浓缩体系分散稳定性分析仪

仪器信息网浓缩体系分散稳定性分析仪专题为您提供2024年最新浓缩体系分散稳定性分析仪价格报价、厂家品牌的相关信息, 包括浓缩体系分散稳定性分析仪参数、型号等,不管是国产,还是进口品牌的浓缩体系分散稳定性分析仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合浓缩体系分散稳定性分析仪相关的耗材配件、试剂标物,还有浓缩体系分散稳定性分析仪相关的最新资讯、资料,以及浓缩体系分散稳定性分析仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

浓缩体系分散稳定性分析仪相关的厂商

  • 400-860-5168转1950
    苏州埃兰分析仪器有限公司坐落于风景如画的长江三角洲地区的地理中心,太湖之滨的苏州。是精密分析仪器的制造商,主要从事分析仪器的研发、制造、销售及售后服务。 苏州埃兰分析仪器有限公司是目前国内率先独立研发、生产出符合国际标准ISO8245、中华人民共和国国家环境保护标准HJ501-2009、中华人民共和国国家计量检定规程 JJG 821-2005和2010年中国药典的TOC总有机碳分析仪生产厂家。填补了国内高温燃烧氧化-非色散红外法测定总有机碳的空白。Elab系列总有机碳分析仪具有测定线性范围宽、灵敏度高、重现性好等特点,适合测定电子行业用水、电厂用水、医药用水、饮用水、地表水、污水及垃圾土壤中的总有机碳和总氮含量。 公司独立研制、开发生产的Elab9100、Elab7100及Elab5500系列总硫总氮元素分析仪已获得6项国家专利,在世界上首次发明了使用一种进样模式测定所有形态(所有沸点范围)样品的装置,检测器超高的灵敏度和系统测定痕量样品的优良重现性、稳定性使我国的总硫总氮测定水平首次处于世界的前列。 公司以“格守质量保证,持久提供优质产品”为质量方针,通过了ISO9001:2008质量管理体系认证,并严格实施ERP管理。公司产品以其卓越的产品性能、完善的售后服务体系已在全国石油、化工、制药、质检、大学、地质、环保、科研院所及其他领域得到迅速推广,并赢得了用户的一致好评。 我们将不懈努力,不断创新,以更先进的产品和更完美的服务来满足各行各业客户的需求!
    留言咨询
  • 山东联众分析仪器有限公司是一家股份制高科技企业。本公司主要从事精密分析仪器的研发、生产、销售、应用及实验室的整体规划、设计、生产、安装、技术服务等。 公司长期致力于新产品、新技术的开发及系统工程的创新,其中GC-L6型系列专用气相色谱仪填补了国内空白,改变了大部分厂家只能做通用型仪器不能做专用仪器的局面。应用于现场后因其高稳定性,高准确度和系统特有的先进性大大提高了工作效率,给客户带来了丰厚的经济回报,也赢得了客户的高度评价和信赖。 联众公司主要技术及管理人员来自于国内重要分析仪器企业及科研机构,具有20多年的专业生产经验和丰富的法规适应经验;依靠自身的人才和科研优势,坚持严谨科学的工作作风,采用先进技术和工艺,设计制造的产品经济实用,稳定可靠,性价比高。
    留言咨询
  • 400-860-5168转3194
    布鲁克(北京)科技有限公司总部位于美国,是在纳斯达克上市的世界著名的高科技分析仪器跨国企业。在 50 多年的发展历程中,布鲁克始终致力于开发和生产性能强大的测量仪器,为我们客户的研究和行业发展铺平了道路。如今,布鲁克已经成为全球领先的分析技术提供商。公司遍布全球的 6000 多名员工正在五大洲逾 90 个地点,努力满足客户需求,扩展科学、工业和医疗分析的范围,为应对这一永久的挑战积极努力着。 布鲁克系统涵盖所有研发领域的广泛应用,被各种工业生产流程所采用,确保质量和流程的可靠性。布鲁克不断扩大其海量的产品和解决方案范围、广泛的已安装系统基础,以及在客户中的强大声誉。事实上,如我们的客户所预期,作为世界领先的分析仪器公司之一,布鲁克持续开发先进的技术和创新解决方案,解决当今的分析问题。 德国布鲁克公司,现属于上市公司布鲁克集团(NASDAQ: BRKR),1997年以前为西门子X射线分析仪器部。她完全继承和延续了西门子X射线分析仪器的研发、生产、销售及售后维护体系。几十年来,她一直引领X射线分析仪器的潮流。布鲁克公司纳米分析仪器部具有近50年能谱仪研发、生产、销售和维护历史,并开创微分析之先河――全球首创电镜用电制冷能谱仪,并将之推广,为用户提供了更好的微分析工具。秉续近20年电制冷能谱仪商用经验,承载6,000多台套电制冷能谱全球用户的殷切希望,作为电制冷能谱仪技术领域领跑者的布鲁克将一直以优异的性能、卓越的稳定性及全面的技术支持,不断超越用户的需求。 About Bruker Nano Analytics The Bruker Nano Analytics (BNA) Division, headquartered at Bruker Nano GmbH in Berlin, Germany, develops, manufactures and markets X-ray systems and components for elemental and structural analysis on the micro- and nano-scale.BNA' s product range comprises analytical tools for electron microscopes, including energy-dispersive X-ray spectrometers (EDS), wavelength-dispersive X-ray spectrometers (WDS), electron backscatter diffraction systems (EBSD), micro-spot X-ray sources for Micro-XRF on SEM and micro computed tomography (Micro-CT) accessories, as well as mobile and bench-top micro X-ray fluorescence (Micro-XRF) and total reflection X-ray fluorescence (TXRF) spectrometers.
    留言咨询

浓缩体系分散稳定性分析仪相关的仪器

  • 分散稳定性分析仪 400-860-5168转1987
    分散稳定性分析仪规格介绍:测量粒度范围:0.1至1,000μm最大颗粒浓度: ?60%v / v(乳液?95%)测量方法: 光学多重散射法(透射光,背散射光)光源波长: 870纳米测量样本量: 24毫升(option cell:2.8毫升)温度控制: 4°C至80°C粒度分析: ①动态粒度分析 ②光学粒度分析 ③粒度分布分析数据捕获间隔: 最小间距5μm大小/重量: 502×390×280mm 11kg(在两个扫描单元的情况下)电源: 100V~240V 50/60 Hz详细介绍:1.测量可以在不稀释浓缩样品的情况下进行。2.由于测量是在不施加外力的情况下进行的,所以实际的存储状态被照原样再现。3.评估粒度变化,如聚集,聚结,沉淀等,以及沉降和乳化。4.温度可控制(4到80°C)。ST-1可以评估实际储存情况下的稳定性,如冰箱或是仓库的环境。每个扫描塔可以独立控制评估温度4~80°C粒子迁移分析主要应用:日用品,食品,浆液,喷墨墨水,涂料墨水聚合物,化学产品,石油产品, 电子材料,化妆品 ,药用化学其他应用:颜料/药品/油漆和涂料溶液/杀虫剂/饮料/陶瓷浆料/聚合物溶液/一般胶体/其他化学品 等
    留言咨询
  • 纽迈-PQ001颗粒分散性稳定性分析仪PQ001颗粒分散性稳定性分析仪是一款用于颗粒表面特性分析的专用仪器,配有专业的测试软件,方便快捷,人性化的软件操作确保高效的测试效率。 PQ001粒子分散性稳定性分析仪在外观设计、硬件配置、软件操作方面融合了先进的技术并不断升级,确保了卓越的产品性能与友好的客户体验的完美结合。PQ001颗粒分散性稳定性分析仪主要功能:1. 悬浮液体系颗粒比表面积2. 粒子分散性、稳定性3. 颗粒与介质之间亲和性4. 粉体质量控制、分散工艺研究PQ001颗粒分散性稳定性分析仪应用领域:1)制陶术:湿式制程、加工工艺改善, 分散性的质控和研发2)纳米科技:纳米粒子表面的化学状态, 如: 吸附和脱附作用, 比表面积的变化 等3)电子材料:浓稠状浆料和研磨液 (CMP) 的开发及品管4)墨水:碳黑、颜料分散, 最适研磨条件, 表面亲和性及化学和物理状态5)能源:电池, 太阳能板等的碳黑, 纳米碳管和浆料的分散, 粒子表面的化学和物理状态6)制药:API湿润性、亲和性及吸水性的差异7)其他: 全部的浓稠分散悬浊液体, 纳米纤维, 纳米碳等简单、清晰的测试显示页面:1. 测试页面包括测量设置区和结果显示区,设置与测量分开,直观方便;2. 软件集成一体化,对操作人员无特殊要求;3. 测试过程简单快速, 3min内即可完成。加入分散剂于石墨烯水溶液中后,比表面积显著 增加,有利地证明了此分散剂的性能。
    留言咨询
  • TURBISCAN TOWER是最新款的稳定性分析仪,拥有更高的精确度,同时测量六个样品。该系列产品有TURBISCAN TOWER和TURBISCAN TOWER BASIC两种型号。TURBISCAN TOWER具有更宽的温度范围,4℃的模拟冷藏温度,特别适用用于研究食品的货架期。稳定性分析仪 (多重光散射仪) TURBISCAN TOWER应用多重光散射的原理, 检测器所得到透射光和背散射光强度是直接由分散相的浓度(体积百分数)和平均直径( 或是粒子/微滴/气泡的平均直径)决定的。通过测量透射光和背散射强度的变化,就可以知道样品在某一截面浓度或颗粒粒径的变化。该仪器对所分析的样品可以有一个宽的范围,粒子尺寸范围从0.01微米-1毫米,其样品的浓度最高可以达到体积百分比95%。 稳定性分析仪 (多重光散射仪) TURBISCAN TOWER的测量探头是由一个脉冲式的近红外光源 (波长880 nm )和两个同步的检测器组成: 透射光检测器是用于研究透明清澈的产品,背散射光检测器是用于研究高浓度的产品。仪器的工作原理为:测量探头收集透射光和背散射光的数据, 在55mm长度上每20 微米扫描一次。得到的图形在浓度上和粒子直径上表征了样品的均匀性,编辑其测量次数, 然后沿着样品不断重复扫描, 从而得到一张表征产品稳定性或不稳定特征的指纹图谱 。 稳定性分析仪 (多重光散射仪) TURBISCAN TOWER数据收集方式为扫描方式:沿着55 mm的扫描高度每 20 μm收集一次数据,在环境温度下每20秒钟做1次扫描并收集数据, 每30秒温度控制一次。可设置多达 250个扫描程序。样品中的粒子由于聚结、絮凝或团聚现象造成的粒子粒径的变化及位置的变化可以被实时监测。从而可以计算样品中粒子平均直径的变化,粒子的迁移的速度及由于颗粒的迁移造成的浓度变化即分层厚度的随时间变化。 稳定性分析仪 (多重光散射仪) TURBISCAN TOWER最大的特点是测量且无须对浓缩分散相进行稀释。从而确保产品在粒子尺寸和/或它的浓度方面符合所要求的技术规格。 稳定性分析仪 (多重光散射仪) TURBISCAN TOWER仪器装有温度调节装置, 可控制温度范围在4°C至80°C 之间,温度控制精度为 ± 0.1°C。 稳定性分析仪 (多重光散射仪) TURBISCAN TOWER软件可以得出下面的几种分析结果:1、背散射光强度BS和透射光强度T相对时间的变化曲线。2、分层厚度随时间的变化曲线。3、粒子迁移速度和粒子的流体动力(水力)平均直径。4、物理不稳定性定量动态分析: 粒子平均直径相对时间变化的曲线或者样品浓度相对时间变化的曲线。5、光子的平均自由光程或者传送的平均自由光程 , d (平均直径), phi (浓度-体积百分数),TSI稳定性指数。6、分散度。(分散度是固体粉末分散性的评价指标,其数值越小,分散性越差)。二、主要技术指标1、粒子尺寸的测量范围: 0.01-1000um。2、粒子浓度: 最高体积百分比浓度可达95%。3、测量技术: 多重光散射。4、一次可以检测6个样品。三、测量部件1、发射源: 近红外光源(880 nm)。2、检测器: 透射光和背散射光两个光敏二极管。3、温度范围:4°C到80°C,温度控制精度为± 0.1°C。4、样品池: 平底的玻璃池( 外径: 27.5mm – 高度: 70mm)随同带有螺纹黑顶盖及丁基/聚四氟乙烯密封圈。
    留言咨询

浓缩体系分散稳定性分析仪相关的资讯

  • 网络小课堂 I 分散体的稳定性分析
    德国LUM是全球分散体系分析及颗粒表征的领先者,拥有多项专利技术,其下LUMi系列产品为分析颗粒表征提供了技术平台。广泛应用于食品、化妆品、家庭及个人护理、石油、化工、制药、复合材料等不同行业。可以帮助您以一种简单的方式了解析复杂产品,简化和加速您的配方研发和质量控制过程。l 液滴和颗粒的粒度分布l 密度分布和磁化l 颗粒分离速度分布l 直接加速和实时的稳定性动力学l 比较和预测货架期l 纳米和微米颗粒的计数/浓度l 拉伸和剪切强度l 产品特性 本次线上研讨会将给大家带来分散体基础性的理论知识以及ISO对分散体稳定性的表征原则角度探讨STEP技术在分散体行业的实际应用。后续我们会邀请LUM的技术专家给大家分享不同领域的实际应用解决方案,请大家定期关注我们的网络小课堂。 课题 – 分散体的稳定性分析主讲嘉宾:时间安排:2021年6月24日(周四)下午14:00-15:00 会议内容:课题 – 分散体的稳定性分析 ü 分散体状态变化机理ü 分散体稳定性的表征ü 分散体货架期预测ü STEP技术在分散体行业的应用 报名方法:扫描下方”二维码”或点击”阅读全文”填些报名信息,报名成功后会您将会收到会议链接。本次线上活动免费,期待您的参加。会议平台:Cisco Webex邮箱:info@lumchina.cn
  • 网络小课堂 I 分散体的稳定性分析
    德国LUM是全球分散体系分析及颗粒表征的领先者,拥有多项专利技术,其下LUMi系列产品为分析颗粒表征提供了技术平台。广泛应用于食品、化妆品、家庭及个人护理、石油、化工、制药、复合材料等不同行业。可以帮助您以一种简单的方式了解析复杂产品,简化和加速您的配方研发和质量控制过程。l 液滴和颗粒的粒度分布l 密度分布和磁化l 颗粒分离速度分布l 直接加速和实时的稳定性动力学l 比较和预测货架期l 纳米和微米颗粒的计数/浓度l 拉伸和剪切强度l 产品特性 本次线上研讨会将给大家带来分散体基础性的理论知识以及ISO对分散体稳定性的表征原则角度探讨STEP技术在分散体行业的实际应用。后续我们会邀请LUM的技术专家给大家分享不同领域的实际应用解决方案,请大家定期关注我们的网络小课堂。 课题 – 分散体的稳定性分析主讲嘉宾:时间安排:2021年6月24日(周四)下午14:00-15:00 会议内容:课题 – 分散体的稳定性分析 ü 分散体状态变化机理ü 分散体稳定性的表征ü 分散体货架期预测ü STEP技术在分散体行业的应用 报名方法:扫描下方”二维码”或点击”阅读全文”填些报名信息,报名成功后会您将会收到会议链接。本次线上活动免费,期待您的参加。会议平台:Cisco Webex 邮箱:info@lumchina.cn
  • 稳定性分析系列讲座-产品稳定性的机理、影响因素及如何使用仪器快速预判
    大昌华嘉科学仪器部重磅发布稳定性分析系列讲座,包括线上和线下课程两类,本系列课主要介绍了多重光散射技术在食品领域的应用,并阐述了不同的配方、工艺对产品稳定性的影响效果。同时,线下课程更加注重理论基础和实际操作培训,让用户可以体验高效、精确的稳定性测试技术。欢迎大家参加!线上课程:讲师介绍何羽薇大昌华嘉科学仪器部技术专员何羽薇老师有30年分析仪器使用经验,重点关注材料化学、表面化学和流变学相关仪器的应用开发。课程详情主讲专家介绍——何羽薇何羽薇老师的应用经验涵盖食品、化妆品、陶瓷、涂料、墨水、石油化工等领域,擅长仪器图谱分析并熟练将仪器得到的数据应用到产品开发。研究方向重点在使用多重光散射仪,粒度仪、流变仪,表界面张力仪,ZETA电位仪,并结合稳定性基础DLVO理论,从表面化学、颗粒间相互作用入手,分析样品稳定性机理,为新产品的研发,问题样品的解决提供思路和解决方案。培训适合对象◆ 生产企业负责食品研发、质量控制相关负责人◆ 食品添加剂的研究人员、应用工程师◆ 高等食品院校和科研机构中从事食品行业的科研人培训内容简介从7月13日起,课程将首先从食品行业的稳定性问题开始分享。每周一、周四上午 10:30-11:30 精彩内容源源不断7月13日 讲,综述(1h)◆ 关于稳定性,讲讲那些你没有关注但是很重要的东西◆ 从原料、配方到工艺,在开发产品的时候需要关注的那些关键点,如何检测,如何预判,如何解决7月16日 第二讲,乳品及含乳饮品稳定性的特点,添加不同成分的乳品不稳定性的原因如何预判及解决方案(1h)◆ 纯牛奶稳定性◆ 高钙奶、高蛋白奶◆ 风味奶(红枣奶、香蕉奶)◆ 咖啡奶(中性乳饮料)◆ 发酵乳及酸饮:褐色乳饮料、酸性奶饮料、搅拌型酸奶◆ 凝固型酸奶、鲜奶酪、再制奶酪等7月20日 第三讲、乳化类型产品的特点,不稳定的原因,需要特别注意点(1h)◆ 稀奶油、发泡奶油◆ 核桃奶、杏仁露、椰奶、豆奶7月23日 第四讲,果汁饮料的稳定性特点,不稳定的原因,需要特别注意点(1h)◆ 透明果汁饮料◆ 不透明脱脂饮料◆ 多肽类蛋白饮料7月27日 第五讲,粉体类原料的润湿性对产品稳定性的重要性,如何评价(1h)◆ 奶粉◆ 植脂末◆ 茶粉7月30日 第六讲,如何获得口感极佳的肉类制品,如何控制肉汤的口感和稳定性(1h)◆ 肉的乳化性、凝胶性,分别有哪些影响因素需要控制◆ 制备良好口感制品,需要的稳定性控制因素◆ 肉汤的物理稳定性,决定了肉汤的口感8月3日 第七讲,调味料稳定性(1h)◆ 耗油的稳定性研究◆ 果酱、番茄酱、芝麻酱、花生酱的稳定性研究◆ 色拉酱的稳定性研究8月6日 第八讲,其他(1h)◆ 啤酒的澄清度控制因素,啤酒泡沫稳定性评价◆ 打蛋液泡沫的稳定性决定了烘焙产品的口感 识别二维码报名“稳定性分析系列讲座”同时,我们推出了精彩的线下实操课程:有关分散体系稳定性的基础知识及分散体系中各组分的潜在不稳定风险及其原理分析天1、 稳定性基础理论DLVO理论2、 体相中乳化剂的存在方式及其对稳定性的影响3、 各种类型乳化吸附特性比较及乳化剂的界面竞争吸附4、 最新的picking乳液和Junus乳液的特点及应用5、 推荐乳化剂预测方法综述及乳状液稳定性预测实验设计6、 实操第二天1、 流变学基础知识2、 各种类型稳定剂的基本流变学分类3、 不同的流变仪的不同的作用4、乳状液体系稳定剂与乳化液滴的相互作用及其对体系稳定性的影响5、推荐稳定剂流变学特性测量实验设计,从流变学参数中我们可以得到些什么6、实操第三天1、工艺过程中,乳化罐叶片位置角度对混合均匀度的而影响,需要关注的流体动力学影响2、热处理对稳定性的影响3、均质与杀菌工艺参数影响稳定性的基本原理4、推荐评价稳定剂流变学特性测量实验设计,从流变学参数中我们可以得到些什么5、如何解读稳定性分析仪报告,从中可以得到那些信息。稳定性实验数据处理 GB/T 384316、疑难解答互动交流线下实操课程时间,连续4个月,每月1期,每期3天:线下培训为收费培训,具体价格请电话/邮箱咨询。欢迎感兴趣的朋友踊跃报名!

浓缩体系分散稳定性分析仪相关的方案

  • LUMiSizer® 分散体系分析仪在牛奶稳定性分析中的应用
    本文应用LUMiSizer® 分散体系分析仪讨论牛奶的透光率图谱及稳定性分析。通过透光率指纹图谱判定样品在实验过程中的分离行为,快速测试样品的不稳定性指数,并对样品的不稳定性排名,已成为企业研发的一把利器,为研发提供强大依据。
  • 利用LUM稳定性分析仪评价表面活性剂对碳黑水性分散体配方稳定性影响
    表面活性剂通常用于稳定分散体(乳液、悬浮液等)和改善表面性能。其选择,最佳添加浓度等是配方设计中的关键步骤。目前有许多不同的方法来评价分散体的稳定性。这些方法可能非常简单,比如直接肉眼观看差异,也可能基于个人经验判断。部分方法通过评价分散体的某些指标来衡量表面活性剂选择的好坏,比如评价粒径,电位,粘度等,但这些方法往往还需要稀释样品,操作繁琐,且需要在样品存放的不同阶段反复进行测量。间接的某一指标与稳定性往往可能并不正相关,所以间接法测量与实际的储存稳定性又存在偏差。本文简述了用LUM稳定性分析仪进行表面活性剂的快速筛选和评价分散体稳定性的过程。为了证明该筛选方法的有效性,我们选择了一些不同浓度和组成的分散剂来进行悬浮液稳定性效果的评价。且进一步评估了制备条件的影响。
  • 利用LUM稳定性分析仪评价乳化剂对水性乳液配方的分散稳定性
    表面活性剂通常用于稳定分散体(乳液、悬浮液等)和改善表面性能。其选择,最佳添加浓度等是配方设计中的关键步骤。目前有许多不同的方法来评价分散体的稳定性。这些方法可能非常简单,比如直接肉眼观看差异,也可能基于个人经验判断。部分方法通过评价分散体的某些指标来衡量表面活性剂选择的好坏,比如评价粒径,电位,粘度等,但这些方法往往还需要稀释样品,操作繁琐,且需要在样品存放的不同阶段反复进行测量。间接的某一指标与稳定性往往可能并不正相关,所以间接法测量与实际的储存稳定性又存在偏差。乳化剂的选择和乳液稳定性的评估是一项经常性的任务。这涉及到诸如乳液配方稳定性、生产优化、质量控制、保质期预测和破乳等实际问题。本文简述了用LUM稳定性分析仪评价不同乳化剂及使用浓度对乳液稳定性的影响。

浓缩体系分散稳定性分析仪相关的资料

浓缩体系分散稳定性分析仪相关的试剂

浓缩体系分散稳定性分析仪相关的论坛

  • 【原创大赛】分散体的稳定性和表征方法

    【原创大赛】分散体的稳定性和表征方法

    [align=center][size=16px]分散体的稳定性和表征方法[/size][/align]1,分散体的概念和分散体的稳定性1,1 分散体把一种或几种物质分散在另一种物质中构成的体系,称为分散体(Dispersion)。其中:被分散的物质称为分散相(Dispersed phase) 分散的介质(Dispersing medium)称为连续相(Continuous phase)。分散相中的颗粒如果是固体颗粒(Solid particle),该分散体则统通常被称为悬浮液(Suspension) 分散相中的颗粒如果是液滴(Droplet),该分散体则统通常被称为乳液或乳浊液(Emulsion)。现实生活中的分散体可能是非常复杂多样的,例如牛奶这种经典的分散体,分散相中的颗粒形态既有蛋白质固体颗粒,又有脂肪液滴,遂也可以称为悬浮乳液(Suspension-emulsion);例如化妆品乳液中又经常可以分类为水包油乳液(O/W),油包水乳液(W/0),水包油包水(W/O/W)双重乳液等等。随着研发技术和工艺的发展,还有越来越多的人开始研究纳米分散体(Nano dispersion),皮克林分散体(Pickering dispersion),液晶乳液(Liquid crystal emulsion)等复杂分散体。1,2 分散体的稳定性分散体的稳定性是指分散体保持其初始状态性质或状态不随时间改变的能力。即在一定时间内,分散体的品质没有发生改变。1,3 分散体失稳的现象1,3,1 沉降(Sedimentation)由于分散相颗粒密度大于连续相密度产生的分散相的向下迁移沉淀(分离)的现象。分散相在容器底部的累积证明沉降发生。1,3,2 上浮(Floatation/Creaming)由于分散相颗粒密度小于连续相密度,分散相颗粒向液态连续相顶部迁移的现象。其中固体颗粒的上浮通常也被成为漂浮(floatation),液滴颗粒的上浮通常也被成为乳状上浮(creaming)。1,3,3 相分离(Phase separation)宏观均匀的分散体如悬浊液、乳液或泡沫分离成两个或多个相的现象。1,3,4 团聚(Agglomeration)分散体中分散相的颗粒(固体颗粒或液滴)聚集成团,形成二维的颗粒簇,称为团聚物,这个过程称为团聚。1,3,5 絮凝(Flocculation)絮凝是团聚的一种形式,分散体里的颗粒由弱物理作用力聚集在一起,一般是由颗粒之间的范德华引力大于双电层斥力引起形成松散的内聚结构。1,3,6 聚并(Coalescence)两个颗粒接触时边界消失(通常是液滴或气泡,不存在于固体颗粒),或者在一个颗粒与较大的颗粒间发生形状改变导致总面积减少的现象。1,3,7 奥斯特瓦尔德熟化(Ostwald ripening)小颗粒溶解在较大颗粒的表面重新沉积的过程。此过程发生的原因是较小颗粒有较高的表面能,有较高的总Gibbs自由能,因而有明显的较高溶解度。1,3,8相反转(Phase inversion)由体系的特性、体积比及能量输入所导致的液-液分散体(乳液)的相转变的现象,即分散相自发地变成了连续相,反之亦然。例如水包油乳液(O/W)相反转成为油包水(W/0)乳液。[img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111018324112_9390_3433167_3.png[/img][align=center][size=12px]F[/size][size=12px]ig[/size][size=12px].1-1 [/size][size=12px]分散体的失稳[/size][size=12px]现象[/size][/align][align=center][size=12px]Instability of dispersion[/size][/align]1,4 影响分散体稳定性的因素分散体状态的改变取决于复杂的物理化学因素。分散相的状态(密度,粒度和分布,粒形,颗粒表面结构等),连续相的状态(密度,溶解度,pH,粘度,表面张力,流变行为等),颗粒的相互作用(排斥,吸引,流体动力学等),分散相和连续相的相互作用(润湿性,界面张力,流变学等),分散相的体积浓度等,都会影响一个分散体的稳定性。1,5 分散体的稳定性和产品设计 产品设计者须根据产品的实际应用场景或客户对符合产品规范及分散体充分稳定的需求进行配方调控。为此产品设计者需选择好分散体的状态(如:粒径分布,形状,密度匹配,对超大尺寸颗粒的限制,表面电荷和表面包裹)以及适合的连续相行为。对于分散体的稳定性,颗粒-颗粒间以及分散相-连续相间的相互作用非常重要。传统上,主要应用静电稳定原理。现在,随着创新产品的涌出(例如常用聚合物添加剂以使连续相适应其产品需求),静电稳定,空间位阻或静电位阻稳定,或其组合变成更常用的方法。这些方法的理论基础是经典的DLVO 理论(Derjaguin, Landau, Verwey, Overbeek)和近来进一步扩展的DLVO理论。应该强调的是,当今产品常含有数种分散相,其连续相也可能含有数种成分,产品设计将会变得更为困难。由于这些分散体的复杂结构,由单一参数来表征和预测分散体状态的稳定性是远远不够的。选择合适的仪器来表征分散体产品的稳定性将会在产品设计过程中的原料筛选,配方调控,工艺优化等环节起到至关重要的作用。[img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111018326858_5189_3433167_3.png[/img][align=center][size=12px]F[/size][size=12px]ig[/size][size=12px].1-[/size][size=12px]2[/size][size=12px] [/size][size=12px]静电位阻[/size][/align][align=center][size=12px]Electrostatic and potential resistance[/size][/align][align=center][/align]2,分散体稳定性表征的方法2,1 LUM稳定性测试原理LUM系列稳定性分析仪器使用近红外光源(或多光源系统)照射样品整体,相比于传统的光谱只能读取样品某个点位置的消光度/透光度信息,LUM运用全球专利的STEP技术(Space and Time Resolved Extinction/Transmission Profiles)可以单次就记录整个样品管所有位置的消光率/透光率信息。并且可照射样品的同时,设置任意长度的光源照射时间间隔(最低1秒),由此可以实现样品消光率/透光率随时间变化的实时监测。对于较不稳定的分散体(如低温酸奶,冷链饮料,原油,浆料等),在若干小时或者若干天就能出现较为明显的失稳现象,可以利用LUMiReader静置(1g)系列的稳定性分析仪来进行实时监测和表征;对于较为稳定的分散体(如常温乳品和饮料,化妆品,涂料,脂肪乳剂等),在若干月甚至若干年才能观察到较为明显的失稳现象,可以利用LUMiFuge或者LUMiSizer离心加速(6-2300g)系列的稳定性分析仪来进行加速测试和表征。无论是LUM的静置还是加速系列的稳定性分析仪,专利的STEP技术(Space and Time Resolved Extinction/Transmission Profiles)都可以得到完整样品在任意空间和时间的透光率信息,形成独特的透光率指纹图谱。由这些特征的指纹图谱,不仅可以定性分析样品分离失稳的过程和变化,还可以对样品的稳定性/不稳定性指数,样品分层情况,颗粒迁移速度,颗粒的粒径和分布等进行定量分析。LUM仪器还可以实现多样品测试,最多可以同时测试12个样品,实现高通量高效的测试需求。此外,仪器配备温度控制模块,4-80℃的温控范围可以满足常规的稳定性测试的温度需求。[img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111018328030_8014_3433167_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111018329141_2160_3433167_3.jpeg[/img][align=center]Fig.2-1 LUMiReader静置稳定性分析仪[/align][align=center]Real-time Stability analyzer[/align][img]" style="max-width: 100% max-height: 100% [/img][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111018330257_9894_3433167_3.jpeg[/img][align=center]Fig.2-2 LUMiFuge/ LUMiSizer离心加速稳定性分析仪[/align][align=center]Accelerated Stability analyzer[/align][align=center][/align]2,2 Stokes定律[img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111018331192_4571_3433167_3.png[/img]v – 颗粒移动速度△ρ – 两相的密度差η– 连续相动态粘度r – 粒径a – 颗粒浓度xg –相对重力加速度(LUMiReader=1g,LUMiFuge/LUMiSizer=5-2300g)由Stokes定律可知,分散相和连续相的密度差,分散相颗粒的粒径,连续相的粘度,颗粒浓度等因素都会影响体系里颗粒的迁移速率,最终影响分散体的稳定性。Stokes定律适用于重力场和离心场。2,3 LUM透光率指纹图谱(Transmission profile)[img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111018332129_9696_3433167_3.png[/img][align=center]Fig.2-3 样品静置测试的透光率指纹图谱[/align]图2-3是某样品在静置测试下的透光率图谱。样品管在仪器里竖直放置,遂纵坐标对应样品管的位置刻度;横坐标对应透光率数值。红色谱线为初始谱线,绿色谱线为实验66h结束后的谱线。我们可以发现,该样品随着实验的进行,底部的透光率逐渐升高,意味着样品里的颗粒发生了上浮(向上迁移)。同时观察样品管实验前后的状态,我们也可以发现该样品确实在底部出现了变澄清的过程。[img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111018333411_7189_3433167_3.png[/img][align=center]Fig.2-4 样品离心加速测试的透光率指纹图谱[/align]图2-4是某两个样品在离心加速测试下的透光率图谱。样品管在仪器里平躺放置,遂横坐标对应样品管的位置刻度;纵坐标对应透光率数值。红色谱线为初始谱线,绿色谱线为实验结束后的谱线。我们可以发现,这两个样品随着实验的进行,顶部的透光率逐渐升高,意味着样品里的颗粒发生了沉降(向下迁移)。同时对比样品管实验后的状态,我们也可以发现这两个样品确实在顶部出现了变澄清的过程。两外,尽管这两个样品都是沉降的过程,左边的样品有明显的界面(或称之为区域沉降),对应的透光率图谱的斜率也是陡峭的形态;而右边的样品没有明显的界面(或称之为多分散沉降),对应的透光率图谱的斜率也是平缓的形态。由此可见,LUM仪器可记录样品的透光率随时间变化的过程,并直观地反应在指纹图谱中,产品设计者由此可以分析判读出分散体详细的失稳过程,从而进一步进行样品间稳定性的比较。2,4 不稳定性指数(Instability index) 产品的透光率变化越剧烈意味着样品越不稳定。LUM稳定性分析系列仪器通过配套的SEPView分析软件,可以直接将产品的透光率随时间的变化计算量化成不稳定性指数(Instability index),从而可以定量比较样品间的稳定性。由此可帮助产品设计者有效快速地筛选和优化配方,大大地缩短研发周期。还可对原料进行控制和筛选,对均质和出料等工艺条件进行优化改善,为质检提供快速便捷的方法。 图2-5展示了同一配方的某分散体,采用不同的工艺控制过程后制备的样品,在LUMiSizer加速稳定性分析仪中测试所得的透光率指纹图谱以及对应的不稳定性指数(Instability index)。[img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111018334424_9357_3433167_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111018335665_2656_3433167_3.png[/img][align=center]Fig.2-5不同工艺处理对相同配方的稳定性的影响[/align][align=center](LUMiSizer: 328g, 20°C, 15 h)[/align]2,5 界面追踪(Front tracking) 除了从不稳定性指数的角度量化产品的稳定性,产品设计者往往还会考虑产品分层的过程。LUM稳定性分析系列仪器通过配套的分析软件,还可以实时追踪产品界面位置随时间的变化,从而可以量化给出产品分层的速率。由此可以进一步对分散体产品进行稳定性的综合表征。 图2-6展示了为某产品选择不同添加剂后,在LUMiSizer加速稳定性分析仪中测试所得的界面位置随时间的沉降过程以及对应的界面沉降速率。[img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111018336895_8486_3433167_3.png[/img][align=center]Fig.2-6 不同种类添加剂对样品界面沉降的影响[/align][align=center](LUMiSizer: 2300g, 40°C, 2 h)[/align][align=center][/align]图2-7展示了为某产品选择不同添加量的破乳剂后,在LUMiSizer加速稳定性分析仪中测试所得的界面位置随时间的上浮过程以及对应的界面上浮层的高度。[img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111018338135_6561_3433167_3.png[/img][align=center]Fig.2-7 不同添加量的破乳剂对样品界面上浮的影响[/align][align=center](LUMiSizer: 2300g, 35°C, 1 h)[/align]2,6 颗粒表征(Particle characterization)除了稳定性表征外,LUM的部分仪器还选配了粒度检测模块,用于测量颗粒的粒度和分布。由于粒度分析这一块在本书的其他章节做了详细描述,固不再赘述。3, LUM稳定性分析仪的应用场景LUM系列稳定性分析仪广泛应用于食品,化学品,个人护理品,涂料,墨水,电子浆料,纳米材料,生物医药等各类分散体系产品的原浓度快速稳定性分析和定量排序。相比于传统的温箱储存数月(储存法),再进行肉眼比较的方法来说,LUM仪器大大缩短了测试和分析的时间;相比于表征样品中某一特定指标的参数变化(间接法),例如粒度,粘度等,LUM系列稳定性分析仪更着重于样品的所有参数综合影响的最终稳定性的表现。样品的透光率指纹图谱中包含了样品失稳过程的定性信息,产品设计者可以分析出颗粒的沉降,上浮,团聚和絮凝,聚并,转相,奥斯特瓦尔德熟化等各类失稳过程的信息,还可进一步对特定产品,观察网状结构,破乳行为的研究等。结合丰富的软件分析模块,还可以为产品的稳定性进行快速和综合的量化,进而还能为货架期的比较和预测提供良好的数据支持。

  • 【原创大赛】稳定性分析仪在涂料,墨水行业的应用

    【原创大赛】稳定性分析仪在涂料,墨水行业的应用

    [align=center][font='宋体'][size=16px]稳定性分析仪在[/size][/font][font='宋体'][size=16px]涂料,[/size][/font][font='宋体'][size=16px]墨[/size][/font][font='宋体'][size=16px]水[/size][/font][font='宋体'][size=16px]行业的应用[/size][/font][/align][align=left][font='宋体'][size=16px]LUM[/size][/font][font='宋体'][size=16px]稳定性分析[/size][/font][font='宋体'][size=16px]仪[/size][/font][font='宋体'][size=16px]利用[/size][/font][font='宋体'][size=16px]全球独家专利的[/size][/font][font='宋体'][size=16px]STEP[/size][/font][font='宋体'][size=16px]技术[/size][/font][font='宋体'][size=16px]—[/size][/font][font='宋体'][size=16px]空间[/size][/font][font='宋体'][size=16px]和时间透光率扫描技术[/size][/font][font='宋体'][size=16px](图1),L[/size][/font][font='宋体'][size=16px]UM[/size][/font][font='宋体'][size=16px]各系列稳定性分析仪[/size][/font][font='宋体'][size=16px]可在样品静置或离心加速的同时,设置任意时间长度的扫描间隔(最低可每秒钟扫描一次)对样品进行[/size][/font][font='宋体'][size=16px]任意位置的[/size][/font][font='宋体'][size=16px]透光率变化的检测。[/size][/font][font='宋体'][size=16px]通过每个样品[/size][/font][font='宋体'][size=16px]独特的透光率指纹图谱,可以对样品的分离行为和过程分析,得到样品的不稳定性指数,界面迁移速度,颗粒速度和分布,粒度和分布等定量分析。[/size][/font][/align][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111029113555_9481_3433167_3.jpg[/img][align=center][font='宋体'][size=16px]图[/size][/font][font='宋体'][size=16px]1[/size][/font][font='宋体'][size=16px]-[/size][/font][font='宋体'][size=16px]S[/size][/font][font='宋体'][size=16px]TEP[/size][/font][font='宋体'][size=16px]技术[/size][/font][/align][font='宋体'][size=16px]此外,L[/size][/font][font='宋体'][size=16px]UM[/size][/font][font='宋体'][size=16px]系列稳定性分析仪可以实现多样品测试,最多可以同时测试[/size][/font][font='宋体'][size=16px]12[/size][/font][font='宋体'][size=16px]个样品。并且有温度控制模块,[/size][/font][font='宋体'][size=16px]4-60[/size][/font][font='宋体'][size=16px]℃的温控范围可以满足稳定性测试的常规温度条件。[/size][/font][align=left][font='宋体'][size=16px]这些定性和定量的结果非常适合[/size][/font][font='宋体'][size=16px]墨[/size][/font][font='宋体'][size=16px]水[/size][/font][font='宋体'][size=16px],涂料等分散体的稳定性表征,最终实现指导新产品设计[/size][/font][font='宋体'][size=16px], [/size][/font][font='宋体'][size=16px]现有产品的优化,生产过程的质量控制及产品保质期/货架[/size][/font][font='宋体'][size=16px]期预测[/size][/font][font='宋体'][size=16px]等任务。[/size][/font][font='宋体'][size=16px]本文结合诸多具体应用案例,浅谈L[/size][/font][font='宋体'][size=16px]UM[/size][/font][font='宋体'][size=16px]系列稳定性分析仪在涂料,墨水等分散体行业的实际应用。[/size][/font][/align][align=left][font='宋体'][size=16px]一,[/size][/font][font='宋体'][size=16px]分散体状态变化的机理[/size][/font][/align][font='宋体'][size=16px]分散体的稳定性取决于诸多相关的物理,物理化学及化学参数,因此其性质是复杂的。稳定性会受如下因素的影响:[/size][/font]A. [font='宋体'][size=16px]分散相的质量或体积浓度(如:空间均[/size][/font][font='宋体'][size=16px]一[/size][/font][font='宋体'][size=16px]性,稀释或浓缩);[/size][/font]B. [font='宋体'][size=16px]连续相的状态(如:密度,黏度,表面张力,化学势,溶剂);[/size][/font]C. [font='宋体'][size=16px]分散相的状态(如:粒径和分布,形状,颗粒形变,颗粒表面结构);[/size][/font]D. [font='宋体'][size=16px]颗粒/液滴间相互作用(如:静电和范德华力,空间阻力);[/size][/font]E. [font='宋体'][size=16px]分散相和连续相间相互作用(如:润湿性,界面张力,表面和流变学,溶解性,可溶性,网状结构形成)。[/size][/font][align=left][font='宋体'][size=16px]以上种种因素(包括但不限于)的影响,都会让一个分散体的状态出现上浮,沉降,团聚,聚并,奥斯特瓦尔德[/size][/font][font='宋体'][size=16px]熟化[/size][/font][font='宋体'][size=16px],相反转等各种变化。LUM稳定性分析[/size][/font][font='宋体'][size=16px]仪正是[/size][/font][font='宋体'][size=16px]基于对这些失稳过程的追踪测量,实现对不稳定性的定量检测。[/size][/font][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111029115872_4076_3433167_3.png[/img][/align][align=center][font='宋体'][size=16px]图[/size][/font][font='宋体'][size=16px]2[/size][/font][font='宋体'][size=16px]-[/size][/font][font='宋体'][size=16px]分散体状态[/size][/font][font='宋体'][size=16px]变化的机理[/size][/font][/align][align=left][/align][align=left][font='宋体'][size=16px]二[/size][/font][font='宋体'][size=16px],[/size][/font][font='宋体'][size=16px] 分离行为和过程分析[/size][/font][/align][align=left][font='宋体'][size=16px]本例中,比较同一个涂料样品在不同温度条件下沉降行为的不同。[/size][/font][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111029119564_2019_3433167_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111029120528_5667_3433167_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111029121361_7470_3433167_3.png[/img][font='宋体'][size=16px] [/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111029122279_3335_3433167_3.png[/img][/align][align=center][font='宋体'][size=16px]图[/size][/font][font='宋体'][size=16px]3[/size][/font][font='宋体'][size=16px]-[/size][/font][font='宋体'][size=16px]温度对沉降行为的影响[/size][/font][/align][align=left][font='宋体'][size=16px]当样品在2[/size][/font][font='宋体'][size=16px]5[/size][/font][font='宋体'][size=16px]℃时,出现区域沉降,即整体沉降的过程;而样品在[/size][/font][font='宋体'][size=16px]45[/size][/font][font='宋体'][size=16px]℃时,出现多分散沉降,即颗粒按照不同速度沉降的过程。结合样品本身的属性,可以推测在2[/size][/font][font='宋体'][size=16px]5[/size][/font][font='宋体'][size=16px]℃时,该样品的网状结构较好地承托了颗粒;而在[/size][/font][font='宋体'][size=16px]45[/size][/font][font='宋体'][size=16px]℃时,网状结构崩塌,颗粒没有被很好地包裹在结构中,因此更不稳定。[/size][/font][/align][align=left][/align][align=left][font='宋体'][size=16px]三,[/size][/font][font='宋体'][size=16px] [/size][/font][font='宋体'][size=16px]稳定性比较[/size][/font][/align][align=left][font='宋体'][size=16px]本例中,对3款[/size][/font][font='宋体'][size=16px]墨水[/size][/font][font='宋体'][size=16px]样品的沉降图谱进行展示,并做不稳定数值的定量比较[/size][/font][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111029123607_1143_3433167_3.png[/img][font='宋体'][size=16px] [/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111029124610_1069_3433167_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111029125724_887_3433167_3.png[/img][/align][align=left][font='宋体'][size=16px]蓝色水性油墨 [/size][/font][font='宋体'][size=16px] [/size][/font][font='宋体'][size=16px] [/size][/font][font='宋体'][size=16px]红色水性油墨 [/size][/font][font='宋体'][size=16px] [/size][/font][font='宋体'][size=16px]红色溶剂型油墨[/size][/font][/align][align=center][font='宋体'][size=16px]图[/size][/font][font='宋体'][size=16px]4[/size][/font][font='宋体'][size=16px]-[/size][/font][font='宋体'][size=16px]墨水[/size][/font][font='宋体'][size=16px]样品的图谱和样品管对比[/size][/font][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111029126576_1950_3433167_3.png[/img][/align][align=center][font='宋体'][size=16px]图[/size][/font][font='宋体'][size=16px]5[/size][/font][font='宋体'][size=16px]-[/size][/font][font='宋体'][size=16px]墨水[/size][/font][font='宋体'][size=16px]样品的不稳定性指数[/size][/font][font='宋体'][size=16px]柱状图[/size][/font][/align][font='宋体'][size=16px]从透光率图谱来看,透光率变化的剧烈程度从大到小依次是1[/size][/font][font='宋体'][size=16px]1A-[/size][/font][font='宋体'][size=16px]红色溶剂型油墨>2[/size][/font][font='宋体'][size=16px]A-[/size][/font][font='宋体'][size=16px]蓝色水性油墨>1[/size][/font][font='宋体'][size=16px]0A-[/size][/font][font='宋体'][size=16px]红色水性油墨;从不稳定性指数排名来看,从最不稳定到稳定的样品依次是1[/size][/font][font='宋体'][size=16px]1A-[/size][/font][font='宋体'][size=16px]红色溶剂型油墨>2[/size][/font][font='宋体'][size=16px]A-[/size][/font][font='宋体'][size=16px]蓝色水性油墨>1[/size][/font][font='宋体'][size=16px]0A-[/size][/font][font='宋体'][size=16px]红色水性油墨。[/size][/font][font='宋体'][size=16px]相对于传统静[/size][/font][font='宋体'][size=16px]置观察[/size][/font][font='宋体'][size=16px]时间慢,又无法定量比较的方法,L[/size][/font][font='宋体'][size=16px]UM[/size][/font][font='宋体'][size=16px]稳定性分析仪可以在很短的时间内即可对样品进行快速的稳定性排名。[/size][/font][align=left][/align][align=left][font='宋体'][size=16px]四,[/size][/font][font='宋体'][size=16px] [/size][/font][font='宋体'][size=16px]界面分层速度和界面位置的追踪[/size][/font][/align][align=left][font='宋体'][size=16px]本例中,比较搅拌和球磨2种不同分散法对涂料稳定性的影响[/size][/font][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111029127931_814_3433167_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111029128790_8446_3433167_3.png[/img][/align][align=center][font='宋体'][size=16px]图[/size][/font][font='宋体'][size=16px]6[/size][/font][font='宋体'][size=16px]-[/size][/font][font='宋体'][size=16px]不同分散条件[/size][/font][font='宋体'][size=16px]对样品的沉降影响[/size][/font][/align][font='宋体'][size=16px] [/size][/font][font='宋体'][size=16px] [/size][/font][font='宋体'][size=16px]从透光率图谱的变化来看,两个样品均是区域沉降的过程。其中普通搅拌分散的色浆,其谱线的间距在实验初期就变得较宽,说明沉降较快;后期谱线的间隙变密,出现了沉降压缩。从两个样品界面沉降的速度比较,球磨分散后的样品沉降速度更慢一些。[/size][/font][align=left][font='宋体'][size=16px]五,[/size][/font][font='宋体'][size=16px] [/size][/font][font='宋体'][size=16px]平均透光率[/size][/font][/align][align=left][font='宋体'][size=16px]本例中,比较2个透明水性涂料的平均透光率差异[/size][/font][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111029129767_2542_3433167_3.png[/img][/align][align=center][font='宋体'][size=16px]图[/size][/font][font='宋体'][size=16px]7[/size][/font][font='宋体'][size=16px]-[/size][/font][font='宋体'][size=16px]透明水性涂料的平均透光率差异[/size][/font][/align][font='宋体'][size=16px] [/size][/font][font='宋体'][size=16px] LUM[/size][/font][font='宋体'][size=16px]采用的[/size][/font][font='宋体'][size=16px]STEP[/size][/font][font='宋体'][size=16px]技术[/size][/font][font='宋体'][size=16px],即[/size][/font][font='宋体'][size=16px]空间和时间透光率扫描技术,可以给出某个任意时刻样品所有位置的平均透光率信息。一方面,样品的平均透光率可以比较浊度/透明度,浓度差异;另一方面平均透光率随时间变化慢的样品,其稳定性也较好。[/size][/font][align=left][/align][align=left][font='宋体'][size=16px]六,[/size][/font][font='宋体'][size=16px]颗粒表征[/size][/font][/align][align=left][font='宋体'][size=16px]本例中,比较含不同添加剂原料的陶瓷墨水的粒度和分布[/size][/font][/align][align=left][font='宋体'][size=16px] [/size][/font][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111029130892_7295_3433167_3.png[/img][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111111029131791_3899_3433167_3.png[/img][/align][align=center][font='宋体'][size=16px]图[/size][/font][font='宋体'][size=16px]8[/size][/font][font='宋体'][size=16px]-[/size][/font][font='宋体'][size=16px]氧化锆陶瓷墨水的粒径和[/size][/font][font='宋体'][size=16px]分布[/size][/font][/align]

  • 提取方法的稳定性分析

    将挥发性组分提取出来后,进行GC/MS分析,怎样进行提取方法的稳定性分析?看到有的资料说多次重复试验,计算谱图与平均谱图的相和系数RSD,求指点!

浓缩体系分散稳定性分析仪相关的耗材

  • 德国耶拿vario 6原子吸收石墨管407-152.315稳定性好
    德国耶拿novAA 300407-A81.011德国耶拿novAA400P原装涂层石墨管德国耶拿novAA 350407-A81.025德国耶拿novAA400P原装平台石墨管德国耶拿novAA 400407-A81.026德国耶拿novAA400P原装平台石墨管德国耶拿vario 6407-152.315耶拿ZEEnit700P石墨炉原子吸收光谱仪石墨管德国耶拿Zeenit 600407-152.314耶拿ZEEnit700P石墨炉原子吸收光谱仪平台石墨管德国耶拿ZEEnit650P407-A81.024 石墨管套德国耶拿Zeenit 700407-A81.018 石墨电极德国耶拿Zeenit 700P407-A81.020 石墨烟筒德国耶拿contrAA 300 407-152.023固体进样舟407-152.023德国耶拿contrAA 700 407-A81.303石墨管,热涂层德国耶拿407-152.342一对 Z 电极(2 个)德国耶拿vario 6原子吸收石墨管407-152.315稳定性好德国耶拿Analytik Jena全线耗材配件,原装空心阴极灯/石墨管/雾化器/样品杯/进样针/进样器/注射器/TOC燃烧管/垫片、隔垫等耗材配件。 德国耶拿vario 6原子吸收石墨管407-152.315稳定性好德国耶拿Analytik Jena原子吸收光谱耗材配件、德国耶拿vario 6原子吸收石墨管407-152.315稳定性好TOC分析仪/总有机碳分析仪耗材、有机元素分析仪耗材、碳硫分析仪(红外碳硫仪)耗材配件、卤素分析仪/水质卤素分析仪耗材。
  • 用于稳定性测定的聚苯乙烯量杯 6.1428.107
    用于稳定性测定的聚苯乙烯量杯订货号: 6.1428.107用于稳定性测定仪的聚苯乙烯电导率量杯。每套 50 个。技术参数:外直径(mm)45容量(mL)140材料PS高度(mm)91
  • 丙酸倍氯米松混悬液分散机,倍氯米松分散机,丙酸氟替卡松雾化吸入用混悬液分散机,进口丙酸倍氯米松混悬液分散机,上海丙酸倍氯米松混悬液分散机生产厂家
    丙酸倍氯米松混悬液分散机,倍氯米松分散机,丙酸氟替卡松雾化吸入用混悬液分散机,进口丙酸倍氯米松混悬液分散机,上海丙酸倍氯米松混悬液分散机生产厂家 混悬液 分散是至少两种互不相溶或者难以相溶且不发生化学反应的物质的混合过程。工业分散的目标是在连续相中实现“令人满意的”精细分布。 当固体颗粒分散到一种液体中时,形成一种悬浮液。当一种液体分散到另一种液体中时,形成一种乳浊液。在一种乳浊液的两个液相间的界面处,表面张力开始发生作用。新表面的产生需要能量。在没有外部影响的情况下,每个液相体系均企图以较少的能量达到乳浊液状态。因此,总是会有产生较小界面的倾向,这阻碍任何乳浊液的形成。 为了实现互不相溶相的分散,必须强力粉碎并混合其粒子。粉碎意味着必须克服表面张力的阻力来形成新表面。分散过程传递所需的能量,并保证两相均质混合。分散的长期稳定性会受到确切粒度分布及乳化剂和稳定剂使用的影响。 现在分散机的应用不仅仅局限于“分散”,由于其独特的剪切作用,对粉粒体在液体中的粉碎撞击终细化到理想的粒径,从而使固体质充分掺混到液体中并形成相对稳定的悬浮液,这种过程也就是“分散”。当然与乳化剂一样,添加了分散剂后,悬浮液的稳定性就能得到增强。当某种固体物质通过一定时间与液体的接触能够被液体彻底溶解,那么经剪切撞击而形成的小颗料将更快地被液体所溶解,因为其比表面积增大了好多倍了。从设备角度分析影响分散乳化效果的因素:1、分散机的结构。分散机一般分为间歇式分散机和管线式分散机,管线式分散机分散效果更好,物料可以充分分散乳化,效率高。IKN高剪切分散机采用的是管线式的分散乳化方式。2、分散机的剪切速率。分散设备核心参数就是剪切速率,一般情况下,剪切速率越高,分散乳化效果越好,当然也需要根据具体物料工艺来定;IKN分散机通过皮带加速,转速达9000rpm,是普通分散机转速的3倍,高转速可达21,000rpm。3、处理时间。物料在腔体里面停留时间越长,相对应的分散乳化效果越好,处理次数越多,一般来说分散乳化效果越好。IKN分散机结构设计采用的是立式分体结构,运行时间短。 4、分散头的加工精度。传统分散乳化机采用单层分散乳化头,加工粗糙,而IKN纳米分散乳化机采用三分散乳化头,间隙更小,精密程度更高,分散乳化效果也会更好。设备的选型要点:1、明确使用设备所需达到的效果和目的2、详细了解并掌握研究物料的性质(包括物理、化学性质)3、根据物料对设备的搅拌机进行选型4、再次确定设备的操作参数及结构设计5、综合考虑设备的成本 上海依肯自主研发生产的分体式三分散乳化机,具有高转速、低能耗、低噪音、高寿命等优势,市场上正常用的分散乳化机由于定转子精度以及机械密封的原因,转速高只能达到2910转,而如此低转速以及跟不上市场上对物料分散乳化均质效果 的高要求。IKN特别研立式分体式分散乳化机解决了此难题,将转速提高到了9000转,外加变频器,高可21000rpm,成功解决了市场需求...更多详情请致电上海依肯机械设备有限公司 销售工程师 徐工 182-0189-1183,公司有样机可以免费实验。丙酸倍氯米松混悬液分散机,倍氯米松分散机,丙酸氟替卡松雾化吸入用混悬液分散机,进口丙酸倍氯米松混悬液分散机,上海丙酸倍氯米松混悬液分散机生产厂家
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制