反康反宇宙超低本底高纯锗仪

仪器信息网反康反宇宙超低本底高纯锗仪专题为您提供2024年最新反康反宇宙超低本底高纯锗仪价格报价、厂家品牌的相关信息, 包括反康反宇宙超低本底高纯锗仪参数、型号等,不管是国产,还是进口品牌的反康反宇宙超低本底高纯锗仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合反康反宇宙超低本底高纯锗仪相关的耗材配件、试剂标物,还有反康反宇宙超低本底高纯锗仪相关的最新资讯、资料,以及反康反宇宙超低本底高纯锗仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

反康反宇宙超低本底高纯锗仪相关的厂商

  • 高普科学GASPU ,是专业于高纯气体发生器和气体纯化设备研发制造的高新技术企业。2001年在苏州留学人员创业园,由德国CarboTech与苏州高纯气体研究所(高普前身)合作创建了苏州高普超纯气体技术有限公司(CarboTech公司的前身为BergbauForschung公司,是PSA制氮工艺以及用PSA制氮工艺从混合气体中制造氮的碳分子筛的发明者)。 自2003年高普GASPU在苏州高新产业开发区投资建造了以生产PSA及膜分离制氮机、氮气、氢气发生及纯化设备的产业基地以来,公司在开发区已拥有10000平米标准化制氮机生产车间和2200平米的制氮机研发科技中心,总投资达3000万元。公司取得UKAS认证和中国船级社CCS认证。 高普科学为实验室和科研行业提供:PSA和膜分离氮气发生器、氢气发生器、零级空气发生器,以及氮气、氢气、氩气等各种气体纯化器。 我们的长期用户包含德国ATLAS、美国MaisonWorlyParsons,日本旭化成、日本德山化工、台湾foxconn富士康、摩托罗拉电子、中海油海上平台、中石油、英国BP天然气项目,、白俄明斯克天然气发电厂、伊拉克华事德电厂、孟加拉天燃气发电厂、2008年北京奥运会电力应急保障项目-太阳宫天然气发电厂选择了GASPU氮气系统。
    留言咨询
  • “中船重工鹏力(南京)超低温技术有限公司”是利用中国船舶重工集团公司平台和南京柯德超低温技术有限公司资源于2014.3月成立;是一家专业的低温制冷机、低温装置及恒温器、低温液化及工程应用、低温分离、纯化设备的制造商,同时也是一家可提供全方位低温应用及解决方案的服务商。公司在总经理高金林博士的带领下,致力于打造国内一流、全球领先的低温制冷企业。本公司以满足广大低温用户对高品质、高性能、中国制造的低温产品以及对专业、全面的低温解决方案的需求为企业宗旨,以振兴我国的低温制造业为历史使命。公司与中科院物理所、低温中心、浙江大学、南京大学、东南大学、华中科技大学等国内著名研究所和高校保持着良好的合作关系,受到国内知名院士(周远院士、赵忠贤院士等)和专家的一致好评。
    留言咨询
  • 高焱祥仪器专业提供涂装涂料及表面处理等行业检测仪器和相关耗材,代理全球各大知名品牌、实验室测试仪器设备,并提供各种检测仪器维修、保养等服务。    高焱祥仪器自2006年以来,就以提供最优良的仪器设备及专业的人力技术支援为己任,每年不断成长,得到了广大客户的肯定。我们强调服务,追求品质,以期达到[专业?积极?服务]的经营方针。我们将与您一起共创未来,成为您最值得信赖的合作伙伴。   我们代理的仪器设备:耐磨耗试验机,硬度计(铅笔硬度计),百格刀(附着力试验机),光泽度计,膜厚计(涂层测厚仪),粘度杯,粘度计,细度计,色差计,酸碱度计,电导度计,水份计,粗糙度计,液体比色计,比重杯,标准光源对色箱,涂膜器,超音波膜厚计,恒温恒湿机,RCA耐磨试验机配件,RCA耐磨机用测试纸带,耐磨机用测试橡皮擦条,TABER耐磨试验机用研磨轮,日本三菱铅笔,美国3M胶带………等多种仪器设备.
    留言咨询

反康反宇宙超低本底高纯锗仪相关的仪器

  • 反康普顿系统是一种用于低本底样品测量的系统,主要实现对于康普顿平台计数的抑制。提高测量象的MDA(最小可探测活度)值,尤其是针对于大体积样品,如滤纸样品和培养皿形状样品。ORTEC在全球已经为客户提供了几十套的反康普顿谱仪系统,以满足用户对于低计数率测量的苛刻要求。在这一领域的丰富经验是基于ORTEC对于各种类型的?纯锗探测器的效率,分辨率和P/C等性能参数的了解比,使得ORTEC了解如何给出系统最佳性能的配置?方案。反康普顿测量量系统的基础知识:在几个典型的低本底谱仪系统中,为了减少系统固有的放射性本底,我们做出了了巨?的努?,不断的从探测器,铅屏蔽体,屏蔽体内的空间等方面降低本底水平。这类低本底谱仪系统倾向于减少锗晶体探测系统中的天然本底和宇宙射线。(这些本底会来源于系统材料本身,也会来自于高能宇宙射线)反康普顿谱仪系统的最主要的功能是进?步降低这类系统的本底计数水平。传统的低本底谱仪系统虽然可以大大的降低峰下连续谱的程度,但不能够有效的解决峰下连续谱的主要贡献来源:康普顿散射计数。康普顿散射计数主要形成原因是,入射光子在锗探测器内发生康普顿散射事件,导致入射光子的全部能量未被锗探测器完全吸收,只有部分能量停留在锗探测器中形成的谱计数称之为“康普顿散射计数”。这些康普顿散射计数的不断累积,最终在谱上形成康普顿散射平台。光电全能峰的最高峰计数与康普顿平台的平均计数的比值称之为“峰康比”。在标准的高纯锗探测器中,根据相对效率,探测器晶体尺寸的不同,一般1.332MeV全能峰的峰康比在“40:1”到“100:1”之间。因为逃逸的能量是以光子的形式逃出探测器,从方法上我们可以使其他探测器对逃逸的光子进行收集。一般情况下,采用价格较为便便宜的NaI材料做成较大的探测器,作为屏蔽探测器。通过时间符合电子学对信号进行处理,当HPGe探测器和周围的NaI探测器同?时间接收到信号时,对HPGe探测器内的信号进行判断丢弃。这样可以大大的降低康普顿连续谱的程度。在几个标准的反康普顿谱仪系统中,典型的峰康比可以达到800:1的水平。MDA的性能提升可以达到3倍以上。反康普顿谱仪系统中HPGe谱仪的选定因素:反康普顿谱仪系统的性能取决于屏蔽探测器对于逃逸光子的收集能力。因为光子与所有它遇到的每?种物质都有相互作用的可能,所以系统设计中,我们需要将HPGe晶体和屏蔽探测器之间的材料尽可能减少。需要考虑的部分包括以下内容:&bull HPGe晶体外部死层&bull HPGe晶体支撑杯&bull HPGe探测器外壳&bull HPGe外壳与屏蔽探测器之间的空气&bull 屏蔽探测器外壳封装材料哪些探测器的特征适合?于反康普顿谱仪系统:?个潜在的可?于反康普顿系统的高纯锗探测器应该具有如下特征:&bull 极薄的HPGe晶体死层&bull 低密度的HPGe晶体支撑杯&bull 低密度的HPGe探测器外壳&bull 在给定尺寸的HPGe探测器外壳下应该尽可能的大直径的HPGe晶体&bull HPGe外壳的尺寸应该尽可能的与外部屏蔽探测器的尺?匹配HPGe探测器:&bull 探测器类型:N型同轴探测器&bull 封装形式: 整体碳纤维封装,保证探测器侧?依然是低密度碳纤维材料&bull 相对效率: 大于60%&bull 分辨率: 参考标注探测器GMX60系统峰康比: 1000:1 (Cs137)0.5cps (开启反康模式,能量量范围:50KeV-2MeV) ,GammaVision,电与液氮回凝制冷器,液氮制冷,纯电制冷 无需专业人员即可设置
    留言咨询
  • 实验室低本底宽能高纯锗HPGE伽马γ能谱仪第一部分:高纯锗探测器 高锗探测器由于其无与伦比的优异分辨率,是核测量最精密和最先进的工具,在核物理 研究与核测量中具有不可替代的地位。 完整的高纯锗探测器的制造过程包括晶体制备、探测器结构设计、高性能低噪声前置放大 器设计、超高真空封装与生产成型、指标测试和稳定性考核等。经国家权威计量部门检定, 其关键 性能指标优异、稳定性良好。 高纯锗探测器的工作机理:高纯锗晶体的杂质浓度低至 1010 原子/cm3 量级,是世界上最纯 净的物质。高纯锗探测器表面 分别有 N+、P+电极,在该两种电极上加反向偏压后,由于高 纯锗晶体极低的杂质浓度,其内部将工作在全耗尽状态,此时伽马射线在其内部沉积能量产生 的载流子在电场的作用下被收集,形成的电流信号通过前置放大器被转换为与沉积能量成正比 的电压信号。 高纯锗探测器所采用的晶体外形为一圆柱体,在 其外表面为 N+电极,在其内部电极孔内部为 P+电极, 两种电极分别使用成熟的锂扩散、硼离子注入技术制 造。威视系列高性能 P 型同轴高纯锗探测器的 N+电 极约为 0.5mm 厚,P+电极约为 0.5μm 厚。 探测器的前置放大器可根据用户需求选用阻容反馈或脉冲反馈前放,性能优异,长期稳 定性好,除适配威视系列数字谱仪外,还可兼容市场上主流的谱仪产品。 威视系列高性能 P 型优化高纯锗探测器配置垂直冷指,并可根据用户需要配置“L 形”、 “U 形”、水平冷指等定制化设计,同时为用户在探测器封装与冷指材料上提供超低本底选项。为保证制冷效率,探测器舱室应保持严密的真空条件。P 型探测器的总体特性:能量响应范围:30keV 至 10MeV;相对探测效率 10% 至 80%; 可满足绝大部分样品测量应用和大部分研究测量应用的要求; 全面保证相对效率、分辨率、峰康比和峰形指标; 可配置普通阻抗反馈前放或适于高计数率的脉冲光反馈前放。 TKGEP-S 系列探测器型号与性能指标:型号晶体尺寸(mm)能量分辨率-FWHM(≤keV)峰形(≤)峰康比(≥)效率(≥)直径厚度@59.5keV@122keV@1.33MeVFW.1M/FWHMFW.02M/FWHMTKGEP-S1250300.700.801.81.92.73212%TKGEP-S3070300.700.851.81.92.74530%TKGEP-S4070400.750.901.852.02.84840%TKGEP-S5085300.850.951.852.03.05350%TKGEP-S6090300.901.01.902.03.05860%TKGEP-S7085500.951.11.952.03.06270%第二部分:谱仪(多道分析仪) 配套高纯锗探测器的一款新型数字化谱仪。其设计功能完善,其稳定性业已经实际使用验证。针对高效率探测器或高 计数率条件下对信号处理的要求,结合软件,谱仪在数字化极零调 节、死时间校正和弹道亏损校正方面做了具有相当先进性和独到 性的设计。 谱仪整体功能与特性:全数字化控制,保证人机交互灵活探测器回温情况下高压自动切断功能(shutdown)多种滤波模式,可根据特定环境配置滤波参数,具备低频噪声抑制功能具备门控数字化基线恢复,自动极零,零死时间校正,弹道亏损校正等完 整先进功能最大数据通过率大于 100kcps,对高计数率样品能获得准确的测量结果支持 USB3.0 接口谱仪特征功能: 基础参数显示:系统的电源开启状态,高压开启状态,高压目标值,高压升降过程 动态显示。全数字化自动高压加载:用户根据探测器参数选定高压后,系统自动按指定的速率 和目标值进行高压加载,直到满足探测器要求。异常处理功能:当系统意外掉电,设备自动启动 UPS 功能,并按异常处理逻辑,进 行高压缓降,以保护探测器安全。抑制电荷收集时间效应功能:基于 FPGA 的硬件算法,利用快通道梯形脉宽来统计 电荷收集的方法简单实用高效。 具体参数指标: 系统非线性:积分非线性:≤ 0.01%;微分非线性:≤±0.28最大通过率:成形时间设置为上升时间 500ns,平顶时间 500ns时,系统等效的死时间约为 2.79μs,此时,最大脉冲通过率将达到 130Kcps。粗调增益::由计算机选定为 1,2,4,8细调增益:由计算机设定为 0.45 至 1.00尺寸与重量:376D X 242W X 116 H mm, 2.2KG工作条件:0 C 到 50 C(包括 LCD 显示)。操作系统:Windows 7/ Windows10。显示/接口:320 240 像素(pixel) 有机发光半导体(OLCD)系统状态信息。220V市电接入端子,USB3.0接口。高压输出接口,探测器电源接口,探测器信号输入端子。第三部分:液氮回凝制冷器 采用低振动长寿命脉冲管制冷机,运行寿命长于 10 年; 25L 液氮容器,不断电条件下可连续工作两年以上; 对探测器分辨率无影响; 可匹配垂直、水平与弯头型冷指; 液晶显示屏实时显示液氮水平、制冷机运行状态等信息; 可选购基于无线技术的遥控器,远程控制制冷系统或显示运行状态; 配有自动式液氮填充接口,可自动加注液氮; 在制冷维系时长为 48 小时前发出提示与报警; 外形尺寸:64.5cm 高 x 45.6cm 直径(不含探测器); 功耗:运行时小于 150W,启动时最大 250W; 工作环境:0 - 35℃,相对湿度 20%至 80%(无冷凝); 噪声:1m 处小于 60 分贝。第四部分:伽马谱软件包 研制开发一套完整的实验室高纯锗伽马谱仪,除了高纯锗探测器这一核心部件之外,还需要在与其配套的制冷器、谱仪和分析软件上下足十分的功夫。 历经十年的反复磋磨与雕琢,目前这款即将商品化的TKGammaWiz软件包已具备完整而 强大的功能。 它是一个完整的软件包,只需一次安装,用户即可实现如下功能: 系统的参数设置与硬件控制,包括增益细调、启动数字化稳谱、调节高压、显示实 时间/活时间和脉冲宽度、 系统的能量与效率刻度。初始化安装时,软件会提示用户进行参数设置与能量/效 率刻度。 能谱获取与显示。具有多路谱图同步获取功能。 谱分析与活度计算。多种寻峰方法与峰面积计算方法、多种本底算法、完善的各种校正功能,以期得到最小的不确定度。 分析结果报告与质量保证。完整的数据报告会给出每一次测量的条件与结果,以保 证随时可以回溯。 它具有如下鲜明的个性化功用与特点: 设计有可切换的操作员(operator)与专家(expert)两种使用权限,以保证系统 与数据安全可靠。 独特的能谱采集回放功能。设计用于当数据超出设置的限值、或不确定度较高时, 从源头上予以确认或诊断。 对具备”批处理”条件的样品,可定制流程化的“一键分析”。 具体参数与特性: 刻度:支持能量、峰形、效率刻度,可人工刻度,也可载入存储的数据文件。效率曲线可 载入自主研发的无源效率刻度软件产生的效率刻度文件,并支持三种拟合方法:单一函数多 项式拟合、插值法、带“拐点”(Knee)的多项式拟合。 寻峰:支持 Mariscotti 法寻峰,可自动或手动完成寻峰。 本底确定方法:自动确定法、SNIP剥谱法、峰侵蚀法等。软件会自动选定最佳方法。 分析用核素库: 软件包含默认的 2000 个核素的衰变纲图与相应的伽马射线能量数据, 用 户可在此基础上进一步编辑并生成自己的自定义子库。软件核素库支持对核素名称、质量、 能量的查询,和对母子核的编辑。 核素识别的方法: 软件默认使用基于库寻峰的核素识别方法,具体执行程序如下: 使用广义二阶差分方法初步寻峰,根据寻峰结果对核素库进行筛选。用峰侵蚀方法分析全谱本底,扣除本底后,在库峰位所在能量点用最小二乘法进行峰拟合作为寻峰结果。 分析后的首选核素将会直接标注在谱上,方便查看。 谱分析中的校正:母子核衰变校正;样品集与谱获取期间的衰变校正。 MDA 计算:Currie 算法,后续可扩展 ORTEC MDA 等 18 种算法。分析结果报告:报告主要包括能谱信息、刻度、分析设置、分析峰、分析核素几个部分内容,支持 pdf、rpt、doc 三种格式。 界面:默认 office 风格,可自行切换。一图展示能谱、寻峰、核素识别结果等内容,并 可根据指定核素计算显示其余能量峰的高度。适应的操作系统:Windows7/810 32/64 位操作系统。第五部分:实验室无源效率刻度软件 蒙特卡罗程序包:基于 Geant4 软件程序包,能够准确模拟光子与物质相作用的整个过程。 探测器类型:支持同轴型、面型、井型三种类型探测器。 能量范围:10keV-7000keV; 刻度角度:支持任意角度刻度。探测效率:支持真实物理级别的级联符合校正,通过自研能量沉积算法获取探测效率。 常见容器库:内置 9 种常见的容器库,支持圆柱、圆盘、烧杯、马林杯、U 型杯、盒子、球 型、点源、横向圆柱等对称型样品模型。 材料库工具:内置 40 余种常见材料,允许用户自定义材料。 3D 视觉及几何校验:提供快速 3D 视觉及更精细的几何模型定义,提供完整的几何模型校验。 输入参数敏感性分析:提供输入参数敏感性分析工具,方便用户定位影响效率刻度的参数项。 自表征校正工具:允许用户自主完成探测器表征,无需返厂,确保刻度的准确性。 效率刻度拟合公式:允许用户通过拟合公式计算不同能量对应的探测效率。 刻度结果报表:支持完整刻度结果数据的报表预览及打印。 适应的操作系统:Windows7/8/10 64 位操作系统。第六部分:铅室1.标准铅室 TKLBS-G2 是一款顶开门压杆式低本底铅室,用于高纯锗γ能谱仪系统,屏蔽环 境本底对探测过程的干扰,提高测量的准确性。具体参数: 外层材料:1cm 低碳钢;中层材料:10cm 低本底铅 4π 方向屏蔽;内层材料:3 mm 无氧铜;结构:压杆式顶部平移开门设计; 承重桌材料:低碳钢;占地面积:65cm x 65cm;内腔尺寸:Φ310mm x 409mm;重量:大于 1.1 吨; 铅室说明:分三个型号,TKLBS-G1,TKLBS-G2,和TKLBS-U,TKLBS为low background shelid低本底屏蔽的缩写,G1代表Grad1等级1,使用铅材料厚度为10cm,本底保 证<3.0cps,常规值<2.8cps;G2代表Grad1等级2,使用铅材料厚度为15cm,本 底保证<2.0cps,常规值<1.6cps;U代表Ultra超级,使用铅材料厚度为15cm, 同时使用液氮挥发气体赶走铅室内腔空气,使之降低空气中氡的影响,本底保证<1.0cps。按照约定俗称,以上本底均针对40%效率高纯锗探测器。2.超低本底铅室 TKULBS-G 是一款顶开门压杆式超低本底铅室,用于高纯锗γ能谱仪系统,屏蔽环境本底 对探测过程的干扰,提高测量的准确性。本底指标:本底指标:在正常放射性环境下 50keV 至 3MeV 范围内保证值小于 1.2cps(40%效率), 典型值约 1cps 左右。具体参数: 高度 682.1 mm (26.9 in.); 直径 558.8 mm (22.0 in.); 内腔: 直径 228.6 mm (9 in.); 深度:355.6 mm (14 in.);最外层:9.5 mm (3/8 in.) 厚的低碳钢; 屏蔽层: 152 mm (6 in.)厚的低本底铅; 内衬:1 mm 厚的锡与 1.5mm 厚的无氧铜 重量: 1625 Kg 喷漆: 浅灰色环氧漆 桌子高度:68.5-765 .5cm 高度可调可选超低本底内衬:2.5cm 厚的 25Bq/kg 的超低本底铅。
    留言咨询
  • 高纯锗γ能谱仪 400-860-5168转3524
    高纯锗γ伽马能谱仪第一部分:高纯锗探测器 高锗探测器由于其无与伦比的优异分辨率,是核测量最精密和最先进的工具,在核物理 研究与核测量中具有不可替代的地位。 完整的高纯锗探测器的制造过程包括晶体制备、探测器结构设计、高性能低噪声前置放大 器设计、超高真空封装与生产成型、指标测试和稳定性考核等。经国家权威计量部门检定, 其关键 性能指标优异、稳定性良好。 高纯锗探测器的工作机理:高纯锗晶体的杂质浓度低至 1010 原子/cm3 量级,是世界上最纯 净的物质。高纯锗探测器表面 分别有 N+、P+电极,在该两种电极上加反向偏压后,由于高 纯锗晶体极低的杂质浓度,其内部将工作在全耗尽状态,此时伽马射线在其内部沉积能量产生 的载流子在电场的作用下被收集,形成的电流信号通过前置放大器被转换为与沉积能量成正比 的电压信号。 高纯锗探测器所采用的晶体外形为一圆柱体,在 其外表面为 N+电极,在其内部电极孔内部为 P+电极, 两种电极分别使用成熟的锂扩散、硼离子注入技术制 造。威视系列高性能 P 型同轴高纯锗探测器的 N+电 极约为 0.5mm 厚,P+电极约为 0.5μm 厚。 探测器的前置放大器可根据用户需求选用阻容反馈或脉冲反馈前放,性能优异,长期稳 定性好,除适配威视系列数字谱仪外,还可兼容市场上主流的谱仪产品。 威视系列高性能 P 型优化高纯锗探测器配置垂直冷指,并可根据用户需要配置“L 形”、 “U 形”、水平冷指等定制化设计,同时为用户在探测器封装与冷指材料上提供超低本底选项。为保证制冷效率,探测器舱室应保持严密的真空条件。P 型探测器的总体特性:能量响应范围:30keV 至 10MeV;相对探测效率 10% 至 80%; 可满足绝大部分样品测量应用和大部分研究测量应用的要求; 全面保证相对效率、分辨率、峰康比和峰形指标; 可配置普通阻抗反馈前放或适于高计数率的脉冲光反馈前放。 TKGEP-S 系列探测器型号与性能指标:型号晶体尺寸(mm)能量分辨率-FWHM(≤keV)峰形(≤)峰康比(≥)效率(≥)直径厚度@59.5keV@122keV@1.33MeVFW.1M/FWHMFW.02M/FWHMTKGEP-S1250300.700.801.81.92.73212%TKGEP-S3070300.700.851.81.92.74530%TKGEP-S4070400.750.901.852.02.84840%TKGEP-S5085300.850.951.852.03.05350%TKGEP-S6090300.901.01.902.03.05860%TKGEP-S7085500.951.11.952.03.06270%第二部分:谱仪(多道分析仪) 配套高纯锗探测器的一款新型数字化谱仪。其设计功能完善,其稳定性业已经实际使用验证。针对高效率探测器或高 计数率条件下对信号处理的要求,结合软件,谱仪在数字化极零调 节、死时间校正和弹道亏损校正方面做了具有相当先进性和独到 性的设计。 谱仪整体功能与特性:全数字化控制,保证人机交互灵活探测器回温情况下高压自动切断功能(shutdown)多种滤波模式,可根据特定环境配置滤波参数,具备低频噪声抑制功能具备门控数字化基线恢复,自动极零,零死时间校正,弹道亏损校正等完 整先进功能最大数据通过率大于 100kcps,对高计数率样品能获得准确的测量结果支持 USB3.0 接口谱仪特征功能: 基础参数显示:系统的电源开启状态,高压开启状态,高压目标值,高压升降过程 动态显示。全数字化自动高压加载:用户根据探测器参数选定高压后,系统自动按指定的速率 和目标值进行高压加载,直到满足探测器要求。异常处理功能:当系统意外掉电,设备自动启动 UPS 功能,并按异常处理逻辑,进 行高压缓降,以保护探测器安全。抑制电荷收集时间效应功能:基于 FPGA 的硬件算法,利用快通道梯形脉宽来统计 电荷收集的方法简单实用高效。 具体参数指标: 系统非线性:积分非线性:≤ 0.01%;微分非线性:≤±0.28最大通过率:成形时间设置为上升时间 500ns,平顶时间 500ns时,系统等效的死时间约为 2.79μs,此时,最大脉冲通过率将达到 130Kcps。粗调增益::由计算机选定为 1,2,4,8细调增益:由计算机设定为 0.45 至 1.00尺寸与重量:376D X 242W X 116 H mm, 2.2KG工作条件:0 C 到 50 C(包括 LCD 显示)。操作系统:Windows 7/ Windows10。显示/接口:320 240 像素(pixel) 有机发光半导体(OLCD)系统状态信息。220V市电接入端子,USB3.0接口。高压输出接口,探测器电源接口,探测器信号输入端子。第三部分:液氮回凝制冷器 采用低振动长寿命脉冲管制冷机,运行寿命长于 10 年; 25L 液氮容器,不断电条件下可连续工作两年以上; 对探测器分辨率无影响; 可匹配垂直、水平与弯头型冷指; 液晶显示屏实时显示液氮水平、制冷机运行状态等信息; 可选购基于无线技术的遥控器,远程控制制冷系统或显示运行状态; 配有自动式液氮填充接口,可自动加注液氮; 在制冷维系时长为 48 小时前发出提示与报警; 外形尺寸:64.5cm 高 x 45.6cm 直径(不含探测器); 功耗:运行时小于 150W,启动时最大 250W; 工作环境:0 - 35℃,相对湿度 20%至 80%(无冷凝); 噪声:1m 处小于 60 分贝。第四部分:伽马谱软件包 研制开发一套完整的实验室高纯锗伽马谱仪,除了高纯锗探测器这一核心部件之外,还需要在与其配套的制冷器、谱仪和分析软件上下足十分的功夫。 历经十年的反复磋磨与雕琢,目前这款即将商品化的TKGammaWiz软件包已具备完整而 强大的功能。 它是一个完整的软件包,只需一次安装,用户即可实现如下功能: 系统的参数设置与硬件控制,包括增益细调、启动数字化稳谱、调节高压、显示实 时间/活时间和脉冲宽度、 系统的能量与效率刻度。初始化安装时,软件会提示用户进行参数设置与能量/效 率刻度。 能谱获取与显示。具有多路谱图同步获取功能。 谱分析与活度计算。多种寻峰方法与峰面积计算方法、多种本底算法、完善的各种校正功能,以期得到最小的不确定度。 分析结果报告与质量保证。完整的数据报告会给出每一次测量的条件与结果,以保 证随时可以回溯。 它具有如下鲜明的个性化功用与特点: 设计有可切换的操作员(operator)与专家(expert)两种使用权限,以保证系统 与数据安全可靠。 独特的能谱采集回放功能。设计用于当数据超出设置的限值、或不确定度较高时, 从源头上予以确认或诊断。 对具备”批处理”条件的样品,可定制流程化的“一键分析”。 具体参数与特性: 刻度:支持能量、峰形、效率刻度,可人工刻度,也可载入存储的数据文件。效率曲线可 载入自主研发的无源效率刻度软件产生的效率刻度文件,并支持三种拟合方法:单一函数多 项式拟合、插值法、带“拐点”(Knee)的多项式拟合。 寻峰:支持 Mariscotti 法寻峰,可自动或手动完成寻峰。 本底确定方法:自动确定法、SNIP剥谱法、峰侵蚀法等。软件会自动选定最佳方法。 分析用核素库: 软件包含默认的 2000 个核素的衰变纲图与相应的伽马射线能量数据, 用 户可在此基础上进一步编辑并生成自己的自定义子库。软件核素库支持对核素名称、质量、 能量的查询,和对母子核的编辑。 核素识别的方法: 软件默认使用基于库寻峰的核素识别方法,具体执行程序如下: 使用广义二阶差分方法初步寻峰,根据寻峰结果对核素库进行筛选。用峰侵蚀方法分析全谱本底,扣除本底后,在库峰位所在能量点用最小二乘法进行峰拟合作为寻峰结果。 分析后的首选核素将会直接标注在谱上,方便查看。 谱分析中的校正:母子核衰变校正;样品集与谱获取期间的衰变校正。 MDA 计算:Currie 算法,后续可扩展 ORTEC MDA 等 18 种算法。分析结果报告:报告主要包括能谱信息、刻度、分析设置、分析峰、分析核素几个部分内容,支持 pdf、rpt、doc 三种格式。 界面:默认 office 风格,可自行切换。一图展示能谱、寻峰、核素识别结果等内容,并 可根据指定核素计算显示其余能量峰的高度。适应的操作系统:Windows7/810 32/64 位操作系统。第五部分:实验室无源效率刻度软件 蒙特卡罗程序包:基于 Geant4 软件程序包,能够准确模拟光子与物质相作用的整个过程。 探测器类型:支持同轴型、面型、井型三种类型探测器。 能量范围:10keV-7000keV; 刻度角度:支持任意角度刻度。探测效率:支持真实物理级别的级联符合校正,通过自研能量沉积算法获取探测效率。 常见容器库:内置 9 种常见的容器库,支持圆柱、圆盘、烧杯、马林杯、U 型杯、盒子、球 型、点源、横向圆柱等对称型样品模型。 材料库工具:内置 40 余种常见材料,允许用户自定义材料。 3D 视觉及几何校验:提供快速 3D 视觉及更精细的几何模型定义,提供完整的几何模型校验。 输入参数敏感性分析:提供输入参数敏感性分析工具,方便用户定位影响效率刻度的参数项。 自表征校正工具:允许用户自主完成探测器表征,无需返厂,确保刻度的准确性。 效率刻度拟合公式:允许用户通过拟合公式计算不同能量对应的探测效率。 刻度结果报表:支持完整刻度结果数据的报表预览及打印。 适应的操作系统:Windows7/8/10 64 位操作系统。第六部分:铅室1.标准铅室 TKLBS-G2 是一款顶开门压杆式低本底铅室,用于高纯锗γ能谱仪系统,屏蔽环 境本底对探测过程的干扰,提高测量的准确性。具体参数: 外层材料:1cm 低碳钢;中层材料:10cm 低本底铅 4π 方向屏蔽;内层材料:3 mm 无氧铜;结构:压杆式顶部平移开门设计; 承重桌材料:低碳钢;占地面积:65cm x 65cm;内腔尺寸:Φ310mm x 409mm;重量:大于 1.1 吨; 铅室说明:分三个型号,TKLBS-G1,TKLBS-G2,和TKLBS-U,TKLBS为low background shelid低本底屏蔽的缩写,G1代表Grad1等级1,使用铅材料厚度为10cm,本底保 证<3.0cps,常规值<2.8cps;G2代表Grad1等级2,使用铅材料厚度为15cm,本 底保证<2.0cps,常规值<1.6cps;U代表Ultra超级,使用铅材料厚度为15cm, 同时使用液氮挥发气体赶走铅室内腔空气,使之降低空气中氡的影响,本底保证<1.0cps。按照约定俗称,以上本底均针对40%效率高纯锗探测器。2.超低本底铅室 TKULBS-G 是一款顶开门压杆式超低本底铅室,用于高纯锗γ能谱仪系统,屏蔽环境本底 对探测过程的干扰,提高测量的准确性。本底指标:本底指标:在正常放射性环境下 50keV 至 3MeV 范围内保证值小于 1.2cps(40%效率), 典型值约 1cps 左右。具体参数: 高度 682.1 mm (26.9 in.); 直径 558.8 mm (22.0 in.); 内腔: 直径 228.6 mm (9 in.); 深度:355.6 mm (14 in.);最外层:9.5 mm (3/8 in.) 厚的低碳钢; 屏蔽层: 152 mm (6 in.)厚的低本底铅; 内衬:1 mm 厚的锡与 1.5mm 厚的无氧铜 重量: 1625 Kg 喷漆: 浅灰色环氧漆 桌子高度:68.5-765 .5cm 高度可调可选超低本底内衬:2.5cm 厚的 25Bq/kg 的超低本底铅。
    留言咨询

反康反宇宙超低本底高纯锗仪相关的资讯

  • 这台发射宇宙射线的神秘设备,能给西安古城墙做“CT”
    ◎ 采写丨科技日报记者 王迎霞 颉满斌◎ 策划丨赵英淑 滕继濮 林莉君吴春至今记得第一次做CT的情景。被推进舱里的那一刻,她紧张、害怕,担心查出问题,也担心射线对身体造成影响。多年过去,她再次经历了这样的不安,只不过,这次做CT的是古城墙。吴春是陕西省西安城墙管理委员会副主任,在她的积极联系和鼎力支持下,兰州大学核技术创新与产业化团队带着研发的国内首套塑闪宇宙射线缪子成像设备,给西安古城墙做了一次“CT”。“一定不要给城墙造成损伤,但也一定要知道‘五脏六腑’都有啥毛病。”吴春提出要求。这是她作为历史文化遗产守护者的底线。叫缪子的宇宙射线有着600多年历史的西安古城墙,也像人体一样,会随着时间的推移出现“健康”问题。北方夏季雨水较多,西安古城墙被雨水长时间浸泡后,部分墙面出现了快速裂缝和沉陷的现象。尽管城墙管委会一直都在高度关注城墙的各类安全问题,但有些损害在墙体内部,仅凭肉眼无法观测。如何检测古城墙内部情况,进而有针对性地展开修复工程,成为摆在西安城墙管委会面前的重要难题。西安城墙正北门—安远门在现代医学技术的加持下,要想掌握人体的病灶情况,我们可以使用B超、CT、核磁共振等各种影像仪器。想知道一座几十米高的古城墙的健康状况,该怎么办?“以往,我们用得最多的是钻孔法,就是通过在墙体上打孔取材的方式,来判断其内部情况。但这种勘探方式会直接破坏墙体,后期还需要对损坏部分进行修复。”吴春说。另一种是雷达监测法。雷达的频率越小,穿透程度便会越深,但其精度会相应变差,成像可能出现偏差;而如果探测太浅,又不能够满足古建筑、山脉等大型物体的探测深度需要。“钻孔法对城墙有损,而使用雷达法,基本上70%的情况都探不出来。”吴春做梦都想找到能够无损探测的方法。一个偶然的机会,她结识了兰州大学核技术创新与产业化团队。在给城墙南门的一面墙做三维激光扫描的过程中,吴春不由地感慨:“这激光扫描呀,如果能透视到里面就好了。省得我们苦苦找隐患点,又无计可施。”这时,操作扫描的老师说自己认识一位兰州大学教授,他能用一种宇宙射线对物体进行成像,或许可以帮到她。是物探,还是遥感?对方说好像都不是,是一种新方法,具体是什么,他也说不清。这下吴春来了兴致:“刚好58号马面(在城墙外侧依一定距离修建的凸出墩台,平面有长方形和半圆形,因外观狭长如马面,故名)出了一些问题,我联系试试!”他们说的宇宙射线,就是缪子。星际空间有很多高能粒子,其中最主要的是质子。高能的质子通过大气层时会发生核反应、电离等级联反应,从而一生二、二生四,从上往下越来越多,有点像烟花,也像射灯。到达海平面时,里面就富含各种组分,缪子只是其一,还有中子、β射线和γ射线等。它们都被称为“宇宙射线次级射线”。“根据估算,海平面上每平方米面积上每分钟会落下10000个缪子,也就是说,每秒钟就会有一个缪子穿过我们的手掌。”兰州大学核技术创新与产业化团队相关负责人打比方道,“它们就像下雨一样浇着我们,淋着我们,时时刻刻穿透我们的身体。”作为宇宙中的基本粒子之一,缪子的带电量为一个负电荷,质量为电子的207倍,它与物体发生相互作用的方式与电子类似。相比于中子、X射线和γ射线等,宇宙射线缪子具有更强的穿透能力。很多人都好奇这种神奇的物质,究竟是如何为我所用的。原来,科研人员在被测物体周边放置缪子探测器,根据缪子射线在物体中不同方向的穿透情况,搜集肉眼看不见的缪子计数,进而在计算机上进行分析,通过数据分析计算实现被测物体的三维成像。工作人员正在组装探测器“对于城墙这样十几米甚至几十米厚的物体来说,如果里面有个一米大的空洞,我们完全可以通过缪子成像技术检测到。”该团队成员刘军涛从团队2018年着手干这件事开始,他就跟着全程参与了缪子成像系统的研发。藏着秘密的“冰柜”2021年9月,兰州大学核科学与技术学院两位骨干教师,带着由两位工程师以及四五位学生组成的团队,向着古都西安出发。与他们同行的,是一个长1.6米形状酷似冰柜的仪器。“之所以看起来像一台冰柜,是因为我们给原来只能在实验室使用的探测仪器增设了金属外壳,使设备可以防潮、避光,方便移动。”刘军涛说。正在作业中的探测器刘军涛告诉吴春,仪器定型的时间不长,没有成熟商业产品那样漂亮的外观,但探测效果不受影响。吴春的话给他吃了很大一颗定心丸:“不管啥方法,只要是科学的,我们都欢迎!”这台貌不惊人的方疙瘩,隐藏着能给城墙看病的秘密。它包括多对探测器层和采集板,负责收集从宇宙中散落下来的缪子与信息转换;一个用于数据传输监测与存储的主机系统;一台移动电源,可确保仪器在野外运行时有稳定的供电;一个用于调控设备内温度和湿度的空调系统……缪子成像技术研究,目前国内也有少数同行团队在做。兰州大学核技术创新与产业化团队的不同之处在于,他们已经从实验室测试阶段走向了实际应用。2020年11月,该团队成功研发我国首套塑闪宇宙射线缪子成像系统,并顺利完成专家验收。“‘塑闪’是塑料闪烁体的简写。缪子通过塑料闪烁体后会产生光,有闪烁光就代表有缪子通过这个材料。我用光电转换的器件,可以把光信号转为电信号,看到脉冲后,表示已经捕捉到了缪子。”刘军涛说。采集缪子只是第一步。随后,他们不断完善软件模型,模拟成像场景,调整各类参数,最终将其带到西安古城墙下,开始“首秀”。缪子成像技术主要有两种成像原理,即角度散射成像和强度衰减成像。此次西安古城墙探测运用的便是强度衰减成像法。这一成像方法的原理是,缪子在物体内部穿行过程中会损失能量,而当其能量损失殆尽时便会被物体吸收,这将使探测到的缪子强度减小,所以宇宙射线缪子强度减小量取决于物体的厚度及材料密度。因此,在已知物体外部轮廓的情况下,通过探测缪子强度衰减,可以推导得到被探测物体的密度,从而对物体的内部结构与物质组成进行重构。“这就像人们利用X射线扫描身体,通过透视人体骨骼从而成像一样。”刘军涛介绍说,山体、建筑物、历史遗迹等大型物体的内部结构成像,用的也是这一原理。吴春给他们指定的测试段是城墙58号马面处。正如给人体做三维影像检查会采用放射源与探测器旋转多角度成像,想要给城墙做“CT”,也需要从不同角度采集多组数据。团队采取了环绕马面设置6个观测点的方案,放置探测器进行数据采集。正在作业中的探测器没想到,刚把机器安放好,又一波全国范围的新冠疫情席卷而来。那是2021年秋,实验面临的最大问题是,因为防疫政策需要,探测器不能按照计划不停地变换位置。团队只能因陋就简,顺势而为,及时改变了测量计划。终于在2022年春节前夕,他们将仪器带回兰州。让吴春吃惊的是,这个团队成功测试出了城墙中的低密度区域——也就是一个配电室。在测试团队事先并不知道的情况下,他们通过宇宙缪子成像技术清晰地呈现出它的位置、形状、大小。“这一高精度成像再次验证了使用缪子成像技术能够完成被测物体三维成像的可行性。”刘军涛表示。他们和58号马面科研从来无坦途。兰州大学核技术创新与产业化团队虽然首战告捷,但在实际探测过程中,还是遇到了不少困难。宇宙射线缪子成像技术利用的是不需要人工放射源产生的天然射线,具有无接触勘探、不受时空限制、不会对勘探物体造成任何伤害、绿色环保等特点,但它的使用受客观条件影响较大。“不像医院里使用人工射线源,环境比较单纯,我们的仪器往往放置在室外,得经历风吹日晒等自然环境的考验。”兰州大学2020级能源动力专业硕士研究生姚凯强说。在室外使用就会出现各种问题,比如电路短路,或者电压波动较大等,设备接收到的信号也会跳动不稳。整个墙体的勘探过程耗时将近4个月,为了应对各种环境的考验,团队对实验室内原来使用的平板探测器进行了升级与调整。姚凯强和另一名师兄专门留在了西安,隔两天就得去现场调整仪器。另外,后期也需要处理那些不稳定环境下接收到的杂乱数据。与数据收集相比,更大的挑战在于开发反演成像的算法平台。“我们在进行文物探测的过程中总会遇到一个问题,就是测量到的数据比待解的未知量少很多。比如有两个变量一个方程的情况下,方程的解是无穷多的。”对2021级核技术专业硕士研究生刘国睿来说,这就需要她和小伙伴在庞杂的结果中挑选出能够同时满足多个方程的模型,选择最合理的结果。来西安之前,刘国睿、姚凯强等人首先根据描述对城墙进行了可行性分析,几何模型比较简单,仅仅知道城墙的长宽高,里面可能有什么情况。在仿真中,他们需要先把城墙的模型大致建好,再进行正演计算,用正演的结果去反演成像。“相当于我们先算一个可能得到的测量结果,然后用这个测量结果做反演,看能不能给里面的防空洞成出一个三维图像来。”刘国睿说。确定做58号马面后,他们把模型更加细化了。初期建的模型特别简单,就是一个矩形的堆,后来又加上马面,对尺寸进行调整。激光测绘把整个城墙的轮廓描绘清楚之后,他们决定换模型,尽管那时6个探测点都已确定。最后一次模拟时,探测点位早已敲定,团队更新了非常细化的城墙轮廓,决定重新建模再做一次。根据优质成像的分辨率,他们在马面里假设了一个防空洞,看能不能成像。另一个难题是遇到密度异常部分时的演算。刘国睿念大三时就加入该课题组学习,后继续在此攻读研究生,在她看来,整体测算并不困难,但密度异常体与周边部分衔接地带,算起来有难度。“这些地方的密度解出来可能会带有系统偏差。”她说。最终的研究结果就是,这次试验精度可以对城墙内部一个长宽高均为1米的防空洞成像出来。“我们还测到马面北面比较空虚,当时比较质疑这个结果,为此做了好多验证。”刘国睿强调,他们必须排除是不是自己技术方面的原因,比如数据处理不当、测量问题之类。排除过后,得出结论——58号马面北墙附近的夯土密度确实较低。回想起这一幕,这个性格沉静的女孩,终于有了笑意。追寻“中国方案” 兰州大学师生付出的所有努力,吴春都看在眼里。实际上,58号马面的情况,她早有掌握。她就想看看这宇宙射线缪子成像技术,到底行不行。刘国睿在分析马面数据的过程中发现,砖和夯土之间好像有空腔,因为不确定,就反复向吴春求证。“小姑娘问,里面是不是有空腔?为什么会有?是真的有,还是我们收集的数据不够、计算方法不对而导致的偏差?我当时就欣慰地笑了。”但吴春并没有挑明,而是让她继续往下做。后来的成果报告会上,吴春正式向有关部门汇报称,兰州大学核技术创新与产业化团队的缪子成像结果,跟西安城墙管委会掌握的情况基本吻合。从此,她对他们更加信任了。这份信任,源于科研人员对自身的严格要求。在所有人看来,大胆质疑、小心求证是科学精神最重要的品格之一,他们恪守这一理念,初心不改。“为什么是这个,而不是那个?哪一步出了错,都无法导出正确结果。”刘军涛深谙其研究之复杂,意义之深远。刘军涛给学生们讲解缪子探测系统如今,团队已经扩展至30余人,每个人分工明确。导师的悉心培养和团队的互帮互助,让青年科研人员受益匪浅。在读研二的刘国睿,已在物理学经典期刊上发表研究论文,内容便是针对宇宙射线缪子技术在实地应用中出现的问题,并提出探索性的解决方案。每一位成员的心里,都有浩瀚宇宙。中华文明上下五千年,源远流长,在悠悠岁月中厚重沉淀。当前,随着科技已经成为考古发展新动力,他们在完成西安城墙成像工作的过程中,逐渐感受到缪子成像技术未来在科技考古领域的广阔前景。“这项技术以后在大型遗迹考古中一定会发挥作用,我们也想在科技考古领域做成标杆性的亮点。”刘军涛告诉记者,今年,敦煌研究院也与团队接触并计划建立合作关系,他们将在深入探测石窟内部结构的工作中共同努力。与不断发展的成像技术相辅相成的,是持续更新的应用场景。一直以来,缪子成像技术应用的瓶颈主要在于探测系统现场应用场景的适应性、成本控制等。在团队不断优化完善下,这项技术也从考古探测发展到了地质勘查、矿产勘探、集装箱检测等更广阔的空间。前段时间,团队又有了新思路:是否可以使用缪子成像技术探测青藏高原的冰川厚度,明晰岩石边界?对他们来说,制作轻量化、耐低温的缪子成像仪器,正在成为新的探索方向。值得一提的是,从仪器组装所需要的材料等硬件到算法系统软件,兰州大学核技术创新与产业化团队都致力于将其本土化。是啊,要想获得“中国方案”、作出“中国贡献”,必须实现技术国产化,这是每位科研人员肩负的重大使命。刘军涛欣喜地透露,现在团队这项技术的国产化率已经达到了95%左右。今年,一直致力于文物保护高质量发展的吴春,又与兰州大学团队取得了联系,看实验能否深入开展。她寄希望于下一步的合作能够证实这种技术更安全、更准确,同时辅以地质勘查,为墙体的修缮工程提供可靠参考,使得预防性保护更具前瞻性。“经过这样完整的检验之后,我们希望这种技术能够得到广泛应用。可以相信,科技将助力中国考古迎来‘黄金时代’。”吴春说。考古科技化,技术国产化,归根到底都是高水平科技自立自强。这是一条遥远而艰辛的路。每个人都渴望化身滴水,汇入时代的海河,信念灼灼。科技日报•深瞳工作室出品文中图片均由受访者提供微信编辑丨宋慈审核丨朱丽终审丨王郁
  • “悟空”巡天两年 获最精确高能电子宇宙射线能谱
    p  暗物质探测又有了新的进展。伦敦时间11月29日,《自然》杂志在线发表了中国科学家的一项研究成果:利用“悟空”卫星获得了世界上最精确的高能电子宇宙射线能谱,这将对判定能量低于1TeV(1TeV=1万亿电子伏特)的电子宇宙射线是否来自于暗物质起到关键作用,并有可能为暗物质的存在提供新证据。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/bf37f730-b28d-45d8-a92e-cb59ec24077d.jpg" title="2a8fb7ae86d94782b2b85138fe237d53_副本.jpg"//pp style="text-align: center "span style="font-family: 楷体, 楷体_GB2312, SimKai "在中国科学院紫金山天文台,“悟空”首席科学家、中科院紫金山天文台副台长常进在介绍暗物质粒子探测卫星的科学成果。/span/pp  暗物质问题是粒子物理和宇宙学的核心问题之一。暗物质不发光,不发出电磁波,从来没有被直接“看”到过。中科院院士吴岳良说,根据最新天文观测结果,宇宙是由27%的暗物质、68%的暗能量和5%的普通物质组成的。对于神秘的暗物质,科学家迫切想知道它到底是什么,对它们的研究很可能会引发科学上的革命。/pp  2015年12月17日,暗物质粒子探测卫星“悟空”发射成功,这是中科院空间科学战略先导专项的首发星。“悟空”卫星首席科学家、中科院紫金山天文台研究员常进说,“悟空”卫星是基于暗物质粒子湮灭或衰变的假设(即暗物质粒子的湮灭或衰变可以产生各种正、反粒子,这些粒子在太空中传播就成了宇宙射线和伽马射线的一部分)而工作的。“悟空”卫星便通过收集高能宇宙射线粒子和伽马射线光子,并分析其能谱和空间分布来寻找暗物质粒子存在的证据。/pp  “悟空”采用了紫金山天文台自主提出的分辨粒子种类的新探测技术方法,实现了对高能(5GeV—10TeV)电子、伽马射线的“经济适用型”观测。“悟空”在轨运行的前530天共采集了约28亿颗高能宇宙射线,其中包含约150万颗25GeV(1GeV=10亿电子伏特)以上的电子宇宙射线。基于这些数据,科研人员成功获取了目前国际上精度最高的电子宇宙射线探测结果。/pp  早在“悟空”上天之前,国际上已有一些空间探测器在尝试搜寻暗物质。但由于探测器规模或设计方案的限制,它们的探测能区相对较低,分辨率和粒子鉴别本领也有限。而“悟空”采用了创新的设计方案,既可探测低能区,也能探测高能区,是世界上第一台能在空间观测直至10TeV能量电子和伽马射线的仪器。/pp  现在“悟空”采集了大量高能电子宇宙射线,清晰地勾勒出电子宇宙射线在宽能量段的能谱行为,以高置信度观测到了能谱在TeV处的拐折行为,并且在1.4TeV能量处发现存在精细结构的迹象。/pp  中科院紫金山天文台研究员范一中说,电子能谱在高能区突然出现拐折,一定是有什么“源”影响了它。现在我们不能确定就是暗物质影响了它,但如果能够证明影响它的不是我们已知的物质,那就很有可能是暗物质了。/pp  据常进介绍,与以前的测量结果相比,“悟空”的能量测量范围比其他空间项目显著提高,打开了宇宙观测新窗口 “悟空”测量到的TeV电子的“纯净”程度最高,能谱的准确性更高 “悟空”首次直接测量到了电子宇宙射线能谱在1TeV处的拐折,其精确的下降行为对于判定部分电子宇宙射线是否来自于暗物质起着关键作用。当然,“悟空”的科学发现有待理论物理学家做进一步的分析阐释。/pp  对于这次暗物质探测上的进展,常进兴奋地说,电子宇宙射线能谱在高能段出现了“引人瞩目的现象”。中科院院长白春礼则认为,“悟空”成果的取得,表明中国科学家已经从自然科学前沿理论的学习者、继承者、围观者,逐渐走到了舞台中央,中国科学家长期以来在基础科学前沿的投入和付出终于有了回报。/p
  • 国内第一台超低本底液闪谱仪亮相第十三届国际核工展
    2014年4月15日,以&ldquo 清洁核能科技,助力美丽中国&rdquo 为主题的第十三届中国国际核工业展览会在北京国家会议中心开幕,为期4天。本次展会共有40多个国家的200余家参展商参展。  上海新漫公司作为国内中高端核辐射检测仪器仪表、辐射监测系统和设备的专业制造商,以崭新的面貌在特装展区成功地展出了近一年来推出的各款新产品,包括用于核电环境监测的便携和固定式设备、部分KZC系统设备、部分KRT系统设备、安保安检设备和国内第一台超低本底液体闪烁谱仪。  展会期间,我国核工业界的领导、专家、国内外同行厂家以及专业观众踊跃参观我司展台,并对各产品的性能特点、技术参数、应用领域等方面向上海新漫公司技术人员进行咨询,大家均对于上海新漫公司的自主创新精神和较高的技术水准给予高度的许可和赞扬!  上海新漫公司展出的一款明星产品--应用于环境超低水平放射性测量的SIM-MAX LSA3000超低本底液体闪烁体谱仪成为了本届核工展被关注的焦点。超低本底液闪谱仪是低水平放射性测量的必需设备,在地质、环境和生物医学领域有广泛应用。液体闪烁计数器或谱仪是测量环境&beta 放射性核素最常用的设备,特别是3H和14C的测量,液闪方法占据了半壁江山。上海新漫公司瞄准国内超低水平放射性测量的市场需求,凭借其在核辐射检测行业近10年的技术积累,同时聘请中科院多位资深液闪技术专家作为核心研发团队的技术顾问,课题组历经3年多的精心研制成功推出国内第一台超低本底液体闪烁谱仪样机。其独创性的采用3+3型符合和反符合探测及TDCR技术,具有测量样品无需内置&gamma 标准源进行淬灭校正和同时测量40个样品的显著特点,其关键技术参数可匹敌国际市场主流产品,该产品的问世及时填补了国内在该领域的产品空白,为我国环境监测和核电发展事业保驾护航。  下列图片为展会现场:展台全景核工业界领导前来展台参观指导便携式核辐射仪器展示区核辐射检测新产品集中展示区超低本底液闪谱仪展示区及技术人员现场测量演示及专业观众交流

反康反宇宙超低本底高纯锗仪相关的方案

反康反宇宙超低本底高纯锗仪相关的资料

反康反宇宙超低本底高纯锗仪相关的试剂

反康反宇宙超低本底高纯锗仪相关的论坛

  • 我们的平凡宇宙

    标准大爆炸论描述了我们的宇宙,从核物质密度的状态中爆发出来,以后一直在膨胀。若我们把这个膨胀倒退回去,随着时间的后退,追踪宇宙的演化,那么,约在150 亿年前,所有的一切皆必集于一个单一的、无限密实的点上,数学上称之奇点。宇宙学家把这一创生瞬间搁在一边,而来考虑宇宙如何从超密态中演化出来。科学上的一个伟大成就,是对奇点后 1秒钟以来,所发生的一切作出描述,这一瞬间前宇宙处于无限密实和高温状态,是现代物理学所无能为力的。此时的密度和温度,已分别下降了;标准模型解释了25% 的原始氢,如何从大爆炸中转变成氦,为何宇宙弥漫着温度在3K之下的微波辐射以及其他一些问题。但标准模型无法解释创生本身——一个极密极热的宇宙,如何在 1秒的岁数上创生出来。在探索这一奥秘中,理论家考虑到这种可能性:我们的宇宙,只不过是无数宇宙中的一个。这一思想和黑暴胀概念相关。标准模型难以解释宇宙中的平滑性和均匀性,而暴胀说却迎刃而解。暴胀开始于一个瞬间,当时整个宇宙只有一颗基本粒的大小,由于短暂的量子起伏能无限扩大,从而出现了按指数性急剧膨胀的暴胀,它为从无(真空)中生有(宇宙)提供了一条途径,这听上去像神话,但量子论的测不准原理确实导致了这种结果。该原理说,在微观世界,我们能精确地测定一粒子(如电子)的位置,但却以测不准其动量为代价,反之亦然。这相当于说,我们了解一辆汽车的速度,可是却无法确定它在那里?这并非荒谬?(幸亏这仅发生于粒子世界)量子说的奠基人海森堡说,这个“测不准”并非测量技术的问题,这是一条自然法则。我们把诸如位置动量这样的,显现量子行为的一对物理量,称为共轭变量,能量和时间组成另一对共轭变量。量子论精确地定义能量(E)和时间(T)之间的关系,据此,能量可在微小的真空空间中出现,只要它能很快消失,以致没有时间来觉察这一过程。这就延伸出一个重要的结论,因据爱氏的相对论,质量(m)和能量(E)是等价的。故测不准原理认为,在微小空间中,能出现物质,只要它很快消失。例如,现在人们知道,电子和正电子从真空中暴出存活极短的间隙而相互湮灭。此般粒子称为云粒子,它们的存在,解释了带电粒子间的电磁力作用。若无云粒子,理论跟观察就不吻合,在此意义上,云粒子可视为“真实”。真空中的量子起伏是一个量子水平上的事件,它怎么能暴出含有如此大量物质(质量)的宇宙呢 ?理论家说,引力场中含有能量,若以物质(也即能量)所表示的能量为正,则引力能为负,宇宙总的引力能与其总的质量能必相等,故宇宙的净能为零。因此,所有一切皆通过量子起伏,从零无中涌出也就不奇怪了。既然我们的宇宙(一个质能论)当真从零无中涌出,并经暴胀生成完整的宇宙,那么类似的过程也可在其他空间出现吗? 是的,应该是那样。从测不准原理的观点来看,在这时间的长河上,浮着无限的质能论,我们这个理论,只是其中之一,遗憾的是,理论与理论之间无法互通信息!多宇宙论无疑是现代宇宙学的一个进展,它兴起于80年代后期。在这一领域中近来出了一位新秀——维仑金,他从宇宙学的业余爱好者,变成了宇宙学家,他的观点使得像霍金(被誉为爱因斯坦第二)、古斯(暴胀论创立者)这样的人物,都为之刮目相看。他提出了平凡原理。我们宇宙是众多中的一个,现在要问,它为何具有这些特征,这里指的是一些基本自然常数:光速、电子电荷、夸克质量等,它们形成物理学的基础,也用以界定我们的宇宙。要知道,这些常数对恒星的形成,生命的产生,都是十分关键且敏感的,也就是说,这些常数的值稍有变化,恒星不会形成,更谈不上你、我、他的存在了,但在这里还未包括令理论家深感头痛的宇宙常数。宇宙常数来得也蹊跷,当爱氏把广义相对论方程应用于宇宙学时,使他陷入困境,因为物质的引力吸引,势必造成宇宙的塌缩,于是他在方程中添上一个带正号(因引力能为负)的宇宙常数(表示斥力),以使宇宙保持平衡而处于静态( 这是当时科学界的共识 ),但1927年哈勃发现了宇宙在膨胀,根本不需要这个人为的斥力了。故爱氏把宇宙常数称为“我一生中最大的错误。”半个多世纪以后,现代宇宙学家为宇宙常数平了反,它不但不多余,且地位重要,其值的大小甚至可决定我们宇宙是否存在;它的含义已不再像过去那样模糊,而是我们宇宙真空能量密度的一种量度。一些物理学家计算出的宇宙常数值是一个大的正值,这将引起很大的反引力,使宇宙膨胀达到碎裂的程度;一个大的负值,将使宇宙有一个奇怪的曲率,当你从窗口朝外看时,竟可看到房子的内部,显然跟实际不符。物理学家已认识到,期望值与观察值之间有个很大的距离,这说明有某种尚未知晓的原因,正在使该常数值下降;若有某种因素使此常数从一个可疑的高值,降到十分接近于零,那么此常数必为零。因在他们看来,零与一个小数相比,则零更具有本质的意义。但是维仑金的想法却不然,他认为一个小数更可取。如何解决这个问题,维氏借用了宇宙学中的“人择原理”。

  • 暗能量淡出 反引力亮相——科学家提出宇宙加速膨胀新解

    暗能量淡出 反引力亮相——科学家提出宇宙加速膨胀新解

    科技日报 2012年04月03日 星期二本报记者 常丽君 综合外电http://ng1.17img.cn/bbsfiles/images/2012/04/201204031347_358918_1644522_3.jpg 1998年,科学家发现宇宙的膨胀有一个加速度,因此提出了暗能量的假设,作为这种加速度的动力。但直到现在,人们也不清楚这种暗能量到底是什么。对一些科学家而言,与其说它是个答案,不如说它是个问题。有人说暗能量只是标准宇宙模型中的专用概念,缺少其他物理含义,他们一直在为宇宙的加速膨胀寻找新解释,而替代暗能量的另一种假说就是反万有引力,这种反引力来源于隐藏在虚空中的反物质。 宇宙巨洞的反物质 宇宙巨洞(Cosmic voids)是指宇宙大尺度结构上的物质稀薄区域,含有很少或完全不包含任何星系。意大利国家天体物理学院科学家马西莫·维莱特说:“人们能清楚地观察到宇宙巨洞,这是我们宇宙中最大的组成结构。但它们是否真是空的?还是包含了具有反引力性质的反物质?”他在近期出版的《天体物理和空间科学》上发表论文,提出在这些巨大的空洞中可能隐藏着反物质,反物质和物质由于万有引力互斥作用而分离开来。根据广义相对论预言,物质带有正引力荷,反物质带有一种假设的负引力荷,而万有引力的相互作用是同性相吸,异性相斥,因此物质和反物质之间存在万有引力互斥作用。 根据维莱特的计算,物质和反物质之间的引力互斥非常强,足以造成宇宙的加速膨胀,从而不再需要暗能量和暗物质。 这种假设在理论上能解释一些无法用暗能量来解释的观察现象:宇宙的膨胀速度并不均匀。最近,科学家观察到一种运动异常的“局部层”,是包括银河系及其他附近星系的宇宙部分,这一局部层的速度和宇宙其他部分明显不同。 天文学家已经找到了3种推动局部层运动的因素:一是附近稠密的室女星系团的吸引力;二被认为是人马座星系团的吸引力,但这一点还不太确定;第三正是造成这种“局部速度异常”的力,因为这种力并没有朝向任何明显的结构。它和前两种吸引力明显不同,很可能是反引力。为了证明这一点,维莱特指出,位于局部层和吸引区之间的Leo Spur星系,相对于这种运动好像是静止的。因此第三种力可能是来自相反方向,对局部层的作用是推斥而不是吸引。据他推测,在某个巨洞中存在一种合理的反物质,由于互斥的万有引力作用,造成了局部速度异常。 这样一来,反物质可能作为一种类似暗能量的东西,在宏观尺度上,大量的反物质巨洞会推动宇宙膨胀而不需要暗能量,甚至可能连大爆炸也不需要。这一新理论还暗示了,我们的宇宙具有等量的物质和反物质,正像标准宇宙模型所预期的那样。 量子真空的虚粒子 在过去几年中,欧洲核子研究中心(CERN)物理学家德拉根·哈杜科维克也在研究一种被忽略的宇宙部分:量子真空。他认为,量子真空中有一种万有引力荷,来源于虚粒子和虚反粒子之间的引力互斥。 此前,他已经论证了这种反引力能解释包括暗物质效应在内的一些观察现象,还暗示了我们生活在一个无需大爆炸的循环宇宙中。此外,这一假设还能帮人们进一步了解黑洞的性质,判断中微子物质。他发表在《天体物理和空间科学》上的最新论文还证明,量子真空还能解释宇宙的加速膨胀,也不需要暗能量。 “量子真空是60多年前提出的理论预测,现在已有明显的实验证据证明量子真空存在。而物质和反物质之间存在万有引力互斥作用,这一假设早在一个多世纪前就已提出。”哈杜科维克说,“我决定把量子真空这一事实和反粒子的负引力荷这一假设结合起来,结果令人吃惊,基于这种框架很可能解释宇宙的加速膨胀。” 哈杜科维克的解释和马西莫·维莱特的理论相似,量子真空中的万有引力来自正反物质之间的引力互斥。物质带有正引力荷,反物质带有负引力荷,同样是同性相吸,异性相斥。不同的是,维莱特认为,带负引力荷的反物质存在于巨洞中,而不是量子真空。尽管量子真空中不含有真实的物质和反物质,但虚粒子和虚反粒子会成对地刹那生灭,变成万有引力双极子。 “如果粒子和反粒子有着相反的万有引力荷,当万有引力场足够强时,就能将虚粒子对转化为真实的粒子对。”哈杜科维克说,“这并非新提出的假说,而是施温格量子场论的结论。” 哈杜科维克也计算了量子真空中的万有引力双极子的能量密度,是宇宙常数的某个数量级,或者说是造成宇宙加速膨胀的力的某个数量级。宇宙大约在达到目前大小的一半时,开始加速膨胀,只比标准宇宙模型预测的略早一点。但哈杜科维克的量子真空模型和标准宇宙模型之间也有明显不同:前者预测膨胀的加速度在减小,而后者预测加速度在增大,这种差异使得二者预测的宇宙命运截然不同。 实验检验有难度 “科学家认为,暗能量是均匀一致地遍布于宇宙中,这样才能解释宇宙的整体加速。但它既无法解释局部层强大的反引力效应,也不能解释局部巨洞的极度虚空和银河系以外的某些性质。”维莱特说,“而提出在局部巨洞中存在反物质的暗斥力,解释了所有这些情况。而且从整体上讲,隐藏在全部宇宙巨洞中的反物质,也解释了整个宇宙的加速膨胀以及其他宇宙特征,不需要暗能量,也不需要各种离奇的大爆炸之初。” 维莱特设想通过反引力透镜实验来进一步验证他的观点。“基本上,如果我们有一张高质量的远离巨洞的星系群三维图,就能更容易分析它们中的某些星系在视线轮廓上是否有被缩小的情况,这表示它们和间隔巨洞中的大型反物质体在一条直线上。”但这种实验会很困难,因为同时还有一种干扰效应,会让辐射状星系看起来严重扭曲:由于异常运动会影响红移检测,也会使星系群的视线轮廓收缩,而反引力透镜会让它更加缩小,要把这两种情况区别开是非常困难的。 哈杜科维克也表示,量子真空结合反物质的负万有引力荷假设,有望解释天体物理学和宇宙学中的观察现象,不需要引入暗物质和暗能量、膨胀的神秘机制,以及物质—反物质不对称。“欧洲粒子物理研究所的AEGIS实验将通过反氢原子揭示反物质是否带有负引力荷,加州大学河滨分校也在研究电子偶素(一个电子和一个正电子组成的类原子系统)的万有引力性质。如果这是真的,将开启新一轮的科学革命。”

  • 宇宙最初三分钟

    宇宙诞生之前,没有时间,没有空间,也没有物质和能量。大约150亿年前,在这四大皆空的 “无” 中,一个体积无限小的点爆炸了。时空从这一刻开始,物质和能量也由此产生,这就是宇宙创生的大爆炸。   刚刚诞生的宇宙是炽热、致密的,随着宇宙的迅速膨胀,其温度迅速下降。最初的1秒钟过 后,宇宙的 温度降到约100亿度,这时的宇宙是由质子、中子和电子形成的一锅基本粒子汤。随着这锅汤继 续变冷, 核反应开始发生,生成各种元素。这些物质的微粒相互吸引、融合,形成越来越大的团块,并逐 渐演化 成星系、恒星和行星,在个别天体上还出现了生命现象。然后,能够认识宇宙的人类终于诞生了。   这幅大爆炸图景,是目前关于宇宙起源最可能的一种解释,被称为“大爆炸模型”。大爆炸理论诞生 于20年代,在40年代由伽莫夫等人进行补充和发展,但一直寂寂无闻。直到50年代,人们才开始广泛注 意这个理论,不过也只是觉得它很好玩,并不信服。人们更愿意认为,宇宙是稳定的、永恒的。   但是,越来越多的证据表明,大爆炸模型在科学上有强大的说服力。我们不得不相信,宇宙有一个开始,也将有一个终结。它产生于“无”,也终将回归于“无”。 宇宙:可有始,可有终?   在人类历史的大部分时期,有关创世的问题,一向是留给神去解决的。宇宙起源于何处?终点 又在哪里?生命如何产生?人类怎样出现?对这些疑问,许多宗教都能给出一份体系完备的答案。至于 上帝从哪里来,这种问题是不该问的。   直到最近几个世纪,人们才开始学着把神撇开,以超越宗教的角度,去思考世界的本源。这样 一来, 就有一个重大的原则性问题需要解决:宇宙是永恒存在的,还是有起始的?   这两种说法长久以来一直困扰着科学家、哲学家和神学家,对于普通人来说,更是难以理解。 假设宇 宙在时间上没有起源,即过去一直存在,那么宇宙的年龄就是无穷大了。无穷大这个概念,一听 就让人 头昏脑胀:既然是已经过去了无穷久的时间,我们的“现在”又是什么呢?而如果说宇宙是有起 始的, 那么它就是从“无”中突然产生的了,这最初的一刹那,又是怎样呢?   凭着人类在短暂的生命中获得的常识,实在是很难想明白这些东西。不过,我们可以从科学上寻求一些佐证。大爆炸模型的一个基本假设是宇宙的年龄有限,这个说法令人信服的直接理由,来自物 理学中 一条最基本的定律——热力学第二定律。这条科学史上最令人伤心绝望的定律,冥冥中早已规定 了宇宙 的命运。   简而言之,第二定律认为热量从热的地方流向冷的地方。对任何物理系统,这都是众所周知并 且显而 易见的特性,毫无神秘之处:开水变凉,冰淇淋化成糖水。要想把这些过程倒过来,就非得额外 消耗能 量不可。就最广泛的意义而言,第二定律认为宇宙的“嫡”(无序程度)与日俱增。例如,机械 手表的 发条总是越来越松;你可以把它上紧,但这就要消耗一点能量;这些能量来自于你吃掉的一块面 包;麦子在生长的过程中需要吸收阳光的能量;太阳为了提供这些能量,需要消耗它的氢来进行核反 应。总之 宇宙中每个局部的嫡减少,都须以其它地方的嫡增加为代价。   在一个封闭的系统里,嫡总是增大的,一直大到不能再大的程度。这时,系统内部达到一种完 全均匀 的热动平衡状态,不会再发生任何变化,除非外界对系统提供新的能量。对宇宙来说,是不存在 “外 界”的,因此宇宙一旦到达热动平衡状态,就完全死亡,万劫不复。这种情景称为“热寂”。   宇宙正在缓慢地、但坚定不移地走向这无法抗拒的命运,几代智者为此怀疑人类的存在是否有 意义。 暂且撇开这种沮丧的情绪,作一个简单的推理,我们就可以发现,宇宙不可能有无限的过去。很 简单, 如果宇宙无限老,那它早就已经死了。以有限速率演变的东西,是不可能永远维持下去的。换句 话说, 宇宙必然是在某个有限的时间之前诞生的。 大爆炸:有推论有根据   第二定律明示了宇宙有起始,但这个重要推论竟然被19世纪的科学家忽略了,它只是在后来成 为大爆 炸模型的佐证。该模型的提出,是基于20世纪初的天文观测。   20年代,天文学家埃德温哈勃注意到,不同距离的星系发出的光,颜色上稍稍有些差别。远 星系的 光要比近星系红一些,即波长要长一些,这种现象被称为“哈勃红移”。它说明,各星系正以很 高的速 度彼此飞离。一列火车快速驶远时,它的汽笛声听来会沉闷很多,因为声波相对于我们的频率变低、波 长变长了,这就是多普勒效应。把声波换成光,产生的效果就是红移。哈勃对众多星系的光谱进 行研究 后确认,红移是一种普遍现象,这表明宇宙正在膨胀。这一发现,奠定了现代宇宙学的基础。 

反康反宇宙超低本底高纯锗仪相关的耗材

  • 日本新宇宙XA-4400,新宇宙XA4400,日本XA-4400多气体检测仪
    日本新宇宙XA-4400,新宇宙XA4400,日本XA-4400多气体检测仪,办事处,售后服务,试剂耗材,现货,规格型号XA-4400检测气体可燃性气体氧气硫化氢一氧化碳检测原理接触燃烧式隔膜电池式定电位电解式定电位电解式采样方式扩散式检测范围0~110%LEL0~50vol%0~150ppm0~2000ppm指示精度±2%LEL±0.5vol%±0.5ppm1ppm报警设定值第1段:10%LEL第2段:30%LEL第1段:19.5vol%第2段:18.0vol%第1段: 10ppm第2段: 15ppm第1段:50ppm第2段:100ppm应答时间10秒使用温度范围-20℃~50℃95%RH以下使用电源AA碱性干电池2节显示方式LCD显示报警方式蜂鸣器(90dB以上)、LCD显示闪烁、红色灯闪烁连续使用时间15小时以上防爆构造本质安全防爆构造ExiaⅡBT3防护结构IP67主要功能自动背光,自动调零(氧气为21%),峰值维持,报警测试,剩余电量显、湿度、时间显示,更改报警音量设定,更改报警设定值,数据日志记录(数据收集需要配置另售的数据日志收集套件),自行诊断功能(传感器异常、归零不到位、剩余电量),TWA/STEL功能尺寸W79×H89×D33 (mm)重量约230g标准套2只AA碱性电池,带夹,更换用的过滤电极板日本新宇宙XA-4400,新宇宙XA4400,日本XA-4400多气体检测仪,办事处,售后服务,试剂耗材,现货,规格
  • 高纯锗伽玛谱仪
    高纯锗伽玛谱仪采用同轴高纯锗探测器制造,配备铅屏蔽装置,非常适合实验室高精度测量伽玛辐射,高纯锗伽玛谱仪广泛用于岩石,矿物,污泥,矿渣,土壤,植物,沉淀物,空气和水中颗粒物的放射性核素的伽玛辐射测量。 高纯锗伽玛谱仪特色 采用精密γ-光谱测定法 核素识别和活度探测 超低阈值核素探测 单独或同时测量100种核素 高纯锗伽玛谱仪组成 探测部分:高纯锗探测器 铅密封系统 液氮监测器 多通道分析器 仿真分析软件 高纯锗伽玛谱仪参数 CS137辐射同位素测量极限:0.5Bq/kg 伽玛射线绝对灵敏度:4.5x10^-3 pulse/quantum 背景强度:5x10^-4pulse/KeV x sec @40Kev-3MeV 防护厚度:铅璧厚度100mm, 铜壁厚度10mm 探测单元尺寸重量:1300x580x480mm,465kg 能谱仪尺寸重量:300x180x80mm, 2.8kg 电源要求:220V AC, 50Hz http://www.f-lab.cn/radiation-detectors/gammadetector.html
  • 高纯锗伽玛谱仪配件
    高纯锗伽玛谱仪配件采用同轴高纯锗探测器制造,配备铅屏蔽装置,广泛用于岩石,矿物,污泥,矿渣,土壤,植物,沉淀物,空气和水中颗粒物的放射性核素的伽玛辐射测量。 高纯锗伽玛谱仪配件特点采用精密γ-光谱测定法 非常适合实验室高精度测量伽玛辐射 核素识别和活度探测 超低阈值核素探测 单独或同时测量100种核素 高纯锗伽玛谱仪配件 探测部分:高纯锗探测器 铅密封系统 液氮监测器 多通道分析器 仿真分析软件 高纯锗伽玛谱仪配件参数 CS137辐射同位素测量极限:0.5Bq/kg 伽玛射线绝对灵敏度:4.5x10^-3 pulse/quantum 背景强度:5x10^-4pulse/KeV x sec @40Kev-3MeV 防护厚度:铅璧厚度100mm, 铜壁厚度10mm 探测单元尺寸重量:1300x580x480mm,465kg 能谱仪尺寸重量:300x180x80mm, 2.8kg 电源要求:220V AC, 50Hz
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制