推荐厂家
暂无
暂无
最近在做设备的不确定度分析,有人做过直流电阻测量仪的不确定度分析么,指导一下
目前用于安全防护检测的大电流接地电阻测量仪已越来越广泛地运用于家用电器、绝缘材料、电动电热器具等产品的质量检测中,而此种仪器本身的量值传递却由于其大电流的限制,存在许多问题。普通的接地电阻测量仪检定装置不能用于这种仪器的检测,下面百检检测介绍两种检测方法。 1 直接法 这里所谓的直接法就是电阻法,利用大功率标准电阻直接接于被测大电流接地电阻测量仪的测量端,原理框图如图1所示,用标准电阻值与测量仪表头所显示的电阻值作比较。 设标准电阻值为RN,即实际值,被检表显示读数为RX,则被检表的绝对误差为: Δ=RX-RN 被检表的相对误差为: r=[(RX-RN)/RN]×100% 用此方法检测时应注意测量仪恒流输出所限制的电阻范围,超出该范围,将不再恒流且测量不正确。由于所测均为小电阻,导线及接触电阻的消除、四端钮接线等都是必须注意的,同时注意不可引入别的哪怕是很微小的附加电阻。 用此方法检测,简单直观方便,测量准确,但应当具备一套不同阻值(并非均为十进制变化)的大功率标准电阻,由于它的特殊要求,这种电阻需由厂家定做。 2 间接法 所谓间接法就是利用电流电压的方法来进行测量。 2.1 用标准电压源法进行测量 接地电阻测量仪的基本原理为以已知恒定电流通过被测电阻RX的压降来代表所测电阻值。根据这一原理,可用标准电压源和标准电流表来检测接地电阻测量仪,检测框图如图2所示。 标准电压源输出一个标准电压UN,同时读出标准电流表显示的电流IN,此时被检测量仪表头显示值为RX值,则实际值为: R=UN/IN 绝对误差为: Δ=RX-R=RX-UN/IN 相对误差为: r=[(RX-UN/IN)/(UN/IN)]×100% 通过输出不同的标准电压值,便可测得一系列电阻值。用此方法检测时应注意测量仪在恒定电流下所限定的电阻范围对应的电压值范围,使标准源输出的电压在此范围内。 2.2 用标准电压表法进行测量 利用标准电压表、标准电流表以及大电流电阻对大电流接地电阻测量仪进行测量,其检测接线框图如图3所示。 测量时,接上一电阻值R,立即读取标准电流表和标准电压表的读数IN、VN,此时被检接地电阻测量仪表头也显示出所测电阻值RX。而标准电流表、标准电压表所测值对应的电阻值可认为是所测电阻的真值,即: R=VN/IN 绝对误差为 Δ=RX-R=RX-VN/IN 相对误差为 r=[(RX-VN/IN)/(VN/IN)]×100% 通过接入不同的电阻值,便可测得一系列的值。从而确定出被检接地电阻测量仪的误差情况。 用此方法检测时应注意接地电阻测量仪所能测量的电阻范围,接入的电阻不可超出此电阻范围 由于所测电阻均为小电阻,因此必须采用四端测量 因是大电流测量,测量时间应尽量短。 3 误差分析 3.1 直接法的误差 直接法测量时,误差的主要来源是标准电阻引入的。在消除了引线电阻的影响后,只要标准电阻的误差为被检表允许误差的1/3~1/5即可。 3.2 间接测量的误差 3.2.1 标准电压源法测量时的误差 装置的主要误差来源: (1)标准电流表引入的误差S1:由于被检电流最高精度为0.5%,因此选用0.1级标准电流表即可。 (2)标准电压源带来的误差S2:由于被检表精度不高,在选用标准电压源时,一般采用实验室现有的三用表校验仪D030的交流电压信号输出便可满足要求,考虑到所需电压较小,其输出值误差一般不超过±0.5%。 (3)标准电压源输出漂移带来的误差S3:一般D030稳定性误差为±0.05%,考虑小电压情况,其漂移误差一般也不会超过±0.1%。 装置的总误差为: 由于被测接地电阻测量仪电阻精度最高为2%读数±2个字,可见装置总误差能满足要求。 3.2.2 标准电压表法测量时的误差 (1)标准电流表引入的误差S1:由于被检电流最高精度为0.5%,因此选用0.1级标准电流表即可。 (2)标准电压表带来的误差S2:由于被检表精度不高,选用0.05级标准电压表即可满足要求。考虑到所测电压较小,其测量误差一般不超过±0.5%。 (3)标准电压表输入阻抗带来的误差S3:因所测电阻均为1Ω以下,相对而言,标准电压表输入阻抗带来的误差完全可以忽略不记。 (4)电阻引入的误差S4:用此法检测,接入的电阻并不作为标准,仅作为被检表与标准表测量的一个载体,因此该电阻的精度并不影响测量结果,影响测量结果的主要因素是电阻的稳定性,由于所接电阻大电流的要求,此电阻通常是由专门的材料和工艺定做而成,对其稳定性有一定的要求,加之被检表和标准表几乎是同时测量,因此电阻稳定性引入的误差可忽略不记。
温度测量仪表是测量物体冷热程度的工业自动化仪表。最早的温度测量仪表,是意大利人伽利略于1592年创造的。它是一个带细长颈的大玻璃泡,倒置在一个盛有葡萄酒的容器中,从其中抽出一部分空气,酒面就上升到细颈内。当外界温度改变时,细颈内的酒面因玻璃泡内的空气热胀冷缩而随之升降,因而酒面的高低就可以表示温度的高低,实际上这是一个没有刻度的指示器。1709年,德国的华伦海特于荷兰首次创立温标,随后他又经过多年的分度研究,到1714年制成了以水的冰点为32度、沸点为212度、中间分为180度的水银温度计,即至今仍沿用的华氏温度计。1742年,瑞典的摄尔西乌斯制成另一种水银温度计,它以水的冰点为100度、沸点作为 0度。到1745年,瑞典的林奈将这两个固定点颠倒过来,这种温度计就是至今仍沿用的摄氏温度计。早在1735年,就有人尝试利用金属棒受热膨胀的原理,制造温度计,到18世纪末,出现了双金属温度计;1802年,查理斯定律确立之后,气体温度计也随之得到改进和发展,其精确度和测温范围都超过了水银温度计。1821年,德国的塞贝克发现热电效应;同年,英国的戴维发现金属电阻随温度变化的规律,这以后就出现了热电偶温度计和热电阻温度计。1876年,德国的西门子制造出第一支铂电阻温度计。很早以前,人们在烧窑和冶锻时,通常是凭借火焰和被加热物体的颜色来判断温度的高低。据记载,1780年韦奇伍德根据瓷珠在高温下颜色的变化,来识别烧制陶瓷的温度,后来又有人根据陶土制的熔锥在高温下弯曲变形的程度,来识别温度。辐射温度计和光学高温计是20世纪初,维思定律和普朗克定律出现以后,才真正得到实用。从60年代开始,由于红外技术和电子技术的发展,出现了利用各种新型光敏或热敏检测元件的辐射温度计(包括红外辐射温度计),从而扩大了它的应用领域。各种温度计产生的同时就规定了各自的分度方法,也就出现了各种温标,如原始的摄氏温标、华氏温标、气体温度计温标和铂电阻温标等 。为了统一温度的量值,以达到国际通用的目的,国际权度局最早规定以玻璃水银温度计为基准仪表,统一用摄氏温标。后经数次改革,到1927年改用以热力学温度为基础、以纯物质的相变点为定义固定点的国际温标 ,以后又经多次修改完善。国际现代通用的温标是1967年第13次国际权度大会通过的 ,1968年国际实用温标。它以13个纯物质的相变点,如氢三相点,即氢的固、液、气三态共存点(-259.34℃);水三相点(0.01℃)和金凝固点(1064.43℃)等,作为定义固定点来复现热力学温度的。中间插值在-259.34~630.74℃之间 ,用基准铂电阻;在630.74~1064.43℃之间,用基准铂铑-铂热电偶;在1064.43℃以上用普朗克公式复现。一般的温度测量仪表都有检测和显示两个部分。在简单的温度测量仪表中,这两部分是连成一体的,如水银温度计;在较复杂的仪表中则分成两个独立的部分,中间用导线联接,如热电偶或热电阻是检测部分,而与之相配的指示和记录仪表是显示部分。按测量方式,温度测量仪表可分为接触式和非接触式两大类。测量时,其检测部分直接与被测介质相接触的为接触式温度测量仪表;非接触温度测量仪表在测量时,温度测量仪表的检测部分不必与被测介质直接接触,因此可测运动物体的温度。例如常用的光学高温计、辐射温度计和比色温度计,都是利用物体发射的热辐射能随温度变化的原理制成的辐射式温度计。由于电子器件的发展,便携式数字温度计已逐渐得到应用。它配有各种样式的热电偶和热电阻探头,使用比较方便灵活。便携式红外辐射温度计的发展也很迅速,装有微处理器的便携式红外辐射温度计具有存贮计算功能,能显示一个被测表面的多处温度 ,或一个点温度的多次测量的平均温度、最高温度和最低温度等。此外,现代还研制出多种其他类型的温度测量仪表,如用晶体管测温元件和光导纤维测温元件构成的仪表;采用热象扫描方式的热象仪,可直接显示和拍摄被测物体温度场的热象图, 可用于检查大型炉体、发动机等的表面温度分布,对于节能非常有益;另外还有利用激光,测量物体温度分布的温度测量仪器等。