法布里珀罗太赫兹扫描干涉仪

仪器信息网法布里珀罗太赫兹扫描干涉仪专题为您提供2024年最新法布里珀罗太赫兹扫描干涉仪价格报价、厂家品牌的相关信息, 包括法布里珀罗太赫兹扫描干涉仪参数、型号等,不管是国产,还是进口品牌的法布里珀罗太赫兹扫描干涉仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合法布里珀罗太赫兹扫描干涉仪相关的耗材配件、试剂标物,还有法布里珀罗太赫兹扫描干涉仪相关的最新资讯、资料,以及法布里珀罗太赫兹扫描干涉仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

法布里珀罗太赫兹扫描干涉仪相关的厂商

  • 400-860-5168转3778
    上海屹持光电技术有限公司是一家专业从事太赫兹、超快激光、传统激光等领域相关产品的研发、引进、销售、方案设计、组装集成、技术服务的现代高科技企业。团队成员具有专业光电背景和长期从业经验,利用自身的专业优势将最先进的科研设备及服务提供给用户。从单个产品到整体解决方案,从商务服务到技术支持,均获得了广大用户的肯定和信赖。 公司理念:专业严谨、诚信共赢、屹于光电、持之以恒。主营产品:太赫兹:太赫兹时域光谱仪、强太赫兹产生器、光导天线、碲化锌晶体、DAST/OH1/DSTMS晶体、雪崩二极管、返波管、量子级联激光器、高莱探测器、太赫兹功率计、太赫兹相机、太赫兹探针、亚太赫兹相机、线性相机、太赫兹扫描法布里-珀罗干涉仪、太赫兹观察卡、太赫兹镜片、太赫兹系统方案等超快激光:飞秒光纤激光器、飞秒振荡器、飞秒放大器、超快同步系统、皮秒光纤激光器、半导体皮秒激光器、扫描自相关仪、单次自相关仪、三阶自相关仪、超短脉冲测量仪、可饱和吸收器件、超快激光芯片等传统激光:气体激光器、固体激光器、半导体激光器、光纤激光器、窄线宽激光器、激光驱动白光光源、功率计、光谱仪、单色仪、分光光度计、红外相机、单光子探测器、激光波长计、光束质量分析仪、波长计官方网站:www.eachwave.com
    留言咨询
  • 博微太赫兹信息科技有限公司是由中电博微电子科技有限公司控股的高科技企业,注册资本共8200万,团队成员具备太赫兹安检基础技术、系统技术和应用技术的研发设计能力,研发团队90%以上具备硕士及以上学历,平均年龄30岁。 公司依托中国电子科技集团公司军工背景,率先成为央企改革试点单位,布局公共安全大产业。在掌握核心技术基础上,与时俱进、自主研发,以“中国智造”太赫兹高科技产品,成为我国的安检安防行业的领跑者。 首创的“TeraSnap”太赫兹人体安检仪,采用了国际领先的被动式太赫兹人体成像技术,是目前国内唯一具有自主知识产权,并率先获得公安部认证的采用太赫兹技术的安检产品。公司致力于打造“更安全、更可靠、更文明、更高效”的人体安检产品,引领和带动未来安检的技术革新,提供更完美的人体安检解决方案。
    留言咨询
  • OBE太赫兹作为一家专注于智能安防和智慧安检的专业服务商,致力于为全球范围内的政府、机场、公安司法、海关口岸、会议会展中心等多领域的客户,提供门控、智能出入口及科技安检的整体解决方案。 ????通过与中科院、航天院所、高等院校等国内一流科研机构合作,OBE太赫兹研发并生产了适用于多领域应用的被动式太赫兹、主动式毫米波人体安检设备,并结合全球领先的潜在情绪智能分析系统,帮助客户解决出入口管理及安全保障的问题,用世界一流的科学技术,让世界更安全更美好!
    留言咨询

法布里珀罗太赫兹扫描干涉仪相关的仪器

  • 太赫兹法布里-珀罗干涉仪 太赫兹扫描法布里珀罗干涉仪(TSFPI),专门用于测量窄带太赫兹辐射的波长和强度。TSFPI 可用于脉冲以及连续的窄带THz辐射源。TSFPI由两个半透明的平行硅反射镜组成。测量太赫兹辐射参数的原理,如图1所示。 图1 TSFPI实验图TSFPI 可使用下列辐射源: 陀螺仪  光泵亚毫米波激光   反向波振荡器   自由电子激光器   差频太赫兹发生器   混频太赫兹发生器   量子级联激光器p-Ge激光器新型太赫兹源 TSFPI 还能够测量宽带太赫兹源的波长和强度图2 镜子间隔500μm时TSFPI透射谱曲线 图3 光声检测器Tydex GP-1P测出的信号幅值与TSFPI镜间距的关系曲线。 太赫兹辐射是由光泵亚毫米波激光的产生,λ=432μm TSFPI 重要参数表规格参数值工作频率范围,THz0.1-15自由光谱范围,THz0.01-1.8镜间距,mm0-9.5/1.8光谱调整精度,μm± 1.25光孔高度,mm110自由孔径,mm52尺寸(LxHxW), mm232×151×120重量,Kg5.0 主要特性:TSFPI的宽工作频率范围:0.1-15THz高击穿阈值 大口径: 52毫米镜面定位精度高:1.25μm易于使用 TSFPI包括以下设备: 1. TSFPI干涉仪装置; 2. 充电器和控制单元; 3. 镜像翻转控制软件; 4. 电缆; 5. 用户指南。 可以为TSFPI提供以下额外附件:光声探测器GC-1P/T/D用于0.1-15THz内某个特定波长范围的BPF(带通滤波器)
    留言咨询
  • THz太赫兹扫描干涉仪 400-860-5168转2831
    THz太赫兹扫描干涉仪产品负责人:姓名:王工(Karl)电话:(微信同号)邮箱:THz太赫兹扫描干涉仪,精度高,成本低,适合初步搭建实验系统。THz太赫兹扫描法布里-珀罗干涉仪(TSFPI)主要用于测量窄带太赫兹辐射的波长和强度分布,同时也可用于脉冲和连续窄带太赫兹辐射源。TSFPI由两个半透明平行硅镜组成,其中一个安装在电机驱动的线性致动器上。通过反射镜的平移(扫描)来测量太赫兹辐射参数,如图1所示。THz太赫兹扫描干涉仪TSFPI可与如下太赫兹源结合使用:■ 回旋管;■ 光泵亚毫米波激光器;■ 回波振荡器;■ 自由电子激光器;■ 差频太赫兹发生器;■ 混频太赫兹发生器;■ 量子级联激光器;■ p-Ge激光器;■ 其他新颖的太赫兹源。THz太赫兹扫描法布里-珀罗干涉仪还能够测量宽带太赫兹源的波长和强度分布,以及根据法布里-珀罗干涉仪的透射光谱对太赫兹辐射进行滤波(图2)。THz太赫兹扫描干涉仪支持多种镜像平移模式,例如将镜像移动到给定位置、将镜像移动给定距离、连续平移和循环平移。反射镜平移速度、换档间隔、起始和结束位置也可以调整。图3 显示了由THz太赫兹扫描干涉仪TSFPI进行光泵亚毫米波激光器的激光波长测量结果。从图中可以看出,相邻TSFPI传输Tmax之间的距离约为216μm(433μm–216μm=217μm;647μm–433μm=214μm;865μm–647μm=218μm),相当于激光波长的一半。该结果与理论THz太赫兹扫描干涉仪TSFPI透射率Tmax一致:λ=2*d/m,其中d是TSFPI反射镜之间的间距,单位为μm,m是干涉阶数,λ是测量波长,单位为μm。THz太赫兹扫描干涉仪指标参数:THz太赫兹扫描干涉仪TSFPI包括如下组件: TSFPI interferometer unit Power supply and control unit Mirror translation control software Cables User guide.其他详细情况可咨询上海昊量光电设备有限公司。
    留言咨询
  • THz扫描法布里-珀罗干涉仪品牌:Tydex型号:TSFPITHz扫描法布里-珀罗干涉仪(Terahertz scanning Farby-Perot interferometer (TSFPI) )是专门设计用来测试THz波长以及窄带THz辐射强度的仪器。TSFPI有两块半透明平行的Si反射镜组成,其中一个Si镜装在线性电机上,可以通过控制Si镜之间的距离测量相应的THz数据。TSFPI 可以用于以下光源:回旋振荡管 光泵浦亚毫米波激光器 返波管 BWO 自由电子激光器 差频THz产生器 光混频THz产生器 量子级联激光器 p-Ge 激光器 规格参数:SpecificationValueOperational frequency range, THz0,1-15Free spectral range, THz 0,01-1,8Spacing between mirrors, mm0-9,5 Spacing setting accuracy, μm± 1.25 Optical axis height, mm110Free aperture, mm52Dimensions (LxHxW), mm232х151х120Mass, kg5,0
    留言咨询

法布里珀罗太赫兹扫描干涉仪相关的资讯

  • 中科院研发太赫兹扫描隧道显微镜
    ▲图 | 太赫兹扫描隧道显微镜系统(来源:资料图)太赫兹,是介于远红外和微波之间的电磁波,具有光子能量低、穿透性好等特点,在高速无线通信、光谱学、无损伤成像检测和学科交叉等领域具备广泛应用前景,被誉为“改变未来世界的十大技术”之一。简单来看,太赫兹扫描隧道显微镜系统就是一个超快摄影机,只不过它要观察和拍摄的对象是分子和原子世界,并且拍摄的帧率在亚皮秒量级。对于非线性太赫兹科学来说,控制太赫兹脉冲的“载波包络相位”,即激光脉冲的载波与包络之间的关系至关重要,特别是用于超快太赫兹扫描隧道显微镜时。太赫兹载波包络相位移相器的设计和实现,在利用太赫兹脉冲控制分子定向、高次谐波生成、阈上电离、太赫兹波前整形等领域,均具备潜在应用价值。(来源:Advanced Optical Materials)1. 为调控太赫兹的载波包络相位提供新方案据介绍,王天武在中科院空天信息研究院(广州园区)-广东大湾区空天信息研究院担任主任和研究员等职务,研究方向为太赫兹技术。目前,其主要负责大湾区研究院的太赫兹科研队伍建设。该研究要解决的问题在于,常规探测手段只能得到静态的原子形貌图像,无法观察物质受到激发,例如经过激光辐照后的动态弛豫过程图像,即无法观察到激子的形成、俄歇复合、载流子谷间散射等过程,而这些机理的研究,对于凝聚态物理学包括产业化应用都非常重要。原因在于,这些动力学过程发生的时间尺度,往往都在皮秒量级,即万亿分之一秒的时间,任何普通调控手段均无法达到这一时间量级。利用飞秒脉冲激光技术,能显著提高扫描隧道显微镜(Scanning Tunneling Microscope,STM)这一扫描探针显微术工具的时间分辨率。但是,目前仍受到多种因素的限制,比如样品和针尖制备困难、针尖的电容耦合效应、脉冲光引起的热膨胀效应等。太赫兹的脉冲宽度位于亚皮秒尺度,其电场分量可被看作一个在很宽范围内、连续可调的交流电流源。因此,将太赫兹电场脉冲与 STM 结合,利用其瞬态电场,即可作用于扫描针尖和样品之间的空隙,从而产生隧穿电流进行扫描成像,能同时实现原子级空间分辨率和亚皮秒时间分辨率。如前所述,太赫兹扫描隧道显微镜系统好比一个超快摄影机。但是,太赫兹电场脉冲和 STM 的实际结合过程,却并非那么简单,中间要攻克诸多难题。其中一个最基础的重要难题,在于太赫兹源的相位调控技术。太赫兹扫描隧道显微镜系统是利用太赫兹激发针尖尖端和样品之间的空隙,来产生隧穿电流并进行采样。不同相位太赫兹源的电场方向不一样,这样一来所激发的隧穿电流的方向亦不相同。根据不同样品施加不同相位的太赫兹源,可以更好地匹配样品,进而发挥系统性能优势,借此得到高质量光谱。因此,通过简单高效的途径,就能控制太赫兹脉冲的载波包络相位,借此实现对于隧道结中近场太赫兹时间波形的主动控制,同时这也是发展超快原子级分辨技术的必备阶段。通常,超短脉冲的载波包络相位,必须通过反馈技术来稳定。除少数例子外,比如用双色场激光等离子体产生的太赫兹辐射源,大多数商业化设备产生的太赫兹脉冲的载波包络相位都是锁定的,例如人们常用的光整流技术生成的太赫兹脉冲。多个太赫兹偏振元件组成的复杂装置,可用于控制太赫兹脉冲的载波包络相位。然而,鉴于菲涅耳反射带来的损耗,致使其插入损耗很大,故无法被广泛应用。另外,在太赫兹波段,大部分天然材料的色散响应较弱、双折射系数较小,很难被设计成相应的载波包络相位控制器件,因此无法用于具有宽频率成分的太赫兹脉冲。与天然材料相比,超材料是一种由亚波长结构衍生而来的、具有特殊光学特性的人工材料,其对电磁波的色散响应和双折射系数,均可进行人为定制。虽然超材料技术发展迅猛。但是,由于近单周期太赫兹脉冲的宽带特性,利用超材料对太赫兹脉冲的载波包络相位进行控制,仍是一件难事。为解决这一难题,王天武用超材料制备出一款芯片——即柔性太赫兹载波包络移相器,专门用于控制太赫兹脉冲的载波包络相位。该芯片由不同结构的超材料阵列组成,可在亚波长厚度和不改变太赫兹电场极化的情况下,实现对太赫兹载波包络相位的消色差可控相移,其对太赫兹脉冲的载波包络相位的相移调制深度高达 2π。相比传统的太赫兹载波包络相位移相器,该移相器具有超薄、柔性、低插损、易于安装和操作等优点,有望成为太赫兹扫描隧道显微镜系统的核心部件。近日,相关论文以《基于超材料的柔性太赫兹载波环移相器》(Flexible THz Carrier-Envelope Phase Shifter Based on Metamaterials)为题发表在 Advanced Optical Materials 上,李彤和全保刚分别担任第一和第二作者,王天武和空天信息创新研究院方广有研究员担任共同通讯作者。▲图 | 相关论文(来源:Advanced Optical Materials)审稿人认为:“此研究非常有趣、简明扼要,研究团队完成了一套完备的工作体系。该芯片的设计和实现,为调控太赫兹的载波包络相位提供了新的解决方案。”2. 建立国际领先的太赫兹科学实验平台据介绍,王天武所在的研究院,围绕制约人类利用太赫兹频谱资源的主要科学问题和技术瓶颈,致力于形成一批引领国际的原创性理论方法和太赫兹核心器件技术,以建立国际领先的太赫兹科学实验平台。他说:“太赫兹扫描隧道显微镜是我们院的一大特色,该设备摒弃了此前施加电压的方式,以太赫兹为激发源,去激发探针尖端和样品之间的间隙,从而产生隧穿电流并进行成像。相关技术在国内属于首创,在国际上也处于领先水平。”在诸多要克服的困难中,太赫兹载波包络相位的调制便是其中之一。入射太赫兹的相位大小对激发的隧穿电流的幅值、相位等信息影响甚大,是提高设备时间和空间分辨率必须要解决的重要问题之一。由于设备腔体比较长,并且腔体内部为高真空环境,与外界空气是隔绝的。传统的太赫兹相位改变方式比较难以实现,因此需要研发新型的相位调制器件。而该课题立项的初衷,正是希望找到一种结构简单、但是对太赫兹载波包络相位调制效率高的方法和装置,以便更好地服务于太赫兹扫描隧道显微镜系统。在文献调研的初始阶段,该团队商定使用超材料来制作太赫兹相位调制器。具体来说,其利用特定的金属分裂环谐振器的几何相位、以及共振相位,来控制太赫兹脉冲的载波包络相位值。之所以选择金属分裂环谐振器作为基本相控单元,是因为在一定条件下,它对太赫兹具有宽谱响应。当任意方向的线偏振波与谐振器耦合时,入射电场分量可映射到平行于谐振器对称轴和垂直于谐振器对称轴,借此可以激发谐振器的对称本征模和反对称本征模。此时,通过改变金属分裂环谐振器的几何相位和共振相位,散射场的某一偏振分量的电场相位会相应延迟,大小可以轻松覆盖 0-2π。但是,由于存在电偶极子的双向辐射,导致金属分裂环谐振器存在明显的反射和偏振损耗。为此,课题组引入了一对正交的定向光栅,利用多光束干涉的方式解决了谐振器插入损耗大的问题。随之而来的另一难题是,由于正交光栅的存在,导致入射波和透射波之间的电场偏振始终是垂直的,在太赫兹扫描隧道显微镜系统的工作中,这是不被允许的。好在样品均是由互易材料制成的,于是这一问题很快迎刃而解。随后,该团队采用常规紫外光刻、电子束沉积以及聚酰亚胺薄膜上的剥离技术,制备出相关样品,并利用太赫兹时域光谱系统,对所制备的样品性能进行表征。当入射的太赫兹脉冲,依次被样品中不同的微结构阵列调制时,研究人员通过太赫兹时域光谱测量,清晰观察到了太赫兹脉冲的时间波形的变化,且与仿真结果十分吻合。此外,课题组还在广角入射和大样品形变时,验证了该样品的鲁棒性。总而言之,该成果为宽带太赫兹载波包络相位的控制,提供了一种新型解决方案,并在不改变太赫兹电场极化的情况下,利用“超材料”在亚波长厚度的尺度上,实现了针对宽带太赫兹载波包络相位的消色差可控相移。关于这一部分成果的相关论文,也已发表在《先进光学材料》期刊。(来源:Advanced Optical Materials)据介绍,此次芯片能把太赫兹的相位最高移动至 2π 大小,并且具有大的光入射角度和良好的柔韧性等优点,在太赫兹扫描隧道显微镜系统,以及其他相关领域有较高的应用价值。但是,该芯片目前仍存在一个缺点,即无法做到太赫兹载波包络相位的连续调制。这是由于,采用的金属分裂环谐振器是单次加工制成的,所能调制的几何相位和共振相位已经确定,无法再被人为改变。因此,使用过程中只能通过加工特定结构的芯片,来实现所需相位的调制。未来,该团队打算将当下比较热门的二维材料、相变材料、液晶材料等材料集成到芯片中,这些材料的优势在于光学性能可被人为改变。同时,其还将综合电、光、热等手段,实现金属分裂环谐振器几何和共振相位的主动控制,从而实现对太赫兹脉冲的连续载波包络相位调制。此外,课题组也会继续优化微加工工艺和原料制备流程,进一步提升芯片的综合性能指标,比如器件的低插入损耗、高工作带宽等,同时也将降低制造成本,以便后续的产业化推广。
  • 皮米精度激光干涉仪如何在众多前沿领域中大显神通?
    1.IDS3010激光干涉仪在自动驾驶高分辨调频连续波(FMCW)雷达中的应用自动驾驶是目前汽车工业为前沿和火热的研究,其中可靠和高分辨率的距离测量雷达的开发是尤为重要的。德国弗劳恩霍夫高频物理和雷达技术研究所(Wachtberg,D)Nils Pohl教授和波鸿鲁尔大学(Bochum,D)的研究小组提出了一种全集成硅锗基调频连续波雷达传感器(FMCW),工作频率为224 GHz,调谐频率为52 GHz。通过使用德国attocube公司的皮米精度激光干涉仪FPS1010(新版本为IDS3010),该雷达测量系统在-3.9 um至+2.8 um之间实现了-0.5-0.4 um的超高精度。这种新型的高精度雷达传感器将会应用于许多全新的汽车自动驾驶领域。更多信息请了解:S. Thomas, et al IEEE Transactions on Microwave Theory and Techniques 67, 11, (2019)图1.1 紧凑型FMCW传感器的照片图1.2 雷达测距示意图,左边为雷达,右边为移目标,attocube激光干涉仪用来标定测量结果 2. IDS3010激光干涉仪在半导体晶圆加工无轴承转台形变测量上的应用半导体光刻系统中的晶圆轻量化移动结构的变形阻碍了高通吐量的半导体制造过程。为了补偿这些变形,需要的测量由光压产生的形变。来自理工大学荷兰Eindhoven University of Technology 的科学家设计了一种基于德国attocube干涉仪IDS3010的测量结构,以此来详细地研究由光压导致的形变特性。图2.1所示为测量装置示意图,测量装置是由5 x 5 共计25个M12/F40激光探头组成的网格,用于监测纳米的无轴承平面电机内部的移动器变形。实验目的是通过对无轴承平面的力分布进行适当的补偿,从而有效控制转台的变形。实验测得大形变量为544 nm,小形变量为110 nm(如图2.2所示)。更多信息请了解:Measuring the Deformation of a Magnetically Levitated Plate displacement sensor图2.1 左侧为5X5排列探头测量装置示意图,右图为实物图图2.2 无轴承磁悬浮机台形变量的测量结果,大形变量为544 nm 3.IDS3010在提高X射线成像分辨率中的应用在硬X射线成像中,每个探针平均扫描时间的减少对于由束流造成的损伤是至关重要的。同时,系统的振动或漂移会严重影响系统的实时分辨率。而在结晶学等光学实验中,扫描时间主要取决于装置的稳定性。attocube公司的皮米精度干涉仪FPS3010(升后的型号为IDS3010),被用于测量及优化由多层波带片(MZP)和基于MZP的压电样品扫描仪组成的实验装置的稳定性。实验是在德国DESY Photon Science中心佩特拉III期同步加速器的P10光束线站上进行的。attocube公司的激光干涉仪PFS3010用来检测样品校准电机引起的振动和冲击产生的串扰。基于这些测量,装置的成像分辨率被提高到了±10 nm。更多信息请了解:Markus Osterhoff, et at. Proceedings Volume 10389, X-Ray Nanoimaging: Instruments and Methods III 103890T (2017)图3.1 实验得到的系统分辨率结果 4.IDS3010激光干涉仪在微小振动分析中的应用电荷化理论能够描述中性玻色子系统的布洛赫能带,它预言二维量子化的四缘体具有带隙、拓扑的一维边缘模式。全球研究机构苏黎世邦理工大学的Sebastian Huber教授课题组巧妙地利用一种机械超材料结构来模拟二维的拓扑缘体,次在实验上观测到了声子四拓扑缘体。这一具有重要意义的结果时间被刊登在Nature上(doi:10.1038/nature25156)。研究人员通过测试一种机械超材料的体、边缘和拐角的物理属性,发现了理论预言的带隙边缘和隙内拐角态。这为实验实现高维度的拓扑超材料奠定了重要基石。德国attocube公司的激光干涉仪IDS3010被用于超声-空气转换器激励后的机械超材料振动分析。IDS3010能到探测到机械超材料不同位置的微小振动,以识别共振频率。终实现了11.2 pm的系统误差,为声子四拓扑缘体的实验分析提供了有力的支持。更多信息请了解:Marc Serra-Garcia, et al. Nature volume 555, pages 342–345 (2018)图4.1 实验中对对机械超材料微小振动的频率分析5. IDS3010激光干涉仪在快速机床校准中的应用德国亚琛工业大学(Rwth Aachen University,被誉为“欧洲的麻省理工”)机床与生产工程实验室(WZL)生产计量与质量管理主任的研究人员利用IDS3010让机床自动校准成为可能,这又将大的提高机床的加工精度和加工效率。研究人员通过将IDS3010皮米精度激光干涉仪和其他传感器集成到机床中,实现对机床的自动在线测量。这使得耗时且需要中断生产过程的安装和卸载校准设备变得多余。研究人员建立了一个单轴装置的原型,利用IDS3010进行位置跟踪。其他传感器如CMOS相机被用来检测俯仰和偏摆。校准结果与常规校准系统的结果进行了比较,六个运动误差(位置、俯仰、偏摆、Y-直线度、Z-直线度)对这两个系统显示出良好的一致性。值得指出的是,使用IDS3010的总时间和成本显著降低。该装置演示了自动校准机床的个原型,而且自动程序减少了机器停机时间,从而在保持相同的精度水平下大的提高了生产率。更多信息请了解:Benjamin Montavon et al J. Manuf. Mater. Process. 2(1), 14 (2018)图5.1 自动校准激光探头安装示意图6.IDS3010激光干涉仪在工业C-T断层扫描设备中的应用工业C-T断层扫描被广泛用于材料测试和工件尺寸表征。几何测量系统是设计的锥束C-T系统的一大挑战。近期,瑞士联邦计量院(METAS)的科学家采用德国attocube公司的IDS3010皮米精度激光干涉仪用于X射线源、样品和探测器之间的精密位移跟踪。该实验共有八个轴用于位移跟踪。除了测量位移之外,该实验装置还能够进行样品台的角度误差分析。终实现非线性度小于0.1 um,锥束稳定性在一小时内优于10 ppb的高精度工业C-T。更多信息请了解:Benjamin A. Bircher, Felix Meli, Alain Küng, Rudolf Thalmann: "A geometry measurement system for a dimensional cone beam CT", 8th Conference on Industrial Computed Tomography (iCT 2018), At Wels, AU6.1激光干涉仪在系统中的测量定位示意图7.IDS3010激光干涉仪在增材制造3D打印中的应用微尺度选择性激光烧结(u-SLS)是制造集成电路封装构件(如微控制器)的一种创新方法。在大多数的增材制造中需要微米量的精度控制,然而集成电路封装的生产尺寸只有几微米,并且需要比传统的增材制造方法有更小的公差。德克萨斯大学和NXP半导体公司开发了一种基于u-SLS技术的新型3D打印机,用于制造集成电路封装。该系统包括用于在烧结站和槽模涂布台之间传送工件的空气轴承线性导轨。为满足导轨对定位精度高的要求,该系统采用德国attocube公司的皮米精度干涉仪IDS3010来进行位置的跟踪。更多信息请了解:Nilabh K. Roy, Chee S. Foong, Michael A. Cullinan: "Design of a Micro-scale Selective Laser Sintering System", 27th Annual International Solid Freeform Fabrication Symposium, At Austin, Texas, USA 7.1系统示意图,其中激光干涉仪被用作位移的测量和反馈8. IDS3010激光干涉仪在扫描荧光X射线显微镜中的应用在搭建具有纳米分辨率的X射线显微镜时,对系统稳定性提出了更高的要求。在整个实验过程中,必须确保各个组件以及组件之间的热稳定性和机械稳定性。德国attocube的IDS3010激光干涉仪具有优异的稳定性和测量亚纳米位移的能力,在40小时内表现出优于1.25 nm的稳定性,并且在100赫兹带宽的受控环境中具有优于300 pm的分辨率。因此,IDS3010是对上述X射线显微镜装置的所有部件进行机械控制的不二选择,使得整个X射线显微镜实现了40 nm的分辨率,而在数据收集所需的整个时间内系统稳定性优于45 nm。更多信息请了解:Characterizing a scanning fluorescence X ray microscope made with the displacement sensor 8.1荧光X射线显微镜的高分辨成像结果
  • 重庆研究院生物大分子太赫兹近场成像光谱仪研究获进展
    p  近日,中国科学院重庆绿色智能技术研究院太赫兹技术研究中心在生物大分子太赫兹近场成像光谱仪研究中获得进展,相关结果以《基于扫描探针显微镜的近场超空间分辨指纹光谱技术研究现状》为题在《红外与毫米波》期刊上进行发表。/pp  在中国科学院科研装备项目的支持下,该团队开展了生物大分子太赫兹成像光谱仪的研制工作,欲利用金属化纳米探针在纳米级针尖附近形成的局域增强太赫兹波来照射生物大分子,从而能突破光学衍射极限实现对纳米级大小的生物大分子进行成像。/pp  目前,该研究利用可见的氦氖激光对不可视太赫兹波主体光路(图1)的准直、聚焦状态进行精准的辅助调节,已完成了对近场太赫兹波信号相干放大的迈克尔逊干涉仪的调试,实现了利用外部信号发生器来驱动金属化原子力探针在垂直方向做周期的机械运动,获得了金属化原子力探针与铝基底的太赫兹光谱(图2)。/pp style="TEXT-ALIGN: center"img style="FLOAT: none" title="111.jpg" src="http://img1.17img.cn/17img/images/201509/insimg/88d7a724-d2b9-455e-9c3f-828584592b50.jpg"//pp style="TEXT-ALIGN: center" /pp style="TEXT-ALIGN: center"  图1 基于连续波太赫兹源的太赫兹近场成像系统原理图/pp style="TEXT-ALIGN: center"img style="WIDTH: 549px FLOAT: none HEIGHT: 416px" title="222.jpg" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201509/insimg/942e5038-8282-4a4d-865f-c824014c3659.jpg" width="549" height="416"//pp style="TEXT-ALIGN: center"  图2 金属探针与铝基底的太赫兹光谱/pp/p

法布里珀罗太赫兹扫描干涉仪相关的方案

法布里珀罗太赫兹扫描干涉仪相关的资料

法布里珀罗太赫兹扫描干涉仪相关的论坛

  • 白光干涉仪是什么?有哪些作用?

    白光干涉仪目前在3D检测领域是精度最高的测量仪器之一,在同等系统放大倍率下检测精度和重复精度都高于共聚焦显微镜和聚焦成像显微镜,在一些纳米级和亚纳米级的超精密加工领域,除了[url=http://www.chotest.com/detail.aspx?cid=686][b][color=#333333]白光干涉仪[/color][/b][/url],其它的仪器无法达到其测量精度要求。[align=center][img]http://www.chotest.com/Upload/2018/3/201803076710554.jpg[/img][/align][align=center]中图仪器SuperView W1白光干涉仪[/align]白光干涉仪测量原理:  白光干涉仪是利用光学干涉原理研制开发的超精密表面轮廓测量仪器。照明光束经半反半透分光镜分威两束光,分别投射到样品表面和参考镜表面。从两个表面反射的两束光再次通过分光镜后合成一束光,并由成像系统在CCD相机感光面形成两个叠加的像。由于两束光相互干涉,在CCD相机感光面会观察到明暗相间的干涉条纹。干涉条纹的亮度取决于两束光的光程差,根据白光干涉条纹明暗度以及干涉条纹出现的位置解析出被测样品的相对高度。[align=center][img]http://www.chotest.com/Upload/2019/5/201905302500097.jpg[/img][/align]白光干涉仪的测量应用:  以测量单刻线台阶为倒,在检查仪器的各线路接头都准确插到对应插孔后,开启仪器电源开关,启动计算机,将单刻线台阶工件放置在载物台中间位置,先手动调整载物台大概位置,对准白光干涉仪目镜的下方。  在计算机上打开白光干涉仪测量软件,在软件界面上设置好目镜下行的最低点,再微调镜头与被测单刻线台阶表面的距离,调整到计算机屏幕上可以看到两到三条干涉条纹为佳,此时设置好要扫描的距离。按开始按钮,白光干涉仪可自动进行扫描测量,测量完成后,转件自动生成3D图像,测量人员可以对3D图像进行数据分析,获得被测器件表面线、面粗糙度和轮廓的2D、3D参数。[align=center][img]http://www.chotest.com/Upload/2019/5/201905303281565.png[/img][/align]  白光干涉仪具有测量精度高、操作便捷、功能全面、测量参数涵盖面广的优点,测量单个精密器件的过程用时2分钟以内,确保了高款率检测。白光干涉仪独有的特殊光源模式,可以广泛适用于从光滑到粗糙等各种精密器件表面的测量。

  • 【求助】Avatar 370 FT-IR型红外光谱仪干涉仪不扫描,高手们帮帮忙

    我用的是Thermo Nicolet公司生产的Avatar 370 FT-IR型红外光谱仪,发现干涉仪不扫描。温度有空调保证。白纸测试,发现红点。增益值[工程师电话指导下查到的]是293,超过256。之前,我烘硅胶,150度,未冷却,直接放回,会是这个因素造成的吗?请高手帮忙分析分析! 顺便问一下,增益可降低吗?谢谢!

  • Zygo 发布全新 Qualifire 激光干涉仪

    [color=#000000]阿美特克(纽约证券交易所代码:AME)旗下Zygo公司宣布发布其最新的激光干涉仪Qualifire?。Qualifier加入了一系列高端干涉仪解决方案,该仪器旨在支持半导体、光刻、星载成像系统、尖端消费电子产品、国防等行业中最苛刻的计量应用。Qualifire将于1月30日在加州旧金山的SPIE Photonics West首次亮相。这款干涉仪在不牺牲性能的情况下,将显著的增强功能集成到一个更轻的小型封装中。[/color][color=#000000]Zygo 激光干涉仪产品经理 Erin McDonnell 表示:“我们很高兴将 Qualifire 推向市场,其改进的人体工程学设计使其易于使用,并且比 Zygo 的许多其他激光干涉仪更便携。使用激光干涉仪进行的测量往往对噪声、污染物和其他伪影敏感,因为该仪器能够提供纳米级精度;Qualifire上的可选模块飞点可主动减少甚至消除这些伪影,从而提高测量的可靠性和可重复性。飞点结合了Zygo最好的两种伪影减少技术:环纹和相干伪影减少。飞点在需要高精度的应用中尤其有价值,包括科学研究和先进的制造工艺。[/color][color=#000000]Qualifire为Zygo的激光干涉仪产品线带来这些功能和改进:[/color][color=#000000]Qualire激光干涉仪提供了许多新颖的新功能。[/color][b][color=#000000]智能附件接口[/color][/b][color=#000000]——干涉仪可以识别任何安装的“智能附件”,并自动应用系统错误文件并执行横向校准。[/color][b][color=#000000]体积小、重量轻[/color][/b][color=#000000]——最小的 Qualifire 型号重约 45 磅(20.4 千克)。 它是真正的便携式,特别是对于干涉仪必须经常移动或调整的复杂和精密应用。[/color][b][color=#000000]移相器[/color][color=#000000](PMR)[/color][/b][color=#000000]——PMR 是调制测试部件和参考光学器件之间干涉条纹所必需的,最终可创建定量表面图。其整体设计提供:[/color][color=#000000]整体机械稳定性和对准[/color][color=#000000]降低损坏或错位的风险[/color][color=#000000]确保性能一致,减少重新校准的需要[/color][b][color=#000000]改进的用户体验[/color][/b][color=#000000]——方便使用的电源按钮和运动安装支脚使设置更易于使用。大型控制旋钮可实现更精确的调整,这对校准和校准都至关重要。 集成手柄确保安全可靠的操作。[/color][b][color=#000000]更易于维护[/color][/b][color=#000000]—— 密封的光学系统和整合的电子元件使更换各种组件变得简单,而不会使光学元件暴露在污染物中。[/color][b][color=#000000]飞点[/color][/b][color=#000000]——用于减少伪影的可选模块,包括自动对焦功能。[/color][b][color=#000000]稳定变焦[/color][/b][color=#000000]——提供新变焦方法的选项,可在所有放大倍率下实现完美的图像配准和衍射限制图像采样。[/color][color=#000000]计量集团副总裁Kurt Redlitz 表示:“Qualifire 保持了 Zygo 在计量方面的高标准,同时提供了最高水平的精度并优化了用户体验。通过改进的人体工程学设计,它可以在不牺牲性能的情况下提高操作效率和部署灵活性。Qualifire 是一款更强大、更可靠、用户友好的仪器,可随时应付最苛刻的应用和环境——精度不容置疑。[/color][来源:仪器信息网译] 未经授权不得转载

法布里珀罗太赫兹扫描干涉仪相关的耗材

  • TYDEX太赫兹扫描法布里 - 珀罗干涉仪
    太赫兹扫描法布里 - 珀罗干涉仪太赫兹扫描法布里 - 珀罗干涉仪(TSFPI)设计用于测量窄带THz辐射的波长和强度。 TSFPI可以与脉冲以及连续的窄带THz辐射源一起使用。TSFPI由两个半透明的平行硅镜组成,其中一个安装在电机驱动的线性驱动器上。THz辐射参数的测量是通过移动反射镜的平移(扫描)来完成的,如图2所示。1。图1. TSFPI的原理图。TSFPI可与以下来源一起使用:?回旋管 ?光泵浦亚毫米波激光器 ?返波振荡器 ?自由电子激光器 ?差频THz发生器 ?混频太赫兹发生器 量子级联激光器 ?p-Ge激光器 ?新型太赫兹源。太赫兹扫描法布里-珀罗干涉仪还能够测量宽带太赫兹源的波长和强度,以及根据法布里-珀罗干涉仪透射光谱(图2)过滤太赫兹辐射。TSFPI支持许多镜像转换模式,例如将镜像移动到给定位置,将镜像转换为给定的距离、连续的和循环的转换。镜像转换速度,转换的间隔,开始和结束位置也可以调整。图2.TFP光谱仪测量的镜面间距为500μm的TSFPI透射光谱Menlo Systems TERA K8。图3示出了由TSFPI执行的光泵浦超声波波长激光器的振荡波长的测量结果。 从图中可以看出,相邻TSFPI透射zui大值之间的距离约为216μm(433μm-216μm=217μm 647μm-433μm=214μm 865μm-647μm=218μm),其对应于 一半的激光波长。 此结果与理论TSFPI透射zui大值一致:λ= 2 * d / m,其中d是TSFPI反射镜之间的间距,单位为μm,m是干涉级数,λ是以μm为单位测量的波长。图3.光声探测器Tydex GP-1P与TSFPI反射镜间距的信号幅度。 太赫兹辐射是由光泵浦的亚毫米波激光器产生的,λlas=432μm。规格规格Value工作频率范围THz0,1-15自由光谱范围,太赫兹0,01-1,8毫米镜之间的间距0-9,5间距设置精度,μm± 1.25光轴高度,毫米110自由孔径,毫米52尺寸(长x宽x高),毫米232х151х120质量,公斤5,0主要特征:?TSFPI广泛操作范围,0.1 - 15 THz ?高击穿阈值 ?大光圈,52毫米 ?镜面定位精度高,±1.25μm?易于使用。TSFPI包包括以下内容:?TSFPI干涉仪装置 ?电源和控制装置 ?镜像转换控制软件 ?电缆 ?用户指南。TSFPI以下配件可以单独提供:?光声Golay探测器GC-1P / T / D ?0.1-15 THz范围内指定波长的BPF(带通滤波器) ?低通滤光片(LPF)过滤IR辐射,其截止频率分别为:23.4 THz,23.3 THz,23.1 THz,14.3 THz,10.9 THz,8.8 THz,5.5 THz,4.3 THz,4 THz,3.2 THz ?一组透射率为1%,3%,10%和30%的衰减器 ?TPX和HRFZ-Si镜片。
  • TYDEX 太赫兹法布里 - 珀罗标准具
    太赫兹法布里 - 珀罗标准具太赫兹法布里 - 珀罗标准具是一种具有固定距离的法布里-珀罗干涉仪,其反射面是由高电阻率浮子带硅平面板组成。与普通的平面窗口相比,标准具有更好的平整度和并行性。标准具厚度的测量精度很高。一般规格:材质HRFZ-Si类型THz Fabry-Pérot Etalon直径范围,毫米25.4-150孔径,%=90TFPE用于TDS系统的校准、窄带THz源的调整和在THz频率范围内的光谱法厚度测量。 另外,TFPE可以用作窄带滤光片(标准具的微小偏移允许调整透射范围。)用法示例校准TDS系统过程以精确测量样品厚度是TFPE使用的一个例子。 实验装置如图1所示。1。图1.实验装置该实验涉及测量TFPE透射光谱并确定衍射极大值之间的距离(图2)。 假定距离和HRFZ-Si的折射率(3.416),可以计算TFPE的厚度。图2.厚度为3.042 mm,0.5 - 1 THz范围内的TFPE透射光谱测量的厚度值应与质量证书中规定的相同。 任何差异都表明TDS系统需要调整。以下TFPE可从库存中获得:零件号直径额定厚度各个标准具参数实际厚度自由光谱范围(FSR)带宽(半高全宽,FWHM)Δf精细度(F)vmmmmmmGHzGHz-TEFPHRFZ-Si-D25.4-T325.43.03.04214.45.52.6*测量每个特定标准具0.001毫米的精度。**自由光谱范围(FSR)是TFPE纵向模式之间的频率偏移。 自由光谱范围可以计算为,其中c是光速,l是TFPE的厚度,n是HRFZ-Si的折射率。*** Finesse(F)是自由光谱范围与带宽(半高全宽,FWHM)的比值。F(F)可以计算为F =(2?π)/( - ln(R ^ 2)),其中R是TFPE的反射系数。
  • 中红外法布里-珀罗F-P干涉仪( F-P标准具/多光束干涉仪 2.5-14um)
    总览法布里-珀罗干涉仪(英文:Fabry–Pérot interferometer),是一种由两块平行的玻璃板组成的多光束干涉仪。其中两块玻璃板相对的内表面都具有高反射率。当两块玻璃板间用固定长度的空心间隔物来间隔固定时,它也被称作法布里-珀罗标准具或直接简称为标准具。F-P(法布里-珀罗)标准具因为平板反射率高,多光束等倾斜干涉条纹极窄,所以是一种高分辨率的光谱仪器。可用于高分辨光谱学,和研究波长非常靠近的谱线,诸如元素的同位素光谱、光谱的超精细结构、光散射时微小的频移,原子移动引起的谱线多普勒位移,和谱线内部的结构形状;也可用作高分辨光学滤波器、构造精密波长计;在激光系统中它经常用于腔内压窄谱线或使激光系统单模运行,可作为宽带皮秒激光器中带宽控制以及调谐器件,分析、检测激光中的光谱(纵模、横模)成分.技术参数产品特点适用于中红外平行度好端面平整度高表面质量好产品应用波长锁定器 波分复用电信网 手持光谱分析仪 光纤光栅传感系统 可调谐滤波器激光器 可调谐滤光片技术参数技术参数技术指标工作波段近红外1.3-2.0um,中红外2.5-14um直径25.4mm+/-0.05mm通光孔径22.9mm长度100mm+/-0.2mm平行度5-10 arc sec端面平整度中红外 1/4 lambda;近红外 1/10 lambda表面质量中红外80-50;近红外60-40管壳铜精细度(FSR)0.012cm-1实验测试:测试步骤:1,安装1532nm激光器,连接电源,USB线2,激光器输出连接到光纤准直器3,用BNC转BNC线连接信号发生器到激光器驱动的低频调制端口4,用BNC转BNC线连接探测器到示波器的通道2端口5,打开激光器,打开信号发生器(三角波调制,频率1KHZ,电压幅值500mW)6,激光器发出的光通过标准具,打在探测器光敏面上,通过调整标准具的角度,在示波器上查看调制波形测试结果:
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制