统集成的高新技术企业,致力于为用户提供全方位的超声自动检测技术与服务。主要针对于压力容器、航天、航空、兵器、核工业、汽车制造、机械制造、电力、电子、科研院校检测等.并以优质的售前售后服务,赢得好评。主要代理产品 :加拿大RD/TECH超声、超声相控阵、TOFD(大壁厚焊缝) 探伤仪,涡流、涡流阵列探伤仪美国斯特维利超声探伤仪 、涡流探伤仪、粘接测试仪、电导率测试仪、超声波测厚仪日本奥林巴斯(Omnisacn MX )成像超声波探伤仪、Omnisacn MX TOFD导波探伤仪德国莱卡Leica金相显微镜OLYMPUS工业内窥镜作为世界无损检测先行者RD TECH公司在中国华东的独家代理,承担着在中国的设备销售,技术服务工作。为用户提供一系列的相控阵超声,常规超声,涡流,涡流阵列,漏磁设备。新的合作伙伴包括Staveley-NDT,Panametrics-NDT,NDT-Engineering。Staveley-NDT主要致力于便携式超声检测产品,包括缺陷检测仪系列,超声检测仪系列,涡流检测仪系列,粘接仪系列,精密厚度计,缺陷检测仪和探头,公司可以为用户提供在任何应用场合下可靠的检测和测量方案服务。
    留言咨询

在线杂质缺陷检测系统相关的仪器

  • 钢研纳克钢管视觉表面缺陷自动检测系统:由高速CCD相机系统、同步成像光源系统、存储及图形分析服务器系统、景深自动调节的检测平台系统及软件等组成,可实现二维+三维表面缺陷连续自动检测、分类评级和记录。可以快速且有效检测裂纹、凹坑、折叠、压痕、结疤等各类缺陷,能够适应于复杂的现代钢铁工业生产环境,能够完美替代目视检测,达到无人化生产的水平。 图1 钢管视觉表检系统 图2 CCD高速相机系统1.特点独特二维+三维成像技术:二维+三维集成成像,不仅能准确检测开口缺陷深度,而且深度很浅的细小缺陷也能有效检测。二维、三维结合技术解决了目前三维检测系统只能检出有一定深度缺陷、无法检测表面深度较浅但危害性较大的缺陷的问题。相机景深自动调整技术:能够对不同规格的工件进行自动调整,实现大景深变化背景下的高清成像。卷积神经网络缺陷算法:基于深度学习的表面缺陷检测算法,能够在复杂背景下有效地减少计算时间快速的采集缺陷特征,具有领先的缺陷检出率及分类准确率。2.主要功能在线缺陷实时检测:系统在线检测折叠、凹坑、裂纹等钢管外表面常见自然缺陷缺陷高速识别:快速分析获取缺陷数量、大小、位置(在长度、宽度方向上位置)、类型等信息,显示宽度缺陷模式缺陷分类统计:可按缺陷种类、长度、深度、位置、面积、等进行分类及合格率统计。实时图像拍照:实时过钢图像以及每根钢管记录的图像的“回放”功能,可进行多个终端显示图像回放。机器自学习:系统检出的缺陷和人工核对后,进行对应缺陷的样本训练,形成机器自学习,提高同类缺陷的识别准确率3.检测效果图3 图软件主界面图4 系统分析界面图5 缺陷样本自动标注常见缺陷 划伤 辊印 结疤 裂纹图6 检测到的常见表面缺陷目前该产品已在钢管生产线投入使用,解决了长期困扰客户的表面缺陷实时检测的难题。详情可咨询钢研纳克无损检测,电话: 手机:,E-mail:
    留言咨询
  • 在线表面杂质缺陷检测系统里程碑式创新的全自动在线检测,专门用于密封件,管材件和线缆 表面杂质缺陷检测专业汽车产品检测车体,车门,车罩的密封条和密封件 雨刮 内部装饰板车罩 车体和发动机的金属件 封边件 和其他更多需要检测的产品
    留言咨询
  • 【药瓶包装缺陷检测】基本说明  药瓶包装外观缺陷检测系统主要针对口服液玻璃药瓶、塑料瓶及塑料容器进行快速、可靠的检测,项目有飞边、污渍、缺料、瓶口圆度、杂质物、孔洞、薄壁区域检测等,医药包装的检测方法除人工检测外便是更智能化自动化视觉检测设备,引用机器视觉检测,不仅可以提高药品的检测效率和准确性,更为企业降低了人工成本。药瓶机器视觉缺陷检测在制药过程中主要运用药品的生产、包装、封盒/封口、贴标、喷码、装箱等。  【药瓶包装缺陷检测】产品功能  不良处理缺陷检测、异物缺陷检测、瓶体尺寸缺陷检测、瓶液位判断、瓶身轧盖外观检、测贴标缺陷检测  【药瓶包装缺陷检测】产品特点  1.操作简单:快速建模,向导设置,直观的用户界面  2.检测精度高:可针对不同区域设置不同的精度等X  3.误报率低:检测误报率低  4.检测速度:X快速度20000pcs/小时(检测不同的产品速度不同)  5.不良存档:检测到的缺陷及不良图片存档到制定文件夹,可供操作人员针对不良追溯。  【药瓶包装缺陷检测】适用范围  药瓶包装外观缺陷检测系统可应用于口服液玻璃瓶体、塑料瓶及塑料容器、饮料瓶等瓶体外观缺陷在线检测。  【药瓶包装缺陷检测】产品参数  检测速度:250瓶/分钟--500瓶/分钟(可调)  检测项目:(玻璃屑、金属屑、纤维、黑点、白点)、液位、轧盖、瓶盖表面印刷等  电 压:AC3~380V 50HZ  设备容量:14KW  工作台高度:980mm  适用范围:20ml~60ml口服液  【药瓶包装缺陷检测】企业介绍  杭州国辰机器人科技有限公司(浙江智能机器人省级重点企业研究院,简称“浙江智能机器人研究院”)成立于2015年7月,位于杭州钱塘江畔的萧山国家经济技术开发区内,是一家以机器人核心关键技术开发与应用、机器人自动化系统集成、机器人教育以及机器人多元化产业发展,并重点致力于智能服务机器人研发与产品化的企业实体。国辰服务机器人产品可应用于小区,门岗,酒店,景区,讲解,营业厅,厂房,仓库,机房,实验室等多种场景,可提供智能机器人,服务机器人,巡检机器人,喷涂机器人,迎宾机器人,管家机器人,酒店机器人,景区机器人,讲解机器人,仓库机器人,布匹缺陷视觉检测,agv叉车,无人搬运机器人,导游机器人以及营业厅机器人等多种智能服务机器人产品。
    留言咨询

在线杂质缺陷检测系统相关的资讯

  • 扬尘监测系统存天然缺陷
    “扬尘是一种十分复杂的尘源,目前国内外尚没有对扬尘统一的定义。”当前,扬尘的治理和监管已成为城市空气质量改善的重要工作领域。但我国扬尘监测跟不上治理需求,存在监测指标、监管系统和监控机制等方面的短板。  当前,扬尘的治理和监管已成为城市空气质量改善的重要工作领域。但据悉,目前监测设备、指标设定还跟不上治理需求 单侧点监管系统也存在不少缺陷 在监管方式上,没有安装在线扬尘监测设备的施工场地,工地施工人员与环境监管人员“躲猫猫”,依靠执法人员人工巡查,很难抓住现行。  工地与环境监管“躲猫猫”  工地多,监管人力有限不能全覆盖  在没有安装扬尘监测系统的工地,常发生施工人员与环境监管执法人员“躲猫咪”现象,严重影响了扬尘污染监管。  据介绍,上海环保局环境监察总队日前在暗访检查工地过程中,发现浦东新区原世博园区有一个施工工地,在平整道路时,露天作业 也没有设置洒水池等有效防护措施,进出渣土车辆驶过,尘土飞扬,路过工地的人们纷纷掩鼻而过,扬尘污染严重。  同日,在上海徐汇区龙华寺附近的一建筑工地,也发现在开挖地面时没有任何防护,大门有一个冲洗水池,水比较浅,起不到冲洗的作用,渣土车辆进出大门,掀起一股气浪,尘土满天飞扬。  或许是工地管理人员发现了暗访执法人员,当第二天再到工地时,工地环境发生了一些改观,虽有扬尘污染的痕迹,但并不严重。  当环境监察人员进入工地查询时,工地管理人员却矢口否认昨天有扬尘污染情况发生,工地保持宁静,停止施工,也不见车辆进出。由于没有安装监控系统,没有抓个现行,环境监察部门无法处理,工地逃过处罚。  据了解,目前上海市很多地区对扬尘的监控,主要依靠环境执法人员去工地现场巡检,因人力有限,不仅难以全覆盖,也缺乏时效性。  据上海市环保部门人士介绍,工地扬尘在时间上具有偶发性、在地点上具有不固定性,要达到控制污染源的效果,采取全面、有效的监控手段极为重要。  扬尘单测点监管系统有天然“缺陷”  监测结果不全面、真实性差、难通用  据了解,扬尘污染是上海大气污染治理的一大顽症。根据上海市大气细颗粒物来源解析最新结果,扬尘已成为仅次于移动源、工业生产和燃煤的第四大污染源。  近年来,上海开始实施工地扬尘在线监测试点工作,取得了一定成效,比如“泥头车”现象显着减少、施工企业的扬尘控制意识有所加强等。但相关人士坦言,这种监管也暴露出许多问题。  首先,现有系统难以保证监测结果的全面性。相关环保人士透露,目前所采用的扬尘监测系统在每个施工工地(不论面积多大)仅设置一个测点,由于工地面积范围较大,且城市区域风向等气象参数多变,扬尘发生的位置不可能仅仅局限在一处,因此,单点监测既无法判断扬尘产生的位置,也无法确定扬尘落点的位置。  其次,现有系统难以反映监测数据的真实性。现有系统采集的数据一般都经由自有平台进行修正后再显示在终端上,数据的准确性受修正方法的影响,导致显示数据与真实值始终存在较大误差。  另外,现有系统难以实现数据传输的通用性。不同企业生产的扬尘在线监测系统使用各自的通信协议,虽然能满足设备到各自监控平台的数据传输,但彼此之间的数据传输标准不统一,互相之间无法形成有效的信息共享,也增加了环保部门的监管难度,不利于形成标准化、规范化的扬尘监管体系。  业内人士认为,单测点监管系统有天生缺陷,不能很好地起到监管威慑作用,已不适应目前扬尘整治工作新要求,更何况只安装在试点工地。  扬尘监测跟不上治理需求  大部分是事后监测,技术不太成熟、设备不足  “扬尘是一种十分复杂的尘源,目前国内外尚没有对扬尘统一的定义。”CTI华测检测认证集团环境事业部华北区经理文唤成说。  在环保领域,《防治城市扬尘污染技术规范》(HJ/T393-2007)指出,扬尘是地表松散颗粒物质在自然力或人力作用下进入到环境空气中形成的一定粒径范围的空气颗粒物,主要分为土壤扬尘、施工扬尘、道路扬尘和堆场扬尘。  文唤成介绍说,通过对颗粒物监测,可以为大气污染防治以及污染源解析提供数据支撑。目前,国内对扬尘的手工监测结果大部分是以小时均值、日均值等形式体现,不能全面反映瞬时污染或者实时污染。特别是一些瞬时高污染,手工监测容易受采样时空的限制而未采到代表性的样品,属于事后监测。  目前反映扬尘的环境监测指标有:总悬浮颗粒物、PM10、PM2.5、降尘等,针对这些指标,其中有些监测技术不太成熟、缺乏专业设备,影响检测结果的准确性。  比如《防治城市扬尘污染技术规范》(HJ/T393-2007)中的道路积尘负荷指标,是衡量道路扬尘排放的重要指标,需要用到带收集装置的真空吸尘器、封闭的摇床等设备,生产厂家很少,市场上很难采购到,给道路扬尘监测带来困难。  文唤成说,CTI华测检测作为第三方监测机构,对扬尘监测有所涉足,但企业主动委托监测需求量不多。  他认为,应重视扬尘监测,加强立法以及标准和技术指南的制定工作,同时要加大监测技术研发力度,推动扬尘污染防治。
  • 【综述】碳化硅中的缺陷检测技术
    摘要随着对性能优于硅基器件的碳化硅(SiC)功率器件的需求不断增长,碳化硅制造工艺的高成本和低良率是尚待解决的最紧迫问题。研究表明,SiC器件的性能很大程度上受到晶体生长过程中形成的所谓杀手缺陷(影响良率的缺陷)的影响。在改进降低缺陷密度的生长技术的同时,能够识别和定位缺陷的生长后检测技术已成为制造过程的关键必要条件。在这篇综述文章中,我们对碳化硅缺陷检测技术以及缺陷对碳化硅器件的影响进行了展望。本文还讨论了改进现有检测技术和降低缺陷密度的方法的潜在解决方案,这些解决方案有利于高质量SiC器件的大规模生产。前言由于电力电子市场的快速增长,碳化硅(SiC,一种宽禁带半导体)成为开发用于电动汽车、航空航天和功率转换器的下一代功率器件的有前途的候选者。与由硅或砷化镓(GaAs)制成的传统器件相比,基于碳化硅的电力电子器件具有多项优势。表1显示了SiC、Si、GaAs以及其他宽禁带材料(如GaN和金刚石)的物理性能的比较。由于具有宽禁带(4H-SiC为~3.26eV),基于SiC器件可以在更高的电场和更高的温度下工作,并且比基于Si的电力电子器件具有更好的可靠性。SiC还具有优异的导热性(约为Si的三倍),这使得SiC器件具有更高的功率密度封装,具有更好的散热性。与硅基功率器件相比,其优异的饱和电子速度(约为硅的两倍)允许更高的工作频率和更低的开关损耗。SiC优异的物理特性使其非常有前途地用于开发各种电子设备,例如具有高阻断电压和低导通电阻的功率MOSFET,以及可以承受大击穿场和小反向漏电流的肖特基势垒二极管(SBD)。性质Si3C-SiC4H-SiCGaAsGaN金刚石带隙能量(eV)1.12.23.261.433.455.45击穿场(106Vcm−1)0.31.33.20.43.05.7导热系数(Wcm−1K−1)1.54.94.90.461.322饱和电子速度(107cms−1)1.02.22.01.02.22.7电子迁移率(cm2V−1s−1)150010001140850012502200熔点(°C)142028302830124025004000表1电力电子用宽禁带半导体与传统半导体材料的物理特性(室温值)对比提高碳化硅晶圆质量对制造商来说很重要,因为它直接决定了碳化硅器件的性能,从而决定了生产成本。然而,低缺陷密度的SiC晶圆的生长仍然非常具有挑战性。最近,碳化硅晶圆制造的发展已经完成了从100mm(4英寸)到150mm(6英寸)晶圆的艰难过渡。SiC需要在高温环境中生长,同时具有高刚性和化学稳定性,这导致生长的SiC晶片中存在高密度的晶体和表面缺陷,导致衬底和随后制造的外延层质量差。图1总结了SiC中的各种缺陷以及这些缺陷的工艺步骤,下一节将进一步讨论。图1SiC生长过程示意图及各步骤引起的各种缺陷各种类型的缺陷会导致设备性能不同程度的劣化,甚至可能导致设备完全失效。为了提高良率和性能,在设备制造之前检测缺陷的技术变得非常重要。因此,快速、高精度、无损的检测技术在碳化硅生产线中发挥着重要作用。在本文中,我们将说明每种类型的缺陷及其对设备性能的影响。我们还对不同检测技术的优缺点进行了深入的讨论。这篇综述文章中的分析不仅概述了可用于SiC的各种缺陷检测技术,还帮助研究人员在工业应用中在这些技术中做出明智的选择(图2)。表2列出了图2中检测技术和缺陷的首字母缩写。图2可用于碳化硅的缺陷检测技术表2检测技术和缺陷的首字母缩写见图SEM:扫描电子显微镜OM:光学显微镜BPD:基面位错DIC:微分干涉对比PL:光致发光TED:螺纹刃位错OCT:光学相干断层扫描CL:阴极发光TSD:螺纹位错XRT:X射线形貌术拉曼:拉曼光谱SF:堆垛层错碳化硅的缺陷碳化硅晶圆中的缺陷通常分为两大类:(1)晶圆内的晶体缺陷和(2)晶圆表面处或附近的表面缺陷。正如我们在本节中进一步讨论的那样,晶体学缺陷包括基面位错(BPDs)、堆垛层错(SFs)、螺纹刃位错(TEDs)、螺纹位错(TSDs)、微管和晶界等,横截面示意图如图3(a)所示。SiC的外延层生长参数对晶圆的质量至关重要。生长过程中的晶体缺陷和污染可能会延伸到外延层和晶圆表面,形成各种表面缺陷,包括胡萝卜缺陷、多型夹杂物、划痕等,甚至转化为产生其他缺陷,从而对器件性能产生不利影响。图3SiC晶圆中出现的各种缺陷。(a)碳化硅缺陷的横截面示意图和(b)TEDs和TSDs、(c)BPDs、(d)微管、(e)SFs、(f)胡萝卜缺陷、(g)多型夹杂物、(h)划痕的图像生长在4°偏角4H-SiC衬底上的SiC外延层是当今用于各种器件应用的最常见的晶片类型。在4°偏角4H-SiC衬底上生长的SiC外延层是当今各种器件应用中最常用的晶圆类型。众所周知,大多数缺陷的取向与生长方向平行,因此,SiC在SiC衬底上以4°偏角外延生长不仅保留了下面的4H-SiC晶体,而且使缺陷具有可预测的取向。此外,可以从单个晶圆上切成薄片的晶圆总数增加。然而,较低的偏角可能会产生其他类型的缺陷,如3C夹杂物和向内生长的SFs。在接下来的小节中,我们将讨论每种缺陷类型的详细信息。晶体缺陷螺纹刃位错(TEDs)、螺纹位错(TSDs)SiC中的位错是电子设备劣化和失效的主要来源。螺纹刃位错(TSDs)和螺纹位错(TEDs)都沿生长轴运行,Burgers向量分别为和1/3。TSDs和TEDs都可以从衬底延伸到晶圆表面,并带来小的凹坑状表面特征,如图3b所示。通常,TEDs的密度约为8000-10,0001/cm2,几乎是TSDs的10倍。扩展的TSDs,即TSDs从衬底延伸到外延层,可能在SiC外延生长过程中转化为基底平面上的其他缺陷,并沿生长轴传播。Harada等人表明,在SiC外延生长过程中,TSDs被转化为基底平面上的堆垛层错(SFs)或胡萝卜缺陷,而外延层中的TEDs则被证明是在外延生长过程中从基底继承的BPDs转化而来的。基面位错(BPDs)另一种类型的位错是基面位错(BPDs),它位于SiC晶体的平面上,Burgers矢量为1/3。BPDs很少出现在SiC晶圆表面。它们通常集中在衬底上,密度为15001/cm2,而它们在外延层中的密度仅为约101/cm2。Kamei等人报道,BPDs的密度随着SiC衬底厚度的增加而降低。BPDs在使用光致发光(PL)检测时显示出线形特征,如图3c所示。在SiC外延生长过程中,扩展的BPDs可能转化为SFs或TEDs。微管在SiC中观察到的常见位错是所谓的微管,它是沿生长轴传播的空心螺纹位错,具有较大的Burgers矢量分量。微管的直径范围从几分之一微米到几十微米。微管在SiC晶片表面显示出大的坑状表面特征。从微管发出的螺旋,表现为螺旋位错。通常,微管的密度约为0.1–11/cm2,并且在商业晶片中持续下降。堆垛层错(SFs)堆垛层错(SFs)是SiC基底平面中堆垛顺序混乱的缺陷。SFs可能通过继承衬底中的SFs而出现在外延层内部,或者与扩展BPDs和扩展TSDs的变换有关。通常,SFs的密度低于每平方厘米1个,并且通过使用PL检测显示出三角形特征,如图3e所示。然而,在SiC中可以形成各种类型的SFs,例如Shockley型SFs和Frank型SFs等,因为晶面之间只要有少量的堆叠能量无序可能导致堆叠顺序的相当大的不规则性。点缺陷点缺陷是由单个晶格点或几个晶格点的空位或间隙形成的,它没有空间扩展。点缺陷可能发生在每个生产过程中,特别是在离子注入中。然而,它们很难被检测到,并且点缺陷与其他缺陷的转换之间的相互关系也是相当的复杂,这超出了本文综述的范围。其他晶体缺陷除了上述各小节所述的缺陷外,还存在一些其他类型的缺陷。晶界是两种不同的SiC晶体类型在相交时晶格失配引起的明显边界。六边形空洞是一种晶体缺陷,在SiC晶片内有一个六边形空腔,它已被证明是导致高压SiC器件失效的微管缺陷的来源之一。颗粒夹杂物是由生长过程中下落的颗粒引起的,通过适当的清洁、仔细的泵送操作和气流程序的控制,它们的密度可以大大降低。表面缺陷胡萝卜缺陷通常,表面缺陷是由扩展的晶体缺陷和污染形成的。胡萝卜缺陷是一种堆垛层错复合体,其长度表示两端的TSD和SFs在基底平面上的位置。基底断层以Frank部分位错终止,胡萝卜缺陷的大小与棱柱形层错有关。这些特征的组合形成了胡萝卜缺陷的表面形貌,其外观类似于胡萝卜的形状,密度小于每平方厘米1个,如图3f所示。胡萝卜缺陷很容易在抛光划痕、TSD或基材缺陷处形成。多型夹杂物多型夹杂物,通常称为三角形缺陷,是一种3C-SiC多型夹杂物,沿基底平面方向延伸至SiC外延层表面,如图3g所示。它可能是由外延生长过程中SiC外延层表面上的下坠颗粒产生的。颗粒嵌入外延层并干扰生长过程,产生了3C-SiC多型夹杂物,该夹杂物显示出锐角三角形表面特征,颗粒位于三角形区域的顶点。许多研究还将多型夹杂物的起源归因于表面划痕、微管和生长过程的不当参数。划痕划痕是在生产过程中形成的SiC晶片表面的机械损伤,如图3h所示。裸SiC衬底上的划痕可能会干扰外延层的生长,在外延层内产生一排高密度位错,称为划痕,或者划痕可能成为胡萝卜缺陷形成的基础。因此,正确抛光SiC晶圆至关重要,因为当这些划痕出现在器件的有源区时,会对器件性能产生重大影响。其他表面缺陷台阶聚束是SiC外延生长过程中形成的表面缺陷,在SiC外延层表面产生钝角三角形或梯形特征。还有许多其他的表面缺陷,如表面凹坑、凹凸和污点。这些缺陷通常是由未优化的生长工艺和不完全去除抛光损伤造成的,从而对器件性能造成重大不利影响。检测技术量化SiC衬底质量是外延层沉积和器件制造之前必不可少的一步。外延层形成后,应再次进行晶圆检查,以确保缺陷的位置已知,并且其数量在控制之下。检测技术可分为表面检测和亚表面检测,这取决于它们能够有效地提取样品表面上方或下方的结构信息。正如我们在本节中进一步讨论的那样,为了准确识别表面缺陷的类型,通常使用KOH(氢氧化钾)通过在光学显微镜下将其蚀刻成可见尺寸来可视化表面缺陷。然而,这是一种破坏性的方法,不能用于在线大规模生产。对于在线检测,需要高分辨率的无损表面检测技术。常见的表面检测技术包括扫描电子显微镜(SEM)、原子力显微镜(AFM)、光学显微镜(OM)和共聚焦微分干涉对比显微镜(CDIC)等。对于亚表面检测,常用的技术包括光致发光(PL)、X射线形貌术(XRT)、镜面投影电子显微镜(MPJ)、光学相干断层扫描(OCT)和拉曼光谱等。在这篇综述中,我们将碳化硅检测技术分为光学方法和非光学方法,并在以下各节中对每种技术进行讨论。非光学缺陷检测技术非光学检测技术,即不涉及任何光学探测的技术,如KOH蚀刻和TEM,已被广泛用于表征SiC晶圆的质量。这些方法在检测SiC晶圆上的缺陷方面相对成熟和精确。然而,这些方法会对样品造成不可逆转的损坏,因此不适合在生产线中使用。虽然存在其他非破坏性的检测方法,如SEM、CL、AFM和MPJ,但这些方法的通量较低,只能用作评估工具。接下来,我们简要介绍上述非光学技术的原理。还讨论了每种技术的优缺点。透射电子显微镜(TEM)透射电子显微镜(TEM)可用于以纳米级分辨率观察样品的亚表面结构。透射电镜利用入射到碳化硅样品上的加速电子束。具有超短波长和高能量的电子穿过样品表面,从亚表面结构弹性散射。SiC中的晶体缺陷,如BPDs、TSDs和SFs,可以通过TEM观察。扫描透射电子显微镜(STEM)是一种透射电子显微镜,可以通过高角度环形暗场成像(HAADF)获得原子级分辨率。通过TEM和HAADF-STEM获得的图像如图4a所示。TEM图像清晰地显示了梯形SF和部分位错,而HAADF-STEM图像则显示了在3C-SiC中观察到的三种SFs。这些SFs由1、2或3个断层原子层组成,用黄色箭头表示。虽然透射电镜是一种有用的缺陷检测工具,但它一次只能提供一个横截面视图,因此如果需要检测整个碳化硅晶圆,则需要花费大量时间。此外,透射电镜的机理要求样品必须非常薄,厚度小于1μm,这使得样品的制备相当复杂和耗时。总体而言,透射电镜用于了解缺陷的基本晶体学,但它不是大规模或在线检测的实用工具。图4不同的缺陷检测方法和获得的缺陷图像。(a)SFs的TEM和HAADF图像;(b)KOH蚀刻后的光学显微照片图像;(c)带和不带SF的PL光谱,而插图显示了波长为480nm的单色micro-PL映射;(d)室温下SF的真彩CLSEM图像;(e)各种缺陷的拉曼光谱;(f)微管相关缺陷204cm−1峰的微拉曼强度图KOH蚀刻KOH蚀刻是另一种非光学技术,用于检测多种缺陷,例如微管、TSDs、TEDs、BDPs和晶界。KOH蚀刻后形成的图案取决于蚀刻持续时间和蚀刻剂温度等实验条件。当将约500°C的熔融KOH添加到SiC样品中时,在约5min内,SiC样品在有缺陷区域和无缺陷区域之间表现出选择性蚀刻。冷却并去除SiC样品中的KOH后,存在许多具有不同形貌的蚀刻坑,这些蚀刻坑与不同类型的缺陷有关。如图4b所示,位错产生的大型六边形蚀刻凹坑对应于微管,中型凹坑对应于TSDs,小型凹坑对应于TEDs。KOH刻蚀的优点是可以一次性检测SiC样品表面下的所有缺陷,制备SiC样品容易,成本低。然而,KOH蚀刻是一个不可逆的过程,会对样品造成永久性损坏。在KOH蚀刻后,需要对样品进行进一步抛光以获得光滑的表面。镜面投影电子显微镜(MPJ)镜面投影电子显微镜(MPJ)是另一种很有前途的表面下检测技术,它允许开发能够检测纳米级缺陷的高通量检测系统。由于MPJ反映了SiC晶圆上表面的等电位图像,因此带电缺陷引起的电位畸变分布在比实际缺陷尺寸更宽的区域上。因此,即使工具的空间分辨率为微米级,也可以检测纳米级缺陷。来自电子枪的电子束穿过聚焦系统,均匀而正常地照射到SiC晶圆上。值得注意的是,碳化硅晶圆受到紫外光的照射,因此激发的电子被碳化硅晶圆中存在的缺陷捕获。此外,SiC晶圆带负电,几乎等于电子束的加速电压,使入射电子束在到达晶圆表面之前减速并反射。这种现象类似于镜子对光的反射,因此反射的电子束被称为“镜面电子”。当入射电子束照射到携带缺陷的SiC晶片时,缺陷的带负电状态会改变等电位表面,导致反射电子束的不均匀性。MPJ是一种无损检测技术,能够对SiC晶圆上的静电势形貌进行高灵敏度成像。Isshiki等人使用MPJ在KOH蚀刻后清楚地识别BPDs、TSDs和TEDs。Hasegawa等人展示了使用MPJ检查的BPDs、划痕、SFs、TSDs和TEDs的图像,并讨论了潜在划痕与台阶聚束之间的关系。原子力显微镜(AFM)原子力显微镜(AFM)通常用于测量SiC晶圆的表面粗糙度,并在原子尺度上显示出分辨率。AFM与其他表面检测方法的主要区别在于,它不会受到光束衍射极限或透镜像差的影响。AFM利用悬臂上的探针尖端与SiC晶圆表面之间的相互作用力来测量悬臂的挠度,然后将其转化为与表面缺陷特征外观成正比的电信号。AFM可以形成表面缺陷的三维图像,但仅限于解析表面的拓扑结构,而且耗时长,因此通量低。扫描电子显微镜(SEM)扫描电子显微镜(SEM)是另一种广泛用于碳化硅晶圆缺陷分析的非光学技术。SEM具有纳米量级的高空间分辨率。加速器产生的聚焦电子束扫描SiC晶圆表面,与SiC原子相互作用,产生二次电子、背散射电子和X射线等各种类型的信号。输出信号对应的SEM图像显示了表面缺陷的特征外观,有助于理解SiC晶体的结构信息。但是,SEM仅限于表面检测,不提供有关亚表面缺陷的任何信息。阴极发光(CL)阴极发光(CL)光谱利用聚焦电子束来探测固体中的电子跃迁,从而发射特征光。CL设备通常带有SEM,因为电子束源是这两种技术的共同特征。加速电子束撞击碳化硅晶圆并产生激发电子。激发电子的辐射复合发射波长在可见光谱中的光子。通过结合结构信息和功能分析,CL给出了样品的完整描述,并直接将样品的形状、大小、结晶度或成分与其光学特性相关联。Maximenko等人显示了SFs在室温下的全彩CL图像,如图4d所示。不同波长对应的SFs种类明显,CL发现了一种常见的单层Shockley型堆垛层错,其蓝色发射在~422nm,TSD在~540nm处。虽然SEM和CL由于电子束源而具有高分辨率,但高能电子束可能会对样品表面造成损伤。基于光学的缺陷检测技术为了在不损失检测精度的情况下实现高吞吐量的在线批量生产,基于光学的检测方法很有前途,因为它们可以保存样品,并且大多数可以提供快速扫描能力。表面检测方法可以列为OM、OCT和DIC,而拉曼、XRT和PL是表面下检测方法。在本节中,我们将介绍每种检测方法的原理,这些方法如何应用于检测缺陷,以及每种方法的优缺点。光学显微镜(OM)
  • 晶圆表面缺陷检测方法综述【上】
    摘要晶圆表面缺陷检测在半导体制造中对控制产品质量起着重要作用,已成为计算机视觉领域的研究热点。然而,现有综述文献中对晶圆缺陷检测方法的归纳和总结不够透彻,缺乏对各种技术优缺点的客观分析和评价,不利于该研究领域的发展。本文系统分析了近年来国内外学者在晶圆表面缺陷检测领域的研究进展。首先,介绍了晶圆表面缺陷模式的分类及其成因。根据特征提取方法的不同,目前主流的方法分为三类:基于图像信号处理的方法、基于机器学习的方法和基于深度学习的方法。此外,还简要介绍了代表性算法的核心思想。然后,对每种方法的创新性进行了比较分析,并讨论了它们的局限性。最后,总结了当前晶圆表面缺陷检测任务中存在的问题和挑战,以及该领域未来的研究趋势以及新的研究思路。1.引言硅晶圆用于制造半导体芯片。所需的图案是通过光刻等工艺在晶圆上形成的,是半导体芯片制造过程中非常重要的载体。在制造过程中,由于环境和工艺参数等因素的影响,晶圆表面会产生缺陷,从而影响晶圆生产的良率。晶圆表面缺陷的准确检测,可以加速制造过程中异常故障的识别以及制造工艺的调整,提高生产效率,降低废品率。晶圆表面缺陷的早期检测往往由经验丰富的检测人员手动进行,存在效率低、精度差、成本高、主观性强等问题,不足以满足现代工业化产品的要求。目前,基于机器视觉的缺陷检测方法[1]在晶圆检测领域已经取代了人工检测。传统的基于机器视觉的缺陷检测方法往往采用手动特征提取,效率低下。基于计算机视觉的检测方法[2]的出现,特别是卷积神经网络等神经网络的出现,解决了数据预处理、特征表示和提取以及模型学习策略的局限性。神经网络以其高效率、高精度、低成本、客观性强等特点,迅速发展,在半导体晶圆表面缺陷检测领域得到广泛应用。近年来,随着智能终端和无线通信设施等电子集成电路的发展,以及摩尔定律的推广,在全球对芯片的需求增加的同时,光刻工艺的精度也有所提高。随着技术的进步,工艺精度已达到10纳米以下[5]。因此,对每个工艺步骤的良率提出了更高的要求,对晶圆制造中的缺陷检测技术提出了更大的挑战。本文主要总结了晶圆表面缺陷检测算法的相关研究,包括传统的图像处理、机器学习和深度学习。根据算法的特点,对相关文献进行了总结和整理,对晶圆缺陷检测领域面临的问题和挑战进行了展望和未来发展。本文旨在帮助快速了解晶圆表面缺陷检测领域的相关方法和技能。2. 晶圆表面缺陷模式在实际生产中,晶圆上的缺陷种类繁多,形状不均匀,增加了晶圆缺陷检测的难度。在晶圆缺陷的类型中,无图案晶圆缺陷和图案化晶圆缺陷是晶圆缺陷的两种主要形式。这两类缺陷是芯片故障的主要原因。无图案晶圆缺陷多发生在晶圆生产的预光刻阶段,即由机器故障引起的晶圆缺陷。划痕缺陷如图1a所示,颗粒污染缺陷如图1b所示。图案化晶圆缺陷多见于晶圆生产的中间工序。曝光时间、显影时间和烘烤后时间不当会导致光刻线条出现缺陷。螺旋激励线圈和叉形电极的微纳制造过程中晶圆表面产生的缺陷如图2所示。开路缺陷如图2 a所示,短路缺陷如图2 b所示,线路污染缺陷如图2 c所示,咬合缺陷如图2d所示。图1.(a)无图案晶圆的划痕缺陷;(b)无图案晶圆中的颗粒污染。图2.(a)开路缺陷,(b)短路缺陷,(c)线路污染,以及(d)图案化晶圆缺陷图中的咬合缺陷。由于上述晶圆缺陷的存在,在对晶圆上所有芯片进行功能完整性测试时,可能会发生芯片故障。芯片工程师用不同的颜色标记测试结果,以区分芯片的位置。在不同操作过程的影响下,晶圆上会产生相应的特定空间图案。晶圆图像数据,即晶圆图,由此生成。正如Hansen等在1997年指出的那样,缺陷芯片通常具有聚集现象或表现出一些系统模式,而这种缺陷模式通常包含有关工艺条件的必要信息。晶圆图不仅可以反映芯片的完整性,还可以准确描述缺陷数据对应的空间位置信息。晶圆图可能在整个晶圆上表现出空间依赖性,芯片工程师通常可以追踪缺陷的原因并根据缺陷类型解决问题。Mirza等将晶圆图缺陷模式分为一般类型和局部类型,即全局随机缺陷和局部缺陷。晶圆图缺陷模式图如图3所示,局部缺陷如图3 a所示,全局随机缺陷如图3b所示。全局随机缺陷是由不确定因素产生的,不确定因素是没有特定聚类现象的不可控因素,例如环境中的灰尘颗粒。只有通过长期的渐进式改进或昂贵的设备大修计划,才能减少全局随机缺陷。局部缺陷是系统固有的,在晶圆生产过程中受到可控因素的影响,如工艺参数、设备问题和操作不当。它们反复出现在晶圆上,并表现出一定程度的聚集。识别和分类局部缺陷,定位设备异常和不适当的工艺参数,对提高晶圆生产良率起着至关重要的作用。图3.(a)局部缺陷模式(b)全局缺陷模式。对于面积大、特征尺寸小、密度低、集成度低的晶圆图案,可以用电子显微镜观察光刻路径,并可直接进行痕量检测。随着芯片电路集成度的显著提高,进行芯片级检测变得越来越困难。这是因为随着集成度的提高,芯片上的元件变得更小、更复杂、更密集,从而导致更多的潜在缺陷。这些缺陷很难通过常规的检测方法进行检测和修复,需要更复杂、更先进的检测技术和工具。晶圆图研究是晶圆缺陷检测的热点。天津大学刘凤珍研究了光刻设备异常引起的晶圆图缺陷。针对晶圆实际生产过程中的缺陷,我们通过设备实验对光刻胶、晶圆粉尘颗粒、晶圆环、划痕、球形、线性等缺陷进行了深入研究,旨在找到缺陷原因,提高生产率。为了确定晶圆模式失效的原因,吴明菊等人从实际制造中收集了811,457张真实晶圆图,创建了WM-811K晶圆图数据集,这是目前应用最广泛的晶圆图。半导体领域专家为该数据集中大约 20% 的晶圆图谱注释了八种缺陷模式类型。八种类型的晶圆图缺陷模式如图4所示。本综述中引用的大多数文章都基于该数据集进行了测试。图4.八种类型的晶圆映射缺陷模式类型:(a)中心、(b)甜甜圈、(c)边缘位置、(d)边缘环、(e)局部、(f)接近满、(g)随机和(h)划痕。3. 基于图像信号处理的晶圆表面缺陷检测图像信号处理是将图像信号转换为数字信号,再通过计算机技术进行处理,实现图像变换、增强和检测。晶圆检测领域常用的有小波变换(WT)、空间滤波(spatial filtering)和模板匹配(template matching)。本节主要介绍这三种算法在晶圆表面缺陷检测中的应用。图像处理算法的比较如表1所示。表 1.图像处理算法的比较。模型算法创新局限小波变换 图像可以分解为多种分辨率,并呈现为具有不同空间频率的局部子图像。防谷物。阈值的选择依赖性很强,适应性差。空间滤波基于空间卷积,去除高频噪声,进行边缘增强。性能取决于阈值参数。模板匹配模板匹配算法抗噪能力强,计算速度快。对特征对象大小敏感。3.1. 小波变换小波变换(WT)是一种信号时频分析和处理技术。首先,通过滤波器将图像信号分解为不同的频率子带,进行小波分解 然后,通过计算小波系数的平均值、标准差或其他统计度量,分析每个系数以检测任何异常或缺陷。异常或缺陷可能表现为小波系数的突然变化或异常值。根据分析结果,使用预定义的阈值来确定信号中的缺陷和异常,并通过识别缺陷所在的时间和频率子带来确定缺陷的位置。小波分解原理图如图5所示,其中L表示低频信息,H表示高频信息。每次对图像进行分解时,图像都会分解为四个频段:LL、LH、HL 和 HH。下层分解重复上层LL带上的分解。小波变换在晶圆缺陷特征的边界处理和多尺度边缘检测中具有良好的性能。图5.小波分解示意图。Yeh等提出了一种基于二维小波变换(2DWT)的方法,该方法通过修正小波变换模量(WTMS)计算尺度系数之间的比值,用于晶圆缺陷像素的定位。通过选择合适的小波基和支撑长度,可以使用少量测试数据实现晶圆缺陷的准确检测。图像预处理阶段耗费大量时间,严重影响检测速度。Wen-Ren Yang等提出了一种基于短时离散小波变换的晶圆微裂纹在线检测系统。无需对晶圆图像进行预处理。通过向晶圆表面发射连续脉冲激光束,通过空间探针阵列采集反射信号,并通过离散小波变换进行分析,以确定微裂纹的反射特性。在加工的情况下,也可以对微裂纹有更好的检测效果。多晶太阳能硅片表面存在大量随机晶片颗粒,导致晶圆传感图像纹理不均匀。针对这一问题,Kim Y等提出了一种基于小波变换的表面检测方法,用于检测太阳能硅片缺陷。为了更好地区分缺陷边缘和晶粒边缘,使用两个连续分解层次的小波细节子图的能量差作为权重,以增强每个分解层次中提出的判别特征。实验结果表明,该方法对指纹和污渍有较好的检测效果,但对边缘锋利的严重微裂纹缺陷无效,不能适用于所有缺陷。3.2. 空间过滤空间滤波是一种成熟的图像增强技术,它是通过直接对灰度值施加空间卷积来实现的。图像处理中的主要作用是图像去噪,分为平滑滤镜和锐化滤镜,广泛应用于缺陷检测领域。图6显示了图像中中值滤波器和均值滤波器在增加噪声后的去噪效果。图6.滤波去噪效果图:(a)原始图像,(b)中值滤波去噪,(c)均值滤光片去噪。Ohshige等提出了一种基于空间频率滤波技术的表面缺陷检测系统。该方法可以有效地检测晶圆上的亚微米缺陷或异物颗粒。晶圆制造中随机缺陷的影响。C.H. Wang提出了一种基于空间滤波、熵模糊c均值和谱聚类的晶圆缺陷检测方法,该方法利用空间滤波对缺陷区域进行去噪和提取,通过熵模糊c均值和谱聚类获得缺陷区域。结合均值和谱聚类的混合算法用于缺陷分类。它解决了传统统计方法无法提取具有有意义的分类的缺陷模式的问题。针对晶圆中的成簇缺陷,Chen SH等开发了一种基于中值滤波和聚类方法的软件工具,所提算法有效地检测了缺陷成簇。通常,空间过滤器的性能与参数高度相关,并且通常很难选择其值。3.3. 模板匹配模板匹配检测是通过计算模板图像与被测图像之间的相似度来实现的,以检测被测图像与模板图像之间的差异区域。Han H等从晶圆图像本身获取的模板混入晶圆制造工艺的设计布局方案中,利用物理空间与像素空间的映射,设计了一种结合现有圆模板匹配检测新方法的晶圆图像检测技术。刘希峰结合SURF图像配准算法,实现了测试晶圆与标准晶圆图案的空间定位匹配。测试图像与标准图像之间的特征点匹配结果如图7所示。将模式识别的轮廓提取技术应用于晶圆缺陷检测。Khalaj等提出了一种新技术,该技术使用高分辨率光谱估计算法提取晶圆缺陷特征并将其与实际图像进行比较,以检测周期性2D信号或图像中不规则和缺陷的位置。图7.测试图像与标准图像之间的特征点匹配结果。下接:晶圆表面缺陷检测方法综述【下】

在线杂质缺陷检测系统相关的方案

在线杂质缺陷检测系统相关的资料

在线杂质缺陷检测系统相关的试剂

在线杂质缺陷检测系统相关的论坛

  • 【分享】深圳晶圆和硅片背面缺陷检测与分析

    深圳材料表面分析检测中心缺陷分析服务:1、微观形貌观察 2、杂质、残留物成分分析使用设备:1、扫描电子显微镜(SEM) 2、能量色散谱(EDS)价格:1、300元/样(提供5张照片) 2、350元/样电话:0755-25594781 白帆中心网址:http://www.sz863.comMSN:slevin.van@gmail.com

  • 帮忙下载一篇文献“一种浮法玻璃全面缺陷在线检测系统”

    [b][font='Microsoft YaHei', 宋体, sans-serif]【序号】:1[/font]【作者】:[font=&][size=13px][color=#0066cc][url=https://xueshu.baidu.com/usercenter/data/author?cmd=authoruri&wd=authoruri%3A%28b4ac1108953f5f21%29%20author%3A%28%E4%BD%99%E6%96%87%E5%8B%87%29%20]余文勇[/url],[url=https://xueshu.baidu.com/usercenter/data/author?cmd=authoruri&wd=authoruri%3A%28dfd9834d970b68e5%29%20author%3A%28%E5%91%A8%E7%A5%96%E5%BE%B7%29%20]周祖德[/url],[url=https://xueshu.baidu.com/usercenter/data/author?cmd=authoruri&wd=authoruri%3A%28f03ba20b9722676f%29%20author%3A%28%E9%99%88%E5%B9%BC%E5%B9%B3%29%20]陈幼平[/url][/color][/size][/font][b][b][/b][/b][/b][font=&]【题名】:[/font][b][b][b][b][b][url=http://www.eope.net/EN/abstract/abstract17664.shtml][b]一种浮法玻璃全面缺陷在线检测系统[/b][/url][/b][/b][/b][/b][/b][font=&]【期刊】:[/font][font=Arial][size=12px]CNKI[/size][/font][b]【链接】:[url=https://xueshu.baidu.com/usercenter/paper/show?paperid=44d548ceda7647026248a7152eb966fc&site=xueshu_se&hitarticle=1]一种浮法玻璃全面缺陷在线检测系统 - 百度学术 (baidu.com)[/url][/b]

在线杂质缺陷检测系统相关的耗材

  • LCD驱动芯片检测系统配件
    LCD驱动芯片检测系统配件是一套LDI(LCD Driver IC)自动视觉检测系统,采用超快实时自动聚焦技术(Real-time Auto Foucs),实时聚焦LCD驱动芯片的表面,快速发现LCD Driver IC缺陷。LCD驱动芯片检测系统配件特色可在LCD驱动芯片表面上实时聚焦,对LDI tray上的不同器件提供公差补偿,更为清晰地获得景深图像。具有超快变焦技术可获得高精度聚焦的彩色图像,采用彩色相机替代传统的单色相机,能够获得暗花纹区图像(Dark pattern Area)。提供三种照明方式更好地探测缺陷.LCD驱动芯片检测系统配件和LCD驱动芯片自动视觉检测系统由孚光精仪进口销售,孚光精仪是中国领先的进口光学精密仪器旗舰型服务商!精通光学,服务科学,欢迎垂询。
  • 杂质标准板
    gb5413.30-2016 2016年新版 乳品杂质度标准板共两张分为,乳粉乳杂质度标准板 液体乳杂质度标准板 牛乳中杂质标准板,杂质度对比对照板,乳制品标准板,杂质度标准板杂质度对比对照板,乳制品标准板,杂质度标准板 所是集研制、生产和销售乳品检测专用仪器、专用玻璃仪器、专用试剂和专用品于一体的科研企业。l 从事乳、乳制品专业检验技术工作始于1983 年。 1984 年参与制定、整理我国 首部 《乳、乳制品及其检验方法》国家标准。 1997年改版本公司是其他专用仪器仪表的专业供应商,不仅常用型号的其他专用仪器仪表备有现货,而且还能根据客户要求定制其他专用仪器仪表。本公司销售灵活,除了杂质度对比对照板,乳制品标准板,杂质度标准板,公司还供应仪器仪表行业行业的其他其他专用仪器仪表产品,欢迎洽谈相关仪器有:毛氏法:毛氏抽脂瓶,毛氏离心机,毛氏水浴锅,毛氏摇混器巴布科克法:巴布科克乳脂瓶罗兹哥特里法:罗兹哥特里抽脂瓶盖勃法:盖勃乳脂肪离心机,盖勃乳脂计,11ml和10.75ml单标牛乳吸管,10ml硫酸量取器,1ml戌异醇自动量取器乳品杂质度的测定:HL-GB2乳品杂质度过滤机,杂质度过滤板,杂质度标准板,杂质度标准板说明书,带带铝盒等乳稠度的测定:HL-15A乳稠计,乳品电子温度计乳品硝酸盐与亚硝酸盐的检测:镉柱还原装置,镀铜镉粒乳品溶解度的检测:不溶度指数搅拌器,指数搅拌杯,柱底离心管,不溶度指数离心机牛乳中杂质标准板,杂质度对比对照板,乳制品标准板,杂质度标准板杂质度对比对照板,乳制品标准板,杂质度标准板 所是集研制、生产和销售乳品检测专用仪器、专用玻璃仪器、专用试剂和专用品于一体的科研企业。l从事乳、乳制品专业检验技术工作始于1983年。 1984年参与制定、整理我国 首部 《乳、乳制品及其检验方法》国家标准。1997年改版本公司是其他专用仪器仪表的专业供应商,不仅常用型号的其他专用仪器仪表备有现货,而且还能根据客户要求定制其他专用仪器仪表。本公司销售灵活,除了杂质度对比对照板,乳制品标准板,杂质度标准板,公司还供应仪器仪表行业行业的其他其他专用仪器仪表产品,欢迎洽谈
  • 山西工地扬尘PM10在线监测系统
    山西工地扬尘PM10在线监测系统是一款实时对空气的颗粒物浓度(PM2.5、PM10)、噪声、温度、湿度、风速、风向的在线监测系统。该系统主要应用于:各建筑施工现场、道路的环境、旅游景区、码头、大型广场等现场实时数据的在线监测,通过物联网以及云计算技术,实现了实时、远程、自动监控颗粒物浓度以及现场数据通过网络传输,并能通过摄像头抓拍,所得数据均能通过无线网络及时传递到数据平台便于管控,并通过集中远程数据管理平台、大数据分析、生成质量趋势图,是城市环保、建筑、交通、市政等部门对大气污染控制评价的重要依据。 实现动态显示和分析城市扬尘污染的时空变化,与环境管理及城市建设管理相结合,实现统计分析、模型计算、报表分析、规划管理及其他业务处理等的可视化、自动化、网络化管理,具有适用性广、测量速度快、准确性高、可在线实时测量等特点,相当于给工地装上了一个监测“天眼”。监控中心的监测系统对回传数据进行快速处理,对PM2.5、PM10超过预定数值的建筑工地进行实时报警,真正实现了对在建工地的精准监测、精准管理、精准监督。特点:1、人机交互界面,美观大方,信息量大、接线少、数据查看设定操作方便。2、具有扬尘预警、超标提醒、图像抓拍功能。全天候全自动持续不间断工作。3、同时支持RS485、GPRS、wifi等传输方式,可将数据信息传输至指定的环境监测网,实现数据的远程控制和传输 可通过智能手机接收查看当前实时数据,并设定参数 4、系统采用先进的环境监测技术、自动控制和网络信息传输技术,实现噪声自动监测的网络化、自动化和信息化。5、实时的在线扬尘监测,具有手/自动控制降尘治理设备以及声光报警功能,当PM值达到设定上限时自动启动一处或者多处(雾炮)喷淋系统的开启,对现场环境进行雾化喷淋降尘措施,当PM值达到设定下限值时自动关闭喷淋系统。6、支持多种尺寸彩色液晶和LED户外显示屏等实时显示数据。(户外显示屏可根据客户需求定制)预留多组数据接口,可接数据采集设备和大屏显示设备。7、实现数据的存储管理,对监测点的数据图形展示,曲线分析,超限超标报警统计等,为监管部门提供决策依据。8、可根据现场除尘和施工用水要求,实现智能化恒流喷淋以及恒压供水的功能,系统由智能控制器自动控制,操作便捷、智能降尘、节省人工。9、具有短路、过流、过压、过热、过载等多种保护功能,系统运行如有故障,会自动停止工作并报警输出,具有自检,故障判断,故障记忆,故障提示等功能。10、具有手动、自动切换功能,可保证设备在控制系统失灵的情况下安全连续运行。具有分时喷淋功能,用户可根据情况自行设定,定时喷淋。 11、具有“互联网+建筑扬尘治理”管理平台,为用户提供实时、有效的扬尘治理数据。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制