激光法熱扩散率比热容导热仪

仪器信息网激光法熱扩散率比热容导热仪专题为您提供2024年最新激光法熱扩散率比热容导热仪价格报价、厂家品牌的相关信息, 包括激光法熱扩散率比热容导热仪参数、型号等,不管是国产,还是进口品牌的激光法熱扩散率比热容导热仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激光法熱扩散率比热容导热仪相关的耗材配件、试剂标物,还有激光法熱扩散率比热容导热仪相关的最新资讯、资料,以及激光法熱扩散率比热容导热仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

激光法熱扩散率比热容导热仪相关的厂商

  • 400-860-5168转5963
    留言咨询
  • 400-860-5168转5962
    加拿大Thermtest公司,从2005年成立以来,持续不断研发和制造热导率、热扩散率和比热的测量仪器仪表。其结合先进的实验室热导率仪器、便携式仪表和相应配件,将最佳测试解决方案与应用场景相匹配,适用于各类型样品、测试应用或不同预算范围内的测试解决方案。赛莫特斯(上海)国际贸易有限公司,是Thermtest公司在中国的运营合作伙伴,全权负责MP系列导热测试平台和TPS系列热常数分析仪的销售、安装、应用支持和售后维修服务。同时提供Thermtest其他导热测量仪器仪表的相关服务。我们拥有专业的销售顾问和技术团队,竭诚为广大中国用户提供服务。我们愿做您身边专业的导热测量伙伴!相信通过我们的服务和努力,将让您享受真正的双赢合作。
    留言咨询
  • 上海普简仪器有限公司(Jthermo)致力于为高等院校、科研院所以及企业研究人员提供各种高精度的物理化学性质、热分析、测温控温方面的测量仪表和服务。公司经营的产品和服务包括高精度热分析仪(如导热仪、比热计等)、高精度流体粘度计密度计、高精度液体表面张力仪,以及可燃性气体测量仪/爆炸极限测量仪等高精度实验室专用物性测量仪器;同时还为用户提供高精度测温仪、循环浴等测温、控温设备。除精密仪器外,Jthermo还为用户提供各种物性包括导热系数、比热、粘度、密度、饱和蒸汽压、临界参数、表面张力、VLE等的测量服务以及传热、导热、测温、控温等方面的整体解决方案。Jthermo竭诚为广大用户提供优质的产品和服务。(TEL:021-54132306)
    留言咨询

激光法熱扩散率比热容导热仪相关的仪器

  • 热阻分析仪主要借助上下棒温度差计算得到通过的热流,再结合面积大小得到最终的接触热阻和热传导率等一系列参数。高端TIMA 5 热界面材料分析仪遵循ASTM D5470标准,具有集成化程度高、全自动分析测量、样品头切换简单、高精度厚度/温度/力值监控等特点,基于人体工学设计、用户体验好。可最终得到热阻抗、表观热导率和热界面阻抗等数据;除此之外,还可进行样品老化行为测试、生命周期评估、热机械稳定性、固化参数研究、界面状态研究、原位可靠性分析、极端条件下的测试等。样品种类包括液体化合物,如油脂、糊状物、相变材料;凝胶、软橡胶和硬橡胶和陶瓷、金属、塑料、复合物、胶粘剂固化、油脂和膏状样品、固化填充物和胶粘剂、各向异性复合物等。 技术参数:温度范围:RT-150°C(可提供更宽范围)力值范围:±300N(可提供更宽范围)温度准确度:±0.05K…欢迎联系我司,索要样本。
    留言咨询
  • 激光脉冲法导热仪 400-860-5168转1840
    DRX-II-JG 激光脉冲法导热仪一、概述:DRX-II-JG 激光脉冲法导热仪是采用一束激光照射样品,用红外检测器测量样品背面温度的升高,来计算样品的热扩散系数。具有快速、方便的特点。其测量热扩散系数为0.001...10cm2/sec, 并可测量样品的比热,进一步计算导热系数。应用于金属与合金、钻石、陶瓷、石墨与碳纤维、填充塑料、高分子材料等的测试。 该仪器主要测试薄的热导体,固体电绝缘材料,颗粒状材料,粉状材料,煤的导热系数固体材料,导热树脂,热导玻纤等。。符合GJB 1201.1-91固体材料高温热扩散率试验方法激光脉冲法,ASTMD 1461 闪光法测定热扩散系数,ASTM E2585 用闪光法测量热扩散率,GBT 22588 闪光法测量热扩散系数或导热系数,二、主要技术性能1、温度范围:RT,RT~100℃,RT~1000℃可选;2、导热系数测试范围:0.1~300W/mK, 1~500W/mK,10~1000W/mK;3、热扩散系数范围:0.01~1000mm2/s;4、使用红外检测器,进行非接触式的样品表面温升信号测试;5、试样测试范围:方形不小于10×10mm,圆形φ12~20(另可选20特殊规格),厚度0.1~10mm;尽量选3mm厚的样;6、测试样品种类:固体块状、低粘度液体、高粘度液体、粘性半固体、弹性固体、薄膜等均可适应,固体粉末需特需定制;7、单次测试样品个数:1个样;样品电动转换; *8、能实现真空测量和保护气氛测量两种模式(气氛:惰性、氧化、还原、静态、动态),标配为常温常压空气环境;*9、真空度为:-0.1Mpa ,10-3Pa;(如需真空价格另算)10、可进行多层接触热阻分析,并计算热阻、热扩散速率等参数,使用已知比热的标样、通过比较法可计算比热;11、可连接计算机实现全自动控制,中文操作界面,自动打印试验报告;12、多种数学模型拟合,精确的脉冲宽度修正与脉冲能量积分,热损耗修正,内置数据库。13:Cp重复性:±3% (多数材料)14:热扩散系数重复性:±2 (多数材料)15:集成式电子装备,数据采集速率达2MHz16:上位机接口:USB及专用便携式接口; 17:专用分析测试软件,支持WIDOWS10 64位操作系统仪器配置:测试主机1台(常温),进样器1套(3个样),测试软件1套,联想品牌电脑1套上门安装培训一次;图片供参考,以出厂为准!备注:导热系数=密度X比热容X热扩散系数;测试温度不同相关参数会有明显不同。*价格范围仅供参考,实际价格与配置等若干因素有关。如有需要,请拨打电话咨询。我们定会将竭尽全力为您制定完善的解决方案。
    留言咨询
  • 下落法中温比热容测定仪 一、简介依阳公司出品的中温比热容测定仪是一种测定固态材料(包括固体、粉体、纤维和薄膜等)比热容的测试设备,采用的方法方法是下落式铜卡计混合法,依据的测试标准为国军标GJB 330A-2000 “固体材料60K~2773K比热容测试方法”和国标GB/T 3140-2005“纤维增强塑料平均比热容试验方法”,测试温度范围为50℃~1000℃。下落式铜卡计混合法作为一种经典测试方法,具有测试试样体积大、更适合块状复合材料测试的特点,而且测试周期短,对一般材料约一个小时测量一个试样,适合大批量试样的连续测量。中温比热容测定仪由计算机进行自动检测和控制,自动进行样品温度的监控、电动开关控制试样的整个下落过程、自动进行量热计温度的监控以及自动进行测试结果计算。中温比热容测定仪具有很高的测量精度,对于标准参考材料人造蓝宝石(synthetic sapphire:α-Al2O3)在50℃~1000℃范围内的测量相对误差小于±3%。下落法比热容测定仪原理图下落法中温比热容热分析测定仪下落法中温比热容热分析测定仪整机系统二、技术指标 (1)试样尺寸:最大直径14mm、高度30mm;(2)比热容温度范围:室温~1000℃;(3)比热容测量精度:优于±3%;(4)试样加热炉均温区长度:大于50mm;(5)试样加热炉均温区温度波动:±3%;(6)量热块热容量:2000J/℃;(7)量热计测温精度:优于0.01℃。三、特点1. 电动控制试样的下落,控制方式可根据不同需要进行选择,既可以单独进行试样悬丝熔断、炉门和量热计盖板的开启和闭合,也可以选择全自动联动方式,同时进行悬丝熔断、炉门和量热计盖板的操作,有效保证试样下落的准确性。 2. 全自动计算机软件控制,可以通过软件来设定加热炉温度、监测试样温度变化、量热计绝热控制情况和量热计温度变化过程,特别是能自动对试样下落后量热计的温度变化进行检测和显示,并自动计算和显示出测量结果。 3. 下落法比热容测试技术具有很强的扩展性,可以实现高温和超高温3000℃下的材料比热容测量。 4. 依阳公司的比热容测定仪特别采用了独特的仪器结构设计和灵巧的测试步骤,有效的提高了测试效率,使得单个试样在一个温度下的测试时间大大缩短,很轻易的实现快速大批量高效测试,测试效率远高于其他热分析仪器。
    留言咨询

激光法熱扩散率比热容导热仪相关的资讯

  • ADVANCE RIKO发布激光闪光法热常数测量系统新品
    激光闪光法热常数测量系统TC-1200RH采用符合JIS/ISO标准的激光闪光法测定材料的三个重要热物理常数:热导率(导热系数)、热扩散系数及比热容。使用红外金面炉替代传统电阻炉加热,大大缩短测量时间。可应用于热电材料的研究与开发,及其他材料的热物理性能评价。 仅需1/4的时间(与使用电阻炉的传统型号相比)。因控温灵敏度提高,温度稳定性大大增加。设备特点红外金面炉的使用使得加热和冷却速度大大提高1. 使用红外线直接加热样品可以迅速使温度稳定;2. 控温的灵敏度提高使得低温区间内的温度稳定性得到改善,从而减少温度波动,进而太高测量精度。符合JIS/ISO标准要求1. 激光闪光法测定精细陶瓷的热扩散系数、比热容及热导率(JIS R 1611) 2. 精细陶瓷热电材料的测定方法 – 第3部分:热扩散系数、比热容及热导率(JIS R 1650-3) 3. 激光闪光法测定铁的热扩散系数(JIS H 7801)应用方向• 热电材料的研究与开发 • 陶瓷、金属及有机材料的研究与开发 • FPD散热材料的热扩散率和比热容评价 • 半导体器件和模制器件的材料热扩散研究设备参数1. 测量参数:热扩散系数,比热容2. 样品尺寸:φ10mm×1mm~3mm(厚度)测量方向:厚度方向3. 测量氛围:真空(*不高于150℃时,可在大气下测量)4. 温度范围:室温至1150℃(最高1200℃)最大升温速度目标温度~100℃~300℃~1150℃升温速度10℃/min20℃/min50℃/min安装条件1. 主机尺寸:约 W900mm×D1050mm×H1700mm2. 主机质量:约 350kg3. 电源:AC200V 单相 8kVA(主机) AC100V 单相 1kVA(PC)4. 冷却水:城市用水 >5L/min 压力>0.15MPa可选件• 方形样品托 • 多样品上样装置:最多3个样品 • 基体测量附件 室温:SB-1 200℃:SB-2• 多层材料分析软件FML系列 如果其中一层材料的热物理参数已知,可根据测量结果分析多层材料 (多层材料分析的模型在JIS H8453中已列出) • 高温炉:最高可达1500℃创新点:使用红外加热炉直接加热样品可以迅速使温度稳定,大大缩短测量时间;控温的灵敏度提高使得低温区间内的温度稳定性得到改善,从而减少温度波动,进而提高测量精度。可应用于热电材料的研究与开发,及其他材料的热物理性能评价。 激光闪光法热常数测量系统
  • 耐驰公司将举办激光闪射法导热仪LFA用户会
    在科学研究领域中,深入了解材料的热物理性能,从而优化最终产品的导热性能是非常重要的, 在过去的几十年里,激光闪射法已经发展成为最为广泛使用的导热测量技术。 随着近年来导热仪尤其是激光导热仪在市场的需求不断增大,耐驰作为激光闪射法导热仪技术和制造的领先者,其用户量在不断增加。 为了使用户更好的使用这种仪器,积累更多仪器操作和科研应用方面的经验,了解当今最新技术的发展, 德国耐驰仪器有限公司拟定于2006年9月21日(星期四)~22日(星期五)在上海举办激光闪射导热仪LFA用户会。届时,将由耐驰公司的德国专家和中国应用技术支持人员主讲。我们热忱欢迎各位光临讲座,有关日程和地点安排请登录:www.netzsch.cn
  • 耐驰公司成功举办2006年度激光导热仪LFA用户会
    随着激光导热仪(LFA)在导热研究方面的逐步深入,其应用也越来越广泛。德国耐驰作为激光闪射法导热仪技术和制造的领先者,具有非常丰富的仪器操作和科研应用方面的经验。为了使用户更好地使用激光导热仪,德国耐驰公司在2006年9月21-22日在上海举办了LFA的用户会。 此次会议,由耐驰中国技术支持主管曾智强博士主持,德国总部应用技术专家Blumm博士就材料导热性能测量的方法综述、激光导热仪的基本原理和激光导热方法的应用进展做了详尽细致的讲解。耐驰中国应用实验室应用专家徐梁先生做了关于激光导热仪的操作和数据处理方法的报告,共同分享德国总部及上海应用实验室多年来积累的应用经验,并和用户就使用仪器的技巧做了深入的探讨。另外,耐驰中国维修部詹宁经理介绍了激光导热仪的维护方法,以便用户能够更好的使用仪器。 会议期间,与会人员表现出极大的热情,与德国及中国技术专家进行了热切而深入的交流,就激光导热仪原理、使用方法及技巧方面提出了多个富有见地的问题,专家们就这些问题进行了认真细致的解答。用户对此次会议给予了高度的评价,表示通过此次用户会,提高了激光导热仪的测试技巧,拓展了思路,尤其在利用激光导热仪测试不同形态样品导热系数的方法上给予了充分的肯定与赞赏。同时用户也对以后举办类似的用户会提出了建设性的意见。对于大家的建议,耐驰公司会积极采纳,并继续努力,在不久的将来,为大家提供更高水平的交流平台,增强交流与合作,将最新的热分析技术及仪器奉献给中国用户。 详情请登录:www.netzsch.cn

激光法熱扩散率比热容导热仪相关的方案

激光法熱扩散率比热容导热仪相关的资料

激光法熱扩散率比热容导热仪相关的试剂

激光法熱扩散率比热容导热仪相关的论坛

  • 激光热扩散/导热系数测试仪-德国linseis

    全球最先进的激光导热系数分析仪模块化设计—随时升级,体积更小大功率能量源—测量更准确6样品自动分析—节约宝贵时间高真空设计—测量更精确应用多晶石墨石墨非常适合评估激光法热导仪的性能优劣。对多晶石墨进行的测试曲线显示材料在室温附近导热系数达到最大,热扩散系数随温度增加递减。材料比热可通过参比法测得,测试显示比热与热扩散系数增减趋势相反。铜、铝分别测量了纯铜和纯铝的热扩散系数,测试结果如下图,热扩散系数的测量值与文献值之间的偏差小于 2%。体现了Linseis仪器性能的卓越。石墨(Isotropic)用LFA1000测量了蛤同性石墨的热扩散系数,与日本AIST机构的数据比较,偏差小于2%。德国林赛斯 (LINSEIS Messgeräte GmbH) 林赛斯总部位于德国巴伐利亚州泽尔布(Selb),是一家有超过50年丰富专业经验的世界领先(热)分析仪器设备生产商,公司专门致力于研究、开发、生产热分析科学仪器,其产品的技术和质量方面一直处于业界领先地位。

  • 镍基高温合金Inconel 600热导率、比热容、热扩散率、密度和总半球发射率随温度变化数据汇总

    镍基高温合金Inconel 600热导率、比热容、热扩散率、密度和总半球发射率随温度变化数据汇总

    [color=#990000]摘要:镍基高温合金Inconel 600作为一种常用的金属材料其应用领域十分广泛,准确了解其各种热物理性能参数十分必要,这些参数数据是进行高温设计和热仿真时的重要输入参数。本文汇总了目前国际上Inconel 600的高温热物理性能(热导率、比热容、热扩散率、密度和总半球发射率)随温度变化的文献报道数据,由此便于使用这些数据进行热物性测试仪器的比对试验和考核,并提高高温设计和热仿真中参数输入的准确性。[/color][hr/][size=18px][color=#990000]1. 简介[/color][/size]  Inconel 600是一种非磁性镍基高温合金,具有高机械强度、冷热加工性和耐腐蚀性。这种合金在退火到强冷加工条件的整个范围内也没有老化或应力腐蚀,它可以使用到1000℃而不会发生不可逆的变化。典型Inconel 600的材料组分如表1-1所示,此组分的Inconel 600也是被英国国家物理实验室(NPL)用来作为热导率测量中的参考材料。其热处理过程为在干燥纯氢气和露点小于-50℃条件下进行2小时的1120℃热处理,然后在氢气环境下用水冷却。[align=center][color=#990000]表1-1 热导率测量参考材料Inconel 600组分[/color][/align][align=center][color=#990000][img=,690,93]https://ng1.17img.cn/bbsfiles/images/2021/09/202109221615293709_4016_3384_3.png!w690x93.jpg[/img][/color][/align]  由于Inconel 600这类镍基高温合金的应用领域十分广泛,准确了解其各种热物理性能参数十分重要,这些参数数据是进行高温设计和热仿真时的重要输入参数。本文将汇总目前国际上Inconel 600的高温热物理性能(热导率、比热容、热扩散率、密度和总半球发射率)随温度变化的文献报道数据,由此便于使用这些数据进行热物性测试仪器的比对试验和考核,有利于提高高温设计和热仿真中参数输入的准确性。[size=18px][color=#990000]2. 热导率、比热容、热扩散率和密度数据[/color][/size]  热导率、比热容、热扩散率和密度数据来自文献[1]颁布的对英国国家物理量实验室(NPL)热导率参考材料Inconel 600的测试结果,其中热导率是比热容、热扩散率和线膨胀率三个独立测试结果的乘积得到,而比热容采用差热扫描量热仪(DSC)进行测试,热扩散率采用激光闪光法测定仪进行测试,线膨胀率采用顶杆法热膨胀仪进行测试。对于镍基高温合金Inconel 600热导率的独立测试,NPL也采用了轴向恒定热流导热仪进行了专门测量[2]。由于仪器测试能力的限制,NPL的测试温度最高为500℃。另外由于所采用的Inconel 600样品成分和密度有轻微差别,所以[1]文献[2]和热导率结果会有最大5%的偏差,但这个偏差在实际工程使用中可以忽略不计,因此本文所列数据取自文献[1]。热导率、比热容、热扩散率和密度随温度的变化规律分别如图2-1~图2-4所示。[align=center][img=,690,467]https://ng1.17img.cn/bbsfiles/images/2021/09/202109221615443328_3576_3384_3.png!w690x467.jpg[/img][/align][align=center][color=#990000]图2-1 Inconel 600热导率与温度的关系[/color][/align][align=center][color=#990000][/color][/align][align=center][color=#990000][img=,690,464]https://ng1.17img.cn/bbsfiles/images/2021/09/202109221616011796_21_3384_3.png!w690x464.jpg[/img][/color][/align][align=center][color=#990000]图2-2 Inconel 600热扩散与温度的关系[/color][/align][align=center][color=#990000][/color][/align][align=center][color=#990000][img=,690,468]https://ng1.17img.cn/bbsfiles/images/2021/09/202109221616216745_4849_3384_3.png!w690x468.jpg[/img][/color][/align][align=center][color=#990000]图2-3 Inconel 600比热容与温度的关系[/color][/align][align=center][color=#990000][/color][/align][align=center][color=#990000][img=,690,469]https://ng1.17img.cn/bbsfiles/images/2021/09/202109221616316304_954_3384_3.png!w690x469.jpg[/img][/color][/align][align=center][color=#990000]图2-4 Inconel 600密度与温度的关系[/color][/align]  在这里需要说明的是密度随温度的变化结果,是由热膨胀系数测试获得,其中认为镍基高温合金Inconel 600是各项同性且温度变化过程中质量不发生变化。由此通过测试Inconel 600的线膨胀率来得到体膨张率和样品的体积变化,最终用恒定质量除以不同温度下的体积得到密度随温度的变化结果。  汇总热导率、比热容、热扩散率和密度数据,如表2-1所示。[align=center][color=#990000]表2-1 Inconel 600热导率、比热容、热扩散率和密度数据汇总表[/color][/align][align=center][color=#990000][img=,690,587]https://ng1.17img.cn/bbsfiles/images/2021/09/202109221616470760_7694_3384_3.png!w690x587.jpg[/img][/color][/align][size=18px][color=#990000]3. 总半球发射率数据[/color][/size]  总半球发射率也是材料的重要热物理性能参数之一,代表着材料表面的热辐射能力,是研究热辐射测量、辐射传热以及热效率分析的最重要基础物理性能数据。  由于总半球发射率与材料的表面状态关系密切,针对镍基高温合金Inconel 600的总半球发射率,本文汇总了美国热物性研究实验室(TPRL)进行不同热处理和原始状态样品的总半球向高温测试结果[3][4],此测试结果被美国桑迪亚国家实验室用作Inconel 600高温总半球发射率的典型数据。  TPRL测试总半球向发射率采用了稳态量热法,样品直接通电加热至高温进行测量,其五种表面状态下总半球发射率随温度变化测试结果如图3-1所示,数据如表3-1所示。[align=center][color=#990000][img=,690,568]https://ng1.17img.cn/bbsfiles/images/2021/09/202109221617128540_2384_3384_3.png!w690x568.jpg[/img][/color][/align][color=#990000][/color][align=center][color=#990000]图3-1 不同热处理后Inconel 600不同温度下的总半球发射率[/color][/align][align=center][color=#990000][/color][/align][align=center][color=#990000]表3-1 作为不同温度和表面处理状态下的Inconel 600总半球发射率测试数据[/color][/align][align=center][img=,690,429]https://ng1.17img.cn/bbsfiles/images/2021/09/202109221617257857_4218_3384_3.jpg!w690x429.jpg[/img][/align][size=18px][color=#990000]4. 参考文献[/color][/size][1] Blumm J, Lindemann A, Niedrig B. Measurement of the thermophysical properties of an NPL thermal conductivity standard Inconel 600[C]//Proc. of 17th European Conference on Thermophysical Properties. 2003: 621-626.[2] Wu J, Morrell R, Clark J, et al. Characterisation of the NPL Thermal Conductivity Reference Material Inconel 600[J]. International Journal of Thermophysics, 2021, 42(2): 1-15.[3] [7] J. Gembarovic, "Total Hemispherical Emissivity of Thermocouple Sheaths, in A Report to Sandia National Laboratories," Thermophysical Properties Research Laboratory, Inc:, West Lafayette, IN, 2005.[4] A. L. Brundage, et al., "Thermocouple Response in Fires, Part 1: Considerations in Flame Temperature Measurements by a Thermocouple," Journal of Fire Sciences, vol. 29, no. 3, pp. 195-211, 2011.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][align=center][img=,690,424]https://ng1.17img.cn/bbsfiles/images/2021/09/202109221617561944_3210_3384_3.png!w690x424.jpg[/img][/align]

  • 激光闪光法测试蓄热相变材料热扩散系数——第1部分:试验技术

    激光闪光法测试蓄热相变材料热扩散系数——第1部分:试验技术

    [color=#cc0000]摘要:本文针对液体和粉体形式的蓄热型相变材料,介绍了激光闪光法在蓄热相变材料热扩散系数测试中应用研究以及各种典型液体材料和相变材料的验证试验结果。根据研究文献和验证试验结果证明激光闪光法并不是一种测量液体和相变材料热物理性能比较合适的方法,影响因素众多,测试过程繁杂,并存在很多问题及不足,对于未知液体和相变材料的热性能测试很难保证相应的测量精度。[/color][color=#cc0000]关键词:闪光法、相变材料,液体、粉体、热扩散系数,导热系数,储能,蓄热[/color][color=#cc0000][/color][hr/][color=#ff0000][b]1. 引言[/b][/color] 相变材料在相变过程中吸收或者释放热量,利用相变材料的相变潜热来实现能量的储存,可以解决能量供需在时间和空间上不匹配的矛盾,有效提高能源利用效率,达到节能减排目的。利用相变材料的这一特点将其应用到建筑材料中,吸收和储存白天进入室内的太阳辐射热避免室内温度过高,夜间释放这些热量,把室内温度控制在人体舒适温度范围内,可降低建筑采暖和致冷的能源消耗,实现建筑节能的同时提高居住环境舒适度。 建筑用相变材料多为潜热型蓄热方式,这种方式的主要优势是在较小温度区间内具有较高的蓄热密度,它可以用于建筑的加热和冷却,并可以与其它被动系统或主动系统配合使用。 如图1-1所示,在建筑中所使用的各种相变材料通常被描述为多种相变复合材料的基材,其主要目的是保持相变材料的形状稳定或对其进行包封,特别是相变材料是液态形式时。目前国内外常用的相变复合材料基材的样品尺寸一般从几个毫米到几个厘米直到所谓的大尺寸块状尺度,如已经被用于建筑结构中的微胶囊封装相变材料,各种非工艺陶瓷材料,水泥或石膏板等,所用的相变材料不仅微胶囊封装了石蜡,而且还包含了浸注石蜡等形式,从而形成各种形式的建筑用相变材料。[align=center] [img=1-01.液体和粉末颗粒状相变材料,690,338]http://ng1.17img.cn/bbsfiles/images/2017/10/201710251521_01_3384_3.png!w690x338.jpg[/img][/align][align=center][color=#990000][b]图1-1 液体状和粉末颗粒状相变材料[/b][/color][/align] 这些相变材料的热物理性能给出了这些材料和复合材料的蓄热能力,但测试评价热物理性能则并不容易,特别是对于这些液体形状和粉末颗粒形状的相变材料而言,在采用目前传统实验室仪器进行测量时要十分小心,否则很难获得准确的测量结果。 本文针对液体和粉体形式的蓄热型相变材料,主要介绍了激光闪光法在蓄热相变材料热扩散系数测量中的应用,以及各种典型液体材料和相变材料的测量结果,并介绍了闪光法测试相变材料中的注意事项和存在的问题及不足。[b][color=#ff0000]2. 问题的提出[/color][/b] 在激光闪光法中被测样品位于闪光灯和红外探测器之间,激光脉冲照射到样品的前表面,红外探测器测量样品背面的温升变化。通过数学模型来处理这个温升曲线从而测得被测样品的热扩散系数,将热扩散系数与样品材料的密度和比热容相乘得到相应的导热系数。 如图1-1所示液体状和粉末颗粒状蓄热相变材料,在微观尺度上由大量几十至几百微米尺度颗粒或胶囊构成,对于十几毫米的激光闪光法测样品品宏观热性能而言则是均匀的。由此,液体状和粉末颗粒状蓄热相变材料的导热系数测试就可以归结为液体和粉体材料的热性能测试。但由于液体和粉体蓄热相变材料的特殊性,在采用激光闪光法测试导热系数过程中会面临以下几个重要难题: (1)在激光闪光法测量液体和粉末颗粒状样品时,如液液和固液相变材料,被测样品在液液和固液相变过程中会发生明显的膨胀或收缩,如果不采取特殊措施,被测样品厚度将在测试过程中发生变化,会给测试结果带来巨大误差。 (2)液体和颗粒状蓄热相变材料一般的导热系数较低,大多小于1W/mK,这就要求激光闪光法测试时一是尽可能减小样品厚度,二是加大激光脉冲功率,但对于低熔点相变材料而言则是一个相互矛盾的难题。 (3)蓄热相变材料的相变温度一般较低,当激光脉冲照射在相变材料样品前表面时,很容易使得样品前表面温度升高1~5℃,从而使得样品的激光照射区域产生软化或相变,进而改变样品整体性能的均匀性给测试带来严重误差。 (4)许多蓄热相变材料都为透明或半透明材料,激光闪光法的测试过程很容易产生热传导之外的对流和辐射传热形式,就需要采用特殊手段进行规避和修正。 (5)激光闪光法测试热扩散系数的前提条件是认为被测样品在测试过程中保持材料形态不变,即在测试过程中不能产生相变,因此对于蓄热相变材料相变过程中的热扩散系数测试则是激光闪光法无法解决的难题。 以上难题就是为什么对于液体材料大多使用特殊方法来测量热扩散系数,这些特殊方法包括同轴圆柱法和平行板法等稳态方法,瞬态法则主要有热线法。然而,为了避免液体测量中由于辐射和对流带来的影响,必须在这些方法中实施一些特殊技术手段条件,文献给出了测量液体导热系数主要方法的综述。[b][color=#ff0000]3. 激光闪光法测试蓄热相变材料的改进[/color][/b][color=#ff0000]3.1. 激光闪光法测量液体热物理性能技术研究综述[/color] 尽管采用闪光法测试液体热物性存在上述困难,一些研究人员还是尝试了将闪光法应用于液体测量。理论上闪光法可以作为一种有效的测量液体热扩散系数方法,这是因为通过使用热脉冲加热水平安装样品的上表面可以大大降低对流换热的影响。 Schriempf是第一个开发特殊闪光法仪器致力于测量液体热扩散系数并成功应用到了液体水银,他用绝缘材料制成样品容器,液体表面覆盖透明石英板,就像闪光法基本方法一样测量液体样品背面的温度上升。然而他的方法不适应测量低导热液体,因为热量流经容器不可忽略,从而造成热流不再是一维热流。 Farooq等人提出了一个类似方法,基于一个外层钎焊到一环形中心间隔器的样品容器所构成的三层结构测试单元,采用这种样品容器测试水的热扩散系数。 Maeda等人还提出了一个特殊的测样品品单元,其中的液体夹持在顶部和底部铂坩埚内形成一个三层的三明治结构,并使用三层分析计算模型来进行曲线拟合,同时基于透明体假设来进行修正。 Nishi等人研究了高温下激光闪光法测量熔融金属热扩散系数的可能性,为了做到这一点他们开发了一个简单的样品单元,并在理论上估计了在熔融金属界面上的辐射和传导热损失影响,这使得可以分析测量不确定度。他们的结论是所开发的激光闪光法测量装置可以测量熔融镍的热扩散系数以及测量不确定度为±3%。 Coquard等人开发了一种有机玻璃空心圆筒构成的样品容器,在圆筒的顶部和底部由圆形铝板进行封闭,由此组成一种三明治结构样品进行闪光法测试,通过对背温测试曲线进行参数估计得到液体样品的热扩散系数。采用此方法对两种液体(水和乙醇)和一个糊状物质(聚丙烯酰胺凝胶)进行了测试,总的不确定度分析结果为小于5%。但从文献中看这种方法液体样品很厚将近有7mm,对于低导热液体样品测试会造成背温温升时间过长而带来一系列的误差因素。 总之,上述这些研究都是基于经典的闪光法,并假设通过特制样品单元或样品容器的热量传递仍然是一维热流,虽然这可能与实际情况不符。事实上,以上开发的测试设备是由几个具有可变热性能的部件组成,都会产生相应的边缘效应。这就是为什么使用他们的仪器测量液体样品时得不到准确液体热扩散系数的主要原因,就是因为热流不再是一维热流。 为了避免非一维热流情况,Tada等人提出了一种基于适当样品几何形状的方法,他们将液体夹在金属板和样品容器之间并测量前表面温度变化,从中获得液体的导热系数。他们的方法既不要求使用参考材料,也不需要测量样品厚度,因为液体样品层被视为半无限大厚,他们的方法成功测量了水和甲苯。Ohta等人使用一种几乎相同的方法来测量高温下高粘性液体的蓄热系数。然而,这些前表面闪光法都需要测量样品前表面温升并涉及到开发特殊测量设备,而这些恰恰很难实现。 根据上述文献报道和闪光法测试原理,要解决样品厚度变化和前表面物态变化对测量的影响无外乎以下几种途径: (1)在被测样品的测量区域内(脉冲激光照射区域和样品背面温度探测区域),设法保持被测样品厚度在温度变化过程中始终不变,而在被测样品的非测量区域(边缘位置处)留出样品膨胀空间。 (2)采用夹层结构形式讲被测样品夹持在中心位置,使得激光脉冲不直接作用在样品上,一方面避免激光直接穿过透明和半透明样品直达背温探测器形成干扰,二是固定样品厚度始终不变。 (3)根据相变材料导热系数和厚度来优化激光脉冲功率,尽可能在得到满意背面温升曲线的同时,使得样品前表面不产生融化现象。 (4)采用前表面测试技术,即激光照射被测样品前表面进行样品加热,同时在样品的前表面测量样品温度变化,而不是测量样品背面温度变化。 激光闪光法前表面测试技术是一种新出现的高速测试技术,特别适合高导热材料相变前后(熔融前后)的热扩散系数测量,因此这种方法目前主要用于金属熔融前后的高温热扩散系数测量,在较低导热系数的蓄热相变材料中还应用较少,所以本文将不对激光闪光法前表面测试技术进行介绍。[color=#ff0000]3.2. 特制样品容器用于激光闪光法液体测试[/color] 目前绝大多数激光闪光法测试都是采用前表面激光闪光加热和后表面测温方式,可以采用上述前两种途径制作特殊样品容器来进行液体和相变材料测试,文献报道了为激光闪光法液体测试配备的一种特制样品容器。 这种为液体、浆料和微细颗粒材料的热扩散系数测量开发的特制容器,如图3-1所示。该特制样品容器由一个坩埚、不锈钢环和封装盖组成,将被测样品(约50ul)装入坩埚并装上封装盖,被测样品就会充满封装盖与坩埚之间约0.5mm厚的间隙,这个间隙就是被测样品厚度。装填完毕样品后,需要在坩埚底部和封装盖顶部中心区域涂覆石墨以确保表面具有较高发射率,从而形成对脉冲加热光具有良好的热量吸收以及对非接触红外探测器具有较强的热辐射。 针对不同的测试温度范围,特制容器的材质分别为铝合金(适用于500℃以下)和铂铑合金(适用于1600℃以下)。这种结构的样品容器只适合样品水平放置的直立式激光闪光法测试设备,即样品容器和样品为水平放置,激光器和背温探测器位于样品的上部或下部,这种结构的样品容器并不适合样品直立形式的激光闪光法测试设备。[align=center] [img=3-01.激光闪光法液体和颗粒物试样容器,690,450]http://ng1.17img.cn/bbsfiles/images/2017/10/201710251523_02_3384_3.png!w690x450.jpg[/img][/align][align=center][b][color=#990000]图3-1 激光闪光法液体和粉体样品测试专用容器[/color][/b][/align] 需要注意的是,在采用图3-1所示特制容器进行样品热扩散系数测试时必须采用三层分析程序对背温检测信号进行处理,即坩埚底层、被测样品和封装盖中心层形成一个三层夹心结构的被测样品,需要已知坩埚和封装盖材料的热性能后再通过三层分析程序对背温测量信号进行计算处理才能得到被测样品的热扩散系数。如果要获得被测样品的导热系数,还需要采用其它方法测量被测样品的比热容和密度随温度的变化。[b][color=#ff0000]4. 特制样品容器的考核[/color][/b] 文献报道了采用图3-1所示特制容器对一系列液体、膏状物和相变材料进行了测试,以验证和考核特制样品容器和相关测试方法的有效性。以下内容仅为文献报道的测试内容和结果,其中有些内容并不完全代表相关材料测试过程中的真实情况,这里的介绍仅是作为激光闪光法液体热扩散系数测试考核内容的借鉴和参考,文献中很多关键技术细节和遇到的问题没有报道,本文后续篇幅将会展开进行说明。[color=#ff0000]4.1. 纯水的激光闪光法测量[/color] 在材料热分析和热性能测试技术中纯水常作为一种参考物质来检验测试方法的准确性,为了验证针对液体和粉体样品所做的特制样品容器和相应的测试程序,采用了三种不同尺寸的特制样品容器对纯水在25~50℃温度范围内进行了激光闪光法测试,在每个温度点下分别进行了5次重复性测量,测试结果如图4-1所示,测试中纯水的密度和比热容数据采用了文献值,测试结果与纯水热扩散系数和导热系数文献值进行了比较以观察测试结果的准确性和重复性。[align=center] [img=,690,461]http://ng1.17img.cn/bbsfiles/images/2017/10/201710251532_01_3384_3.png!w690x461.jpg[/img][/align][align=center][b][color=#990000]图4-1 采用三种不同尺寸液体样品容器测量纯水热扩散系数和导热系数的结果[/color][/b][/align] 图4-1中灰色区域为纯水导热系数文献值范围,采用特制样品容器所进行的测试结果显示纯水的导热系数测试结果落在灰色区域内,热扩散系数和导热系数随温度升高略有增加,导热系数测试结果与文献值相差一般小于±2%。[color=#ff0000]4.2. 乙二醇的激光闪光法测量[/color] 乙二醇也是常用考核热分析测试方法的参考材料之一,采用特制样品容器对乙二醇进行了测试,测试结果如图4-2所示。测试结果与文献值进行了比较,假设文献值的测量不确定度为3%,并以此测量不确定度在图中绘制误差线。为了计算方便,导热系数计算中采用了文献所提供的密度和比热容数据,从所测量的热扩散系数和计算得到的导热系数可以看出测量值与文献值之间的偏差既远小于激光闪光法测量不确定度(约5%),也小于文献值的测量不确定度。从乙二醇导热系数测试结果还可以看出随着温度的增加,乙二醇导热系数几乎呈线性缓慢增大,而热扩散系数则呈线性缓慢减小,这都表示了乙二醇热扩散系数和导热系数对温度的依赖性较弱。[align=center][img=,690,481]http://ng1.17img.cn/bbsfiles/images/2017/10/201710251533_01_3384_3.png!w690x481.jpg[/img] [/align][align=center][b][color=#990000]图4-2 乙二醇热扩散系数和导热系数测试结果[/color][/b][/align][color=#ff0000]4.3. 硅脂的激光闪光法测量[/color] 硅脂是一种常用的膏状物,其导热性能是硅脂的一个重要指标。采用特制样品容器对硅脂进行了测量,测试温度范围为-40~100℃,硅脂的热扩散系数、比热容和导热系数测试结果如图4-3所示。[align=center] [img=,690,470]http://ng1.17img.cn/bbsfiles/images/2017/10/201710251534_01_3384_3.png!w690x470.jpg[/img][/align][align=center][b][color=#990000]图4-3 硅脂的热扩散系数、比热容和导热系数测试结果[/color][/b][/align] 硅脂通常用于真空应用和导热脂的制备,在后续的应用中一般将大量的无机粉添加到硅脂中。而在实际情况下,只有少量的无机材料添加到油脂中,这种添加剂的原因是其密度略高于硅脂的典型密度范围(0.8~1g/cm3),在24℃室温下的硅脂糊状物密度测量值为 1.136 g/cm3。测量结果显示随着温度的增加热扩散系数缓慢下降,而比热容则缓慢增大,由此使得硅脂的导热系数在整个温度范围内几乎呈线性增长。[color=#ff0000]4.4. 聚碳酸酯相变材料的激光闪光法测量[/color] 为了进一步验证特制样品容器的实用性,还对聚碳酸酯固液相变材料进行了激光闪光法测试,测试温度范围为室温~300℃。在室温下聚碳酸酯为非晶固体,在第一次加热超过玻璃化转变温度(200℃以上)后聚碳酸酯会变软并最终成为液体。根据这种特性,在采用特制样品容器制作测试样品时,要先将固体聚碳酸酯样品放入坩埚内并进行加热,当加热到200℃时将封装盖压在坩埚上,然后冷却特制样品容器至室温再开始激光闪光法测试,这样制作被测样品的目的是为了确保坩埚和封装盖与聚碳酸酯样品之间有良好的热接触和样品端面平行度。最终所制的聚碳酸酯样品厚度为0.55mm,直径为11mm。 采用特制样品容器制成聚碳酸酯样品后,激光闪光法的测试结果如图4-4所示。[align=center][img=,690,448]http://ng1.17img.cn/bbsfiles/images/2017/10/201710251534_02_3384_3.png!w690x448.jpg[/img][/align][align=center][b][color=#990000]图4-4 采用液体样品容器测量聚碳酸酯热扩散系数和导热系数的结果[/color][/b][/align] 从图中可以看出,热扩散系数在室温~130℃范围内呈近似线性的下降,在130~150℃范围内热扩散系数发生明显的大幅度降低,这是由于聚碳酸酯玻璃化转变过程所引起的反应,在玻璃化转变过程中激光闪光法只检测到热扩散系数随温度变化只发生了轻微的改变,对温度变化并未有多少依赖性。 采用差示扫描量热仪对聚碳酸酯样品进行了比热容测试,从图4-4所示的测试结果可以看出比热容随温度几乎呈线性增大,在玻璃化转变时比热值产生较高的典型跃迁,然后继续随温度变化呈线性增大。 在文献中并没有提到聚碳酸酯密度随温度变化的测量,只是将聚碳酸酯导热系数测试结果呈现在图4-4中,测试结果显示随着温度升高导热系数持续增大,并没有受到玻璃化转变过程的太大影响。[color=#ff0000]4.5. 聚丙烯的激光闪光法测试[/color] 图4-5显示了40~300℃范围内采用差示扫描量热仪测量聚丙烯样品的表观比热容(比热容与相变焓重叠)随温度变化曲线,在温度变化初期比热容随温度升高而持续增大,在120~210℃范围内熔化热与比热容重叠,在此温度范围内结晶材料发生融化,融化过程中所引起的焓值变化在77.5J/g处进行了评估。为了进行热扩散系数和导热系数分析,需要对测试曲线进行线性内插以去掉额外的焓值变化,图中用直线表示。[align=center] [img=,690,351]http://ng1.17img.cn/bbsfiles/images/2017/10/201710251534_03_3384_3.png!w690x351.jpg[/img][/align][align=center][b][color=#990000]图4-5 部分结晶聚丙烯表观比热容测试结果[/color][/b][/align] 图4-6显示了在室温~300℃范围内聚丙烯样品的热扩散系数、比热容(插值后)和导热系数测量结果,从图中可以看到,热扩散系数逐渐下降到120℃后随着温度的进一步升高而略微的增大。比热容则在整个温度区间内都呈现出增加趋势,但在固态过程中比热容随温度增加速度较高。随温度变化的导热系数近乎为直线,这是这类半晶质热塑性材料的典型特征,在融化过程中导热系数会呈现轻微的下降。[align=center] [img=,690,458]http://ng1.17img.cn/bbsfiles/images/2017/10/201710251535_01_3384_3.png!w690x458.jpg[/img][/align][align=center][b][color=#990000]图4-6 聚丙烯的热扩散系数、比热容和导热系数,样品厚度0.55mm,宽度11.00mm[/color][/b][/align][color=#ff0000]4.6. 石蜡混合物的激光闪光法测试[/color] 图4-7显示了-30~50℃温度范围内石蜡混合物的热扩散系数和比热容测试结果,这些测试是在铂铑合金坩埚制成的样品容器上进行。测试结果显示出在0~40℃为宽泛的融化区间,在表观比热容测试结果中可以看到熔融过程为重叠的吸热效应(实心直线),在该温度范围内进行插值所得到的熔融热不会对比热容产生影响。[align=center] [img=,690,462]http://ng1.17img.cn/bbsfiles/images/2017/10/201710251535_02_3384_3.png!w690x462.jpg[/img][/align][align=center][b][color=#990000]图4-7 石蜡混合物表观热扩散系数和表观比热容测试结果,样品厚度0.506mm,在35℃时的密度为0.757gcm-3[/color][/b][/align] 从图中可以看出,表观热扩散系数测试结果显示在-30~20℃范围内呈现出一个衰减过程,然后随温度逐渐增加,在温度达到35℃后表观热扩散系数趋于恒定。 然而,在实际测试中要考虑相变区域的测量,即考虑熔融过程中的测量,这点至关重要,这主要是用于分析激光闪光法测试结果的瞬态传热方程在相变区域不再有效。在熔化/凝固过程中,考虑到焓变化的影响, 它必须通过一个附加技术来进行扩展,这种熔化/凝固通常发生在闪光源的加热时刻和样品达到最高温度后的降温时刻。利用所开发的瞬态传热方程数值解法可以考虑这种效应,考虑到测试中的三层样品结构,这样的解决方案可能非常复杂。在这项工作中使用的另一种解决方案是在不同的闪光脉冲能量下进行测试,从而在样品内形成不同的温升,然后将结果外推到零脉冲能量,从而使热扩散系数的计算不受熔化/凝固的影响。 分别在0℃和25℃下采用不同闪光脉冲加热能量对石蜡混合物进行了测试,测试结果如图4-8所示。从图中可以明显看出表观热扩散系数与脉冲加热能量几乎呈线性关系,在热焓变化较大的熔化温度范围内(25℃),表观热扩散系数与脉冲能量的依赖性较大,而在热焓变化较小的熔化温度范围内(0℃),这种依赖性较弱。[align=center] [img=,690,455]http://ng1.17img.cn/bbsfiles/images/2017/10/201710251535_03_3384_3.png!w690x455.jpg[/img][/align][align=center][b][color=#990000]图4-8 在0~25℃范围内石蜡混合物表观热扩散系数随闪光加热能量的变化,同时显示了测试结果的线性逼近趋势[/color][/b][/align] 图4-8中还显示了使用一阶多项式对测试结果进行非线性回归的外推结果,从外推结果可以看出, 实测数据与这个线性逼近吻合在实测数据散度中,在所有的相变区域内都可以相似的逼近计算。 通过外推到零脉冲能量所得到的热扩散系数结果在图4-7中显示为修正的热扩散系数,由此可以看出,在对脉冲能量影响进行修正后,热扩散系数在熔化范围内随温度变化几乎呈线性下降。 利用修正后的热扩散系数和比热容(在熔化过程中不发生重叠焓变化)计算石蜡混合物导热系数中,同时考虑了熔化过程中的密度变化,由此得到图4-9所示的导热系数结果。可以看出导热系数在-30~35℃温度范围内逐渐降低,而在在相变过程中导热系数下降速率变缓,在全熔融区中导热系数得到接近恒定值。[align=center] [img=,690,480]http://ng1.17img.cn/bbsfiles/images/2017/10/201710251535_04_3384_3.png!w690x480.jpg[/img][/align][align=center][b][color=#990000]图4-9 在温度-30~50℃范围内的石蜡混合物导热系数计算结果[/color][/b][/align][b][color=#ff0000]5. 试验分析和验证[/color][/b] 采用文献报道的特制样品容器进行激光闪光法液体测试过程中,还存在很多影响因素并未有报道,以下对图3-1所示的用于液体的特制样品容器在激光闪光法测试过程中的影响因素进行分析。[color=#ff0000]5.1. 样品中空气隙的影响[/color] 为了评估测量不确定度,Coquard等人对可能导致测量误差的参数进行了分析,分析结论是样品厚度的正确测定和特制样品容器的严格灌装是关键参数,如果空气在样品所占比例为1.25%就意味的测量结果误差为15.4%, 因为这个空气层将成为热传导通道上的一个热障。[color=#ff0000]5.2. 金属样品容器的影响[/color] 图3-1所示的用于液体样品的特制样品容器材质是纯铝或铂铑合金(Pt90Rh10),其导热系数为237 W/mK 和38W/mK,与被测液体样品导热系数范围(0.15~0.6W/mK)相比这是一个非常高的导热系数值。然而特制样品容器在坩埚与封装盖之间提供了一个侧面空气间隙,这个侧面空气间隙的热阻足够大于比被测液体样品的热阻,由此使得特制样品容器上的热传递最小化。同样情形也发生在封装盖接触面上,虽然接触面并未压力加载,但接触热阻还是会远大于液体样品热阻,也就是说特制样品容器对测试结果的影响已经最小化了。但是毕竟样品容器是由高导热金属制成,瞬态激光热脉冲加热液体样品前首先加热的是三层结构样品的顶部金属表面,热量一方面会继续前行加热液体样品,同时热量还会沿着样品容器壁产生散热线性,由此造成加热液体样品上表面的热流分布并不均匀,这是一个重要测量误差源。 Delgado等人分别对空载的特制样品容器和装有水的特制样品容器进行了测试,两个测试结果的比较如图5-1所示,当样品容器空载时的背温信号响应会更长。在选择测试软件中时间范围进行计算时,重要的是数据采集时间应该很短以避免样品容器的贡献。由此可以得到一个重要的信息就是采用高导热金属材质样品容器时,数据采集时间尽可能越小越好,但对于导热系数普遍较低的液体和相变材料而言,背温变化十分缓慢,数据采集实际势必较长,这显然会造成样品容器散热的严重影响。[align=center][img=,690,514]http://ng1.17img.cn/bbsfiles/images/2017/10/201710251536_01_3384_3.png!w690x514.jpg[/img][/align][b][/b][align=center][b][color=#990000]图5-1 激光闪光法测量空载和有水样品容器时的探测器信号[/color][/b][/align] 由此可以看出,样品容器的设计需要接触液体样品的两个上下表面导热系数越大越好,以保证激光脉冲热量能快速加热液体样品并使得液体样品背面温度变化有效的传递出去。另一方面需要样品容器侧壁材质的导热系数越小越好,这样可以避免热量向容器四周散热。总之,这是一个相互矛盾的命题,至于样品容器侧壁热损到底对测量结果有多大影响,可以采用有限元模拟分析进行准确评价。从这方面可以看出,就像激光闪光法不太适合刚性固体低导热材料测试一样,采用图3-1所示特制样品容器进行激光闪光法热扩散系数测试,并不一定适用于低导热特性的液体和相变材料。[color=#ff0000]5.3. 样品的准备[/color] 为了采用激光闪光法设备测量固体样品,一般首先要先建立真空,然后充入惰性气体氮气。然而,当这一程序应用到液体测试时,一旦达到蒸汽压,测试设备腔体内的真空和减压会导致样品中的水分蒸发,这可以通过真空前后的样品称重进行检查。因此,在对液体样品进行最终测试时,需要省略掉真空过程,而通过较长时间气体置换来建立氮气气氛环境。 样品制备时要在特制样品容器的外表面上均匀涂覆石墨以增加激光能量的吸收,并保证样品的所有部分都具有相同吸收量。由于激光照射是的样品前表面温度可以达到很高值,所以知道这个温度的上限非常重要,以避免被测样品出于相变阶段,样品为水的情况下必须避免蒸发。 另外,被测液体样品厚度的准确测量非常关键,为了保证样品完整填充入样品容器,需要从几何尺寸中计算出容器体积,并通过微量[url=https://insevent.instrument.com.cn/t/9p][color=#3333ff][url=https://insevent.instrument.com.cn/t/9p][color=#3333ff]移液器[/color][/url][/color][/url]来控制样品量。由此可见在激光闪光法液体热扩散系数测试中,对样品的制作和测试要十分的小心,试样过程十分精密。[color=#ff0000]5.4. 液体样品特制容器的进一步试验验证[/color] Delgado等人采用图3-1所示的液体样品特制样品容器,在激光闪光法设备上对三种液体(蒸馏水、正十六烷和甘油)进行了热扩散系数测试,测量结果如图5-2所示,图中所显示的测量值为五次激光脉冲测试热扩散系数和温度结果的平均值,图中还显示了与参考值相比的标准偏差。对于蒸馏水样品,最大测试误差为7.87%,测试正十六烷的最大误差为4.31%,测试甘油时的测试误差最大达到了15.38%,蒸馏水、正十六烷和甘油的参考值分别来自文献。由此可见,采用特制样品容器进行激光闪光法热扩散系数测试并没有达到文献所描述的准确度和重复性精度。[align=center] [img=,542,453]http://ng1.17img.cn/bbsfiles/images/2017/10/201710251536_02_3384_3.png!w542x453.jpg[/img][/align][align=center][b][color=#990000]图5-2 三种液体导热系数测试结果及与参考值的比较[/color][/b][/align] 根据测试设备软件所提供的三层测试模型计算得到样品的热扩散系数,图5-3显示了PCM微胶囊质量分数分别为14%、20%和30%时的相变材料浆料的导热系数数值。在20℃时所得到的测量结果被认为并不可靠,这是因为即使激光脉冲造成样品温度一个非常小的增加也会导致比热容的突然改变(相变区在20~24℃之间),这种方法规定比热容是恒定的,否则计算得到的测试结果可能是无效。因此,如果留意25~30℃范围的数据,就可以观察到,在温度升高时PCM浆料的导热系数应该稍有增加。[align=center] [img=,690,538]http://ng1.17img.cn/bbsfiles/images/2017/10/201710251536_03_3384_3.png!w690x538.jpg[/img][/align][align=center][b][color=#990000]图5-3 不同微胶囊质量分数14、20和30%时的导热系数测试结果[/color][/b][/align] 必须指出的是,PCM微胶囊质量分数的增加会导致导热系数降低,这种行为是预期的,这是因为石蜡的导热系数比水低。另外与温度为30℃的水相比,质量分数为14、20和30%的PCM微胶囊浆料分别都经历了24、32和39% 的还原。[color=#ff0000][b]6. 结论[/b][/color] 通过以上激光闪光法测试液体和相变材料热扩散系数和导热系数的研究文献报道,可以得出以下结论: (1)由于受到闪光法测量原理的限制,闪光法只能测量相变材料相变前后的热扩散系数,对相变过程中的热扩散系数根本无法测量,或测量结果完全不正确。 (2)尽管为闪光法液体热扩散系数测量开发了各种形式和材质的特制样品容器,但都有各自的局限性,有些适合低导热材料,有些适合于高导热材料,这对实际应用有很大限制并影响测量精度。 (3)对于液体和相变材料而言,闪光法测试过程中的样品制备要求十分精细、准确定量灌装和严格控制样品厚度,同时要避免样品中形成气泡等空气隙,否则会对测量结果带来严重影响。 (4)样品容器侧壁材质侧面热损的影响并未进行深入的研究,对于低导热液体和相变材料测试侧壁热损很可能是影响测量精度的重要因素之一。 (5)激光能量需要优化,或进行一系列不同激光能量下测试来进行外推,避免前表面温升引起样品前表面发生相变,使得闪光法测试相变材料十分的繁琐。 (6)在样品厚度固定不变的前提下,要结合激光脉冲能量来对脉冲时间进行优化,避免加热时间过长所带来的对流和辐射传热的影响。 (7)为了获得液体和相变材料的导热系数,除了用闪光法测试热扩散系数之外,还需要对比热容和密度随温度变化进行单独测量,整个测试过程复杂繁琐。 由此可见闪光法并不是一种测量液体和相变材料热物理性能比较合适的方法,影响因素众多,测试过程繁杂,并存在很多问题及不足,对于未知液体和相变材料的热性能测试很难保证相应的测量精度。[color=#ff0000][b]7. 参考文献[/b][/color](1)B. Le Neindre, Mesure de la conductivité thermique des liquides et desgaz, in : Techniques de l’Ingénieur, Mesures et contrô le (Tech. ing., Mes. contrô le), vol. RC3, noR2920, 1996, pp. R2920.1-R2920.21(2)J.T. Schriempf, A laser flash technique for determining thermal diffusivity of liquid metals at elevated temperatures, Rev. Sci. Inst. 43 (1972) 781-786.(3)M.M. Farooq, W.H. Giedt, N. Araki, Thermal diffusivity of liquids determined by flash heating of a three-layered cell, J. Thermophys. 1 (1981) 39-54.(4)Y. Maeda, H. Sagara, R.P. Tye, M. Masuda, H. Ohta, Y. Waseda, A hightemperature system based on the laser flash method to measure the thermal diffusivity of melts, Int. J. Thermophys. 17 (1996) 253.(5)T. Nishi, H. Ohta, H. Shibata, Y. Waseda, Evaluation of the heat leakage in the thermal diffusivity measurement of molten metals by a laser flash method, Int. J. Thermophys. 24 (2003) 1735-1751.(6)Coquard, R., and B. Panel. "Adaptation of the FLASH method to the measurement of the thermal conductivity of liquids or pasty materials." International Journal of Thermal Sciences 48.4 (2009): 747-760.(7)Y. Tada, M. Harada, M. Tanigaki, E.Y. Eguchi, Laser flash method for measuring thermal conductivity of liquids—application to low thermal conductivity liquids, Rev. Sci. Inst. 49 (1978) 1305-1314.(8)H. Ohta, H. Shibata, A. Suzuki, Y. Waseda, Novel laser flash technique to measure thermal effusivity of highly viscous liquids at high temperature, Rev. Sci. Inst. 72 (2001) 1899-1903.(9)Blumm, Jürgen, and André Lindemann. "Characterization of the thermophysical properties of molten polymers and liquids using the flash technique." High Temp. High Press 35.36 (2003): 627.(10)Blumm, J., A. Lindemann, and S. Min. "Thermal characterization of liquids and pastes using the flash technique." Thermochimica acta 455.1 (2007): 26-29.(11)Delgado, Mónica, et al. "Experimental analysis of the influence of microcapsule mass fraction on the thermal and rheological behavior of a PCM slurry." Applied Thermal Engineering 63.1 (2014): 11-22.

激光法熱扩散率比热容导热仪相关的耗材

  • 有机硅光扩散微球
    纳微科技利用自主专利技术生产的光扩散微球,产品包括单分散有机高分子微球PMMA、PS、P(MMA/S) 和有机硅微球。其优异的滑动性、高分散性、热稳定性及耐气候性,使纳微光扩散微球广泛地应用于LED 灯罩、灯管、LCD 光扩散板和光扩散膜、化妆品、油漆涂料、塑料添加剂等众多领域。光扩散膜示意图 产品特性有机高分子微球(PMMA、PS、P(MMA/S) ) 有机硅微球※ 粒径均一※ 分散性好,无重叠或团聚※ 纯度高,无污染※ 兼容性好,可高效分散在基质中※ 化学稳定性好※ 透光率高,折光率可调※ 粒径分布窄※ 光扩散效率高※ 耐热性能好※ 机械强度和硬度高※ 不溶于有机溶剂 纳微光扩散微球扫描电镜SEM图 产品应用※一般照明散光灯罩※塑料薄膜抗粘结剂(开口剂)※LCD光扩散板和光扩散膜※化妆品添加剂以改善光散射特性,涂感及光滑性等※LED光扩散灯罩※油漆涂料,橡胶等添加剂以改善耐磨性,防水性等※降/消光剂用于塑料膜,板材及油漆涂料※塑料改性添加剂※用于板材的抗阻碍剂※陶瓷制孔剂以降低密度,比热,和热传导订货信息
  • 扩散照明LED配件
    扩散照明LED配件是LED光源中常用的漫射LED照明,Diffused illumination,扩散照明LED使用一种特殊的光扩散板,产生高度扩散和均匀的光场。扁平环形照明设备有效解决了反射部件的照明问题。 扩散照明LED配件特点 扩散扁平环形光照,环状,条状,区域,点照明,安有扩散器 超过120种不同产品可用 12 / 24v;连续或闪光灯使用 颜色:红色,绿色,蓝色,白色,红外 工作距离高达200mm 扩散照明LED配件用途 电路(PCB)、薄纸、木材检验、表面检查、光学字符识别、条码阅读、边端、裂纹、划痕检测,用于发光表面。
  • 全息扩散片
    全息扩散片?透射效率高于85%?椭圆的扩散输出和圆形的扩散输出?非常适合用于可见光和近红外光应用?备有UV型全息扩散片全息扩散体可用来控制照明扩散区域,以及将灯丝、LED灯、电弧灯和其他光源的透射效率增加至超过90%。标准的毛玻璃和乳色玻璃将会产生扩散照明,但是扩散光区域往往会超过系统设计要求。过度照明结合传统的扩散片可用于降低效率,并且往往会因为需要较高功率的照明光源、透镜和滤波片而增加成本。需要注意的是,扩散角可用来矫正输入光束,而角误差则将根据不同的入射角而有所不同。 有别于许多其他的全息元件,这些聚碳酸酯元件可用在整个可见光和近红外光范围内。可单独应用,也可不封装直接使用,或装载4片滤波片装置上使用。可使用去离子水清洗全息扩散体,接着在空气中晾干。用蘸有甲醇的擦镜头纸轻轻地擦,然后在洁净的空气中或是氮气中晾干。全息扩散体可用于抵抗甲醇和二氯甲烷。Common Specifications透射率 (%) : 85 订购信息散射角 (°)有效孔径 CA(mm)直径 (mm)尺寸 (mm)厚度 (mm)产品号0.2 x 40 (FWHM)21.625-2.6#47-9970.2 x 40 (FWHM)45.750-2.6#47-9980.2 x 40 (FWHM)50.8 x 50.80.78#47-9990.2 x 40 (FWHM)203.2 x 203.20.78#48-0000.5 (FWHM)21.625-2.6#47-9880.5 (FWHM)45.750-2.6#47-9890.5 (FWHM)50.8 x 50.80.78#47-9900.5 (FWHM)203.2 x 203.20.78#65-8831 (FWHM)21.625-2.6#47-9911 (FWHM)45.750-2.6#47-9921 (FWHM)50.8 x 50.80.78#47-9931 (FWHM)203.2 x 203.20.78#65-8841 x 60 (FWHM)21.625-2.6#48-0011 x 60 (FWHM)45.750-0.78#48-0025 x 30 (FWHM)50.8 x 50.80.78#48-0071 x 60 (FWHM)50.8 x 50.80.78#48-0031 x 60 (FWHM)203.2 x 203.20.78#48-0045 (FWHM)21.625-2.6#47-9945 (FWHM)45.750-2.6#47-9955 (FWHM)50.8 x 50.80.78#47-9965 (FWHM)203.2 x 203.20.78#65-8855 x 30 (FWHM)21.625-2.6#48-0055 x 30 (FWHM)45.750-0.78#48-0065 x 30 (FWHM)203.2 x 203.20.78#48-00810 (FWHM)21.625-2.6#54-49210 (FWHM)45.750-2.6#54-49310 (FWHM)50.8 x 50.80.78#55-43810 (FWHM)203.2 x 203.20.78#55-44210 x 60 (FWHM)21.625-2.6#48-00910 x 60 (FWHM)45.750-2.6#48-01010 x 60 (FWHM)50.8 x 50.80.78#55-44110 x 60 (FWHM)203.2 x 203.20.78#55-44515 (FWHM)21.625-2.6#54-49415 (FWHM)45.750-2.6#54-49515 (FWHM)50.8 x 50.80.78#47-67615 (FWHM)203.2 x 203.20.78#47-67720 (FWHM)21.625-2.6#54-49620 (FWHM)45.750-2.6#54-49720 (FWHM)50.8 x 50.80.78#55-85220 (FWHM)203.2 x 203.20.78#65-88625 (FWHM)21.625-2.6#54-49825 (FWHM)45.750-2.6#54-49925 (FWHM)50.8 x 50.80.78#65-88725 (FWHM)203.2 x 203.20.78#65-88830 (FWHM)21.625-2.6#54-50030 (FWHM)45.750-2.6#54-50130 (FWHM)50.8 x 50.80.78#55-43930 (FWHM)203.2 x 203.20.78#55-44340 (FWHM)21.625-2.6#54-50240 (FWHM)45.750-2.6#54-50340 (FWHM)50.8 x 50.80.78#65-88940 (FWHM)203.2 x 203.20.78#65-89060 (FWHM)21.625-2.6#54-50460 (FWHM)45.750-2.6#54-50560 (FWHM)50.8 x 50.80.78#55-44060 (FWHM)203.2 x 203.20.78#55-44480 (FWHM)21.625-2.6#54-50680 (FWHM)45.750-2.6#54-50780 (FWHM)50.8 x 50.80.78#47-67880 (FWHM)203.2 x 203.20.78#47-6790.5 (FWHM)12.5-0.78#35-8601 (FWHM)12.5-0.78#35-8615 (FWHM)12.5-0.78#35-86210 (FWHM)12.5-0.78#35-86315 (FWHM)12.5-0.78#35-86420 (FWHM)12.5-0.78#35-86525 (FWHM)12.5-0.78#35-86630 (FWHM)12.5-0.78#35-86740 (FWHM) 12.5-0.78#35-86860 (FWHM)12.5-0.78#35-86980 (FWHM)12.5-0.78#35-870附件标题产品号25mm Diameter Narrow Circular Holographic Diffuser Kit#48-01150mm Diameter Narrow Circular Holographic Diffuser Kit#48-01225mm Diameter Medium Circular Holographic Diffuser Kit#53-86950mm Diameter Medium Circular Holographic Diffuser Kit#53-87025mm Diameter Wide Circular Holographic Diffuser Kit#53-87150mm Diameter Wide Circular Holographic Diffuser Kit#53-87225mm Diameter Medium Elliptical Holographic Diffuser Kit#53-87350mm Diameter Medium Elliptical Holographic Diffuser Kit#53-87425mm Diameter Narrow Elliptical Holographic Diffuser Kit#56-05550mm Diameter Narrow Elliptical Holographic Diffuser Kit#56-056
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制