立式单双温区真空气氛管式电炉

仪器信息网立式单双温区真空气氛管式电炉专题为您提供2024年最新立式单双温区真空气氛管式电炉价格报价、厂家品牌的相关信息, 包括立式单双温区真空气氛管式电炉参数、型号等,不管是国产,还是进口品牌的立式单双温区真空气氛管式电炉您都可以在这里找到。 除此之外,仪器信息网还免费为您整合立式单双温区真空气氛管式电炉相关的耗材配件、试剂标物,还有立式单双温区真空气氛管式电炉相关的最新资讯、资料,以及立式单双温区真空气氛管式电炉相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

立式单双温区真空气氛管式电炉相关的厂商

  • 山东中辰电炉有限公司,菏泽星创电炉有限公司(已通过ISO9001质量管理体系认证)专业电炉设计、开发、研制,生产工艺先进,生产设备齐全,管理制度完善,检测体系优良,产品质量稳定,技术服务到位,结合新企业新颖实用的设计理念,坚实技术、产品出色的设计、高超的品质和具有诱惑力的价格而闻名。公司经过客户实验和生产的反馈严格检验。应用领域有实验室和牙科、冶金、陶艺、陶瓷、电子、玻璃、熔化、化工、机械、建材、航天航空、光电技术、金属和塑料热处理及表面处理技术、铸造,耐火材料、新材料开发、特种材料、大专院校、中科院、研究院等领域的开发、适用于各种生产企业及研发实验机构工艺的理想高温实验和高温生产及高温检测专用电炉设备。专业从事主要产品:高温炉、高温电炉、实验炉、高温工业电窑炉、箱式炉、马弗炉、电阻炉、电加热炉、预热炉、灰化炉、管式炉、空气循环炉、退火炉、回转炉、立式炉、立式电炉、井式炉、熔块炉、台车炉、卧式炉、烤瓷炉、牙科炉、钼棒炉、碳棒炉、节能炉、陶瓷炉、干燥箱、纳米炉、物理化学实验电炉、热压炉、热震炉、ITO靶材炉、MIM金属烧结炉、真空炉、气氛炉、真空气氛炉、罐式炉、钟罩炉、升降炉、氟化物烧结炉、工业炉、网带炉、推板窑等小型炉系列产品各种不同尺寸、型号种类繁多的标准窑炉电炉及特殊订制电炉用于各种不同研发、加工等领域。公司拥有完整、科学的质量管理体系,标准化的生产制造车间,是国内具有影响力的高温实验电炉、高温工业电炉窑炉生产制造商,产品远销海外并获得客户的好评,分布在全国20几个省、市、自治区、特区,国家重点大专院校、国家重点实验室,高等研究院所,俄罗斯、韩国、英国、德国、非洲、新加坡、越南等多个国家和地区。并联合多所重点科研院校共同建立了多个技术研发项目,为每一位客户提供高技术含量的产品解决方案和服务!优质的质量和服务是企业常青成长的根基。公司一直践行“以诚待人,信誉至上,质量第一,科技创新,精诚合作,共创辉煌,追求卓越,恪守匠心”八大方针的创新发展经营理念和宗旨,真诚与您合作。我们坚持不断完善服务效能努力提升产品质量,以卓越的节能产品助推人与自然和谐发展,企业资信“AAA”级重合同守信用单位,连续被授予明星企业,为客户创造更多的价值,追求以客户满意为中心,满足并超越用户期望,恪守打造匠心产品。
    留言咨询
  • 洛阳雷特森电炉工业有限公司是一家集研发、生产、销售和技术服务为一体的专注电炉生产厂家。公司位于河南省洛阳市涧西区至圣科技园,主营耐火材料测试设备(如高温抗折试验机、荷软蠕变测试仪、热线导热测试仪、平板导热测试仪、水冷热震试验机、高温膨胀测试仪、熔样机等)和生产用电阻炉(如高中温箱式炉 、真空气氛炉、升降炉、管式炉、台车炉、熔块炉、辊道窑、网带炉等)。公司自成立以来,凭借可靠的技术力量和完善的售后服务,在国内各省市成功建立了庞大的销售网格和稳定的客户群体,通过优良的产品与消费者建立起长期、稳定的合作关系,获得了合作用户的高度赞誉和好评。现公司产品已经涵盖科研、高校、化工、食品、电子陶瓷碳化硅、新型材料、热处理等各行业。“客户的信赖与认可”,是企业发展的动力,是我们永远不变的追求;“团队的合作与分享”,是我们发展的坚实基础和有力保证;“朝气蓬勃、积极进取、不断挑战自我”是我们发展的方向。期待与您的合作,希望我们的产品和服务能给您带来满意。洛阳雷特森电炉工业有限公司欢迎国内外各界同仁志士垂询洽谈,竭诚合作,共创未来!
    留言咨询
  • 洛阳市国炬试验电炉厂是专业研制、开发、生产各种高温窑炉、高温电炉、实验电炉、真空气氛炉、箱式炉、管式电炉、升降炉、立式电炉、井式电炉、卧式电炉、高温马弗炉 的专业厂家!其产品具有全自动控制,升温快,节能,操作简单,微电脑控制可编程,全自动升、降温,温控精度和恒温精度高,炉体温度接近室温等优利特点深受客户好评!公司经过多年的发展,现已具有成熟的高温窑炉生产线,有一支高、中级科研队伍,是集科研开发、生产、营销于一体的私营企业。 我厂本着求真务实、科技创新、质量第一、用户至上的原则,不断引进国内外先进技术和现代管理经验,制定了严谨的工艺标准,严格的质量控制体系和检测手段。 本厂生产的产品有实验电炉,生产高温窑炉,窑炉,气氛炉,真空炉;高温电炉,实验电炉,箱式炉,管式炉,气氛炉,熔块炉,钟罩炉,烧结炉,真空炉,立式炉,箱式电炉,高温炉,电加热炉,立式电炉,卧式炉,马弗炉,电阻炉,管式电炉,滚道窑,高温实验电炉,高温箱式电炉,高温管式炉,高温气氛炉,高温窑炉,高温钟罩炉,高温烧结炉,氟化物烧结炉,氟化物烘干炉,氟化物加热炉,烘干窑,ITO靶材窑炉,节能电炉,滚道炉,电子烧结炉,熔块炉,陶瓷炉,纳米电炉,物理实验电炉,化学实验电炉,玻璃烧结炉,玻璃溶化炉,钼棒炉,碳棒炉,推板窑、陶瓷加热炉,化工加热炉、电子加热炉、冶金加热炉、陶瓷烧结炉,化工烧结炉、电子烧结炉、冶金烧结炉等,广泛用于陶瓷、冶金、电子、玻璃、发光材料、有色金属、化工、机械、耐火材料、新材料开发、特种材料、建材等领域。实验电炉 包括(箱式炉、管式炉、立式炉、升降炉、熔块炉、真空炉、气氛炉)等,主要用于大专院校、研究院所、工厂实验室、单位实验室等研究与开发新产品。窑炉和生产炉包括(大型箱式电炉、大型立式电炉、升降炉、钟罩炉、气氛炉、真空炉、气氛炉、辊道窑、推板窑、梭式窑)等,广泛用于陶瓷、冶金、电子、玻璃、发光材料、有色金属、化工、机械、耐火材料、新材料开发、特种材料、建材等领域 各种电炉窑炉自动化程度高,居国内领先水平,销往全国20几个省、市、自治区、特区,国家重点大专院校、国家重点实验室、中国科学院、高中等研究院所,远销北美、俄罗斯、菲律宾、日本等国家,在同行业中享有较高的声誉。
    留言咨询

立式单双温区真空气氛管式电炉相关的仪器

  • 一、操作便捷性:1、气路连接方式采用了快速连接法兰结构。2、使取放物料过程简化,只需一支卡箍便可完成气路连接,方便操作。3、取消了复杂的法兰安装过程,减少了炉管因安装造成损坏的可能。 二、结构实用性:1、炉膛材料采用优质的多晶莫来纤维真空吸附制成,节能50%,温场均匀,电热元件采用表面温度1700℃的优质硅钼棒。2、密封法兰采用双环密封技术,有效的提高了炉管两端的气密性,气路具有进出气微量可调功能。3、两端气路支架,支撑着气路装置,有效消除了气路总成自身的应力,杜绝了因自身应力而造成的炉管损坏。4、先进的空气隔热技术,结合热感应技术,当炉体表面温升到达50℃时,排温风扇将自动启动,使炉体表面快速降温。 三、使用安全性:1、超温保护功能,当温度超过允许设定值后,自动断电及报警。2、漏电保护功能,当炉体漏电时自动断电。以上功能确保了使用的安全性。 四、控制智能化:1、电炉温度控制系统采用人工智能调节技术,具有PID调节、模糊控制、自整定功能,并可编制各种升降温程序。2、国产程序控温系统可编辑50段程序控温,进口程序控温系统可编程40段程序控温。3、电炉内配置有485转换接口,可实现与计算机相互连接。完成与单台或多达200台电炉的远程控制、实时追踪、历史记录、输出报表等功能。 五、周边拓展性:1、真空控制系统。通过各种真空控制系统,可以实现样品在低、中、高真空环境下进行试验。2、气体流量控制系统。通过浮子或质量流量控制器调节进气量,以满足用户在不同反应气氛或保护气氛条件下的实验要求。 六、设计独特性:该设备为**产品,具有多项独立自主的知识产权**。外观美观,结构合理,使用方便。选配:彩色触摸屏;显示画面有仪表屏、光柱图、实时曲线、历史曲线、数据报表、报警报表等、全中文触摸式操作,功能全面并且使用方便。产品用途:该系列电炉系周期作业,供企业实验室、大专院校、科研院所等单位选用。设备为用户提供具有真空、可控气氛及高温的实验环境,应用在半导体,纳米技术、碳纤维等新型材料新工艺领域。
    留言咨询
  • 一、操作便捷性:1、气路连接方式采用了快速连接法兰结构。2、使取放物料过程简化,只需一支卡箍便可完成气路连接,方便操作。3、取消了复杂的法兰安装过程,减少了炉管因安装造成损坏的可能。 二、结构实用性:1、炉膛材料采用优质的多晶莫来纤维真空吸附制成,节能50%,温场均匀。电热元件采用表面温度1500度的优质硅碳棒。2、密封法兰采用双环密封技术,有效的提高了炉管两端的气密性。气路具有进出气微量可调功能。3、两端气路支架,支撑着气路装置。有效消除了气路总成自身的应力,杜绝了因自身应力而造成的炉管损坏。4、先进的空气隔热技术,结合热感应技术,当炉体表面温升到达50℃时,排温风扇将自动启动,使炉体表面快速降温。 三、使用安全性:1、超温保护功能,当温度超过允许设定值后,自动断电及报警。2、漏电保护功能,当炉体漏电时自动断电。以上功能确保了使用的安全性。 四、控制智能化:1、电炉温度控制系统采用人工智能调节技术,具有PID调节、模糊控制、自整定功能,并可编制各种升降温程序。2、国产程序控温系统可编辑50段程序控温,进口程序控温系统可编程40段程序控温。3、电炉内配置有485转换接口,可实现与计算机相互连接。完成与单台或多达200台电炉的远程控制、实时追踪、历史记录、输出报表等功能。 五、周边拓展性:1、真空控制系统。通过各种真空控制系统,可以实现样品在低、中、高真空环境下进行试验。2、气体流量控制系统。通过浮子或质量流量控制器调节进气量,以满足用户在不同反应气氛或保护气氛条件下的实验要求。 六、设计独特性:该设备为**产品,具有多项独立自主的知识产权**。外观美观,结构合理,使用方便。选配:彩色触摸屏;显示画面有仪表屏、光柱图、实时曲线、历史曲线、数据报表、报警报表等、全中文触摸式操作,功能全面并且使用方便。产品用途:该系列电炉系周期作业,供企业实验室、大专院校、科研院所等单位选用。设备为用户提供具有真空、可控气氛及高温的实验环境,应用在半导体,纳米技术、碳纤维等新型材料新工艺领域。
    留言咨询
  • 一、操作便捷性:1、气路连接方式采用了快速连接法兰结构。2、使取放物料过程简化,只需一支卡箍便可完成气路连接,方便操作。3、取消了复杂的法兰安装过程,减少了炉管因安装造成损坏的可能。 二、结构实用性:1、炉膛材料采用优质的多晶莫来纤维真空吸附制成,节能50%,温场均匀,电热元件采用表面温度1700℃的优质硅钼棒。2、密封法兰采用双环密封技术,有效的提高了炉管两端的气密性,气路具有进出气微量可调功能。3、两端气路支架,支撑着气路装置,有效消除了气路总成自身的应力,杜绝了因自身应力而造成的炉管损坏。4、先进的空气隔热技术,结合热感应技术,当炉体表面温升到达50℃时,排温风扇将自动启动,使炉体表面快速降温。 三、使用安全性:1、超温保护功能,当温度超过允许设定值后,自动断电及报警。2、漏电保护功能,当炉体漏电时自动断电。以上功能确保了使用的安全性。 四、控制智能化:1、电炉温度控制系统采用人工智能调节技术,具有PID调节、模糊控制、自整定功能,并可编制各种升降温程序。2、国产程序控温系统可编辑50段程序控温,进口程序控温系统可编程40段程序控温。3、电炉内配置有485转换接口,可实现与计算机相互连接。完成与单台或多达200台电炉的远程控制、实时追踪、历史记录、输出报表等功能。 五、周边拓展性:1、真空控制系统。通过各种真空控制系统,可以实现样品在低、中、高真空环境下进行试验。2、气体流量控制系统。通过浮子或质量流量控制器调节进气量,以满足用户在不同反应气氛或保护气氛条件下的实验要求。 六、设计独特性:该设备为**产品,具有多项独立自主的知识产权**。外观美观,结构合理,使用方便。选配:彩色触摸屏;显示画面有仪表屏、光柱图、实时曲线、历史曲线、数据报表、报警报表等、全中文触摸式操作,功能全面并且使用方便。产品用途:该系列电炉系周期作业,供企业实验室、大专院校、科研院所等单位选用。设备为用户提供具有真空、可控气氛及高温的实验环境,应用在半导体,纳米技术、碳纤维等新型材料新工艺领域。
    留言咨询

立式单双温区真空气氛管式电炉相关的资讯

  • 1200℃单双温区开启式真空气氛管式电炉:工作原理与优势
    在科研和工业生产中,电炉是不可或缺的重要设备。其中,1200℃单双温区开启式真空气氛管式电炉因其高精度、高效率的工作特点,被广泛应用于各种高温实验和材料制备。那么,这种电炉是如何工作的,它又具备哪些优势呢?接下来,让我们一起深入了解。  1200℃单双温区开启式真空气氛管式电炉的工作原理涉及到多个方面。在加热原理上,电炉主要依靠电力产生热量,通过高温电阻丝将电能转化为热能。这种方式的优点是能量转化效率高,加热速度快。在温度控制方面,电炉采用了先进的PID温度控制系统,可以实现对温度的精确控制。同时,由于采用先进的智能芯片控制,温度波动小,精度高。气氛控制是这种电炉的另一大特点。通过向炉内通入特定的气体,可以创造出不同的气氛环境,如还原性、氧化性或中性气氛,以满足不同实验和材料制备的需求。  1200℃单双温区开启式真空气氛管式电炉的优势有哪些呢?首先,其加热速度快,可以在短时间内达到高温,且温度均匀性非常好。这大大缩短了实验时间,提高了工作效率。其次,由于采用了先进的智能控制系统,电炉的操作非常简便。用户只需设定温度和时间等参数,电炉即可自动完成实验过程。此外,这种电炉还具有高可靠性和长寿命的特点。由于其内部采用优质材料和精密制造工艺,电炉的使用寿命长,可靠性高。  1200℃单双温区开启式真空气氛管式电炉还具有多种安全保护功能。例如过温保护、过流保护等,确保实验过程的安全可靠。  1200℃单双温区开启式真空气氛管式电炉以其高效、精确、安全的特点,成为科研和工业生产中的重要工具。无论是材料合成、化学反应还是高温烧结等应用场景,这种电炉都能提供出色的性能表现。随着技术的不断进步和应用需求的增加,我们有理由相信,未来的1200℃单双温区开启式真空气氛管式电炉将会更加智能化、高效化、安全化,为科研和工业生产带来更多的便利和可能性。
  • 中环电炉发布1600℃双温区梯度管式电炉新品
    一、操作便捷性:1、气路连接方式采用了快速连接法兰结构。2、使取放物料过程简化,只需一支卡箍便可完成气路连接,方便操作。3、取消了复杂的法兰安装过程,减少了炉管因安装造成损坏的可能。 二、结构实用性:1、炉膛材料采用优质的多晶莫来纤维真空吸附制成,节能50%,温场均匀。电热元件采用表面温度1500度的优质硅碳棒及表面温度1700度的优质硅钼棒。2、密封法兰采用双环密封技术,有效的提高了炉管两端的气密性。气路具有进出气微量可调功能。3、两端气路支架,支撑着气路装置。有效消除了气路总成自身的应力,杜绝了因自身应力而造成的炉管损坏。4、先进的空气隔热技术,结合热感应技术,当炉体表面温升到达50℃时,排温风扇将自动启动,使炉体表面快速降温。 三、使用安全性:1、超温保护功能,当温度超过允许设定值后,自动断电及报警。2、漏电保护功能,当炉体漏电时自动断电。以上功能确保了使用的安全性。 四、控制智能化:1、电炉温度控制系统采用人工智能调节技术,具有PID调节、模糊控制、自整定功能,并可编制各种升降温程序。2、国产程序控温系统可编辑50段程序控温,进口程序控温系统可编程40段程序控温。3、电炉内配置有485转换接口,可实现与计算机相互连接。完成与单台或多达200台电炉的远程控制、实时追踪、历史记录、输出报表等功能。 五、周边拓展性:1、真空控制系统。通过各种真空控制系统,可以实现样品在低、中、高真空环境下进行试验。2、气体流量控制系统。通过浮子或质量流量控制器调节进气量,以满足用户在不同反应气氛或保护气氛条件下的实验要求。 六、设计独特性:该设备为专利产品,具有多项独立自主的知识产权专利。外观美观,结构合理,使用方便。选配:彩色触摸屏;显示画面有仪表屏、光柱图、实时曲线、历史曲线、数据报表、报警报表等、全中文触摸式操作,功能全面并且使用方便。产品用途:该系列电炉系周期作业,供企业实验室、大专院校、科研院所等单位选用。设备为用户提供具有真空、可控气氛及高温的实验环境,应用在半导体,纳米技术、碳纤维等新型材料新工艺领域。创新点:该设备为专利产品,具有多项独立自主的知识产权专利。外观美观,结构合理,使用方便。 选配:彩色触摸屏; 显示画面有仪表屏、光柱图、实时曲线、历史曲线、数据报表、报警报表等、全中文触摸式操作,功能全面并且使用方便。 1600℃双温区梯度管式电炉
  • 探索新一代真空气氛炉的杰出性能
    新品推荐真空气氛炉上海喆图科学仪器有限公司成立于2014年,专注于科研仪器行业,公司已先后取得品牌证书以及多项国家专利,并已获得高新技术企业证书,秉承“做好产品质量是最大的积德行善”的质量理念,我们的主要产品培养箱、干燥箱、马弗炉、试验箱等已远销国内外。01|产品介绍在科技创新的推动下,向您推荐一款集真空与热处理技术于一体的新型热处理设备——真空气氛炉。这款设备,也被称为无氧退火炉或真空气氛烧结炉,是现代热处理技术的重要突破。真空气氛炉采用了先进的真空热处理技术,能够在低于一个大气压的气氛环境中进行热处理,有效避免了氧化、脱碳、渗碳等传统热处理过程中常见的问题。它不仅能够去除工件表面的磷屑,还能实现脱脂除气,确保工件表面光亮净化。广泛应用于高等院校、科研院所及工矿企业,适用于钢铁、有色金属及其合金的熔炼、精炼、连铸和热处理等多种场合。助力科学研究02|仪器特点PART.1一体式结构设计,外观大气,采用外壳静电喷塑工艺,耐高温、耐腐蚀,确保设备经久耐用。PART.2炉膛内温度升降迅速,温场均衡,双层外壳配备高性能隔热材料,表面温度低,节能高效。PART.3双层壳体结构,保持炉膛内部正压1MP和负压-0.1MP,分压压力调节范围广泛。PART.4高自动化程度,控温精度高,支持多段程序设置,实现各种升温、保温、降温过程的编程控制。PART.5多重保护功能,包括超温、超压、超流、漏电、短路保护,以及热电偶损坏断电和内置参数密码控制。PART.6控制系统采用微电脑人工智能调节技术,具备PID调节、模糊控制、自动控制、自整定功能。PART.7气路系统由多种进气和控制装置组成,采用集成模块可控硅控制,确保保护系统的高效运行。PART.8标配真空泵及压力表,真空系统可在热处理前快速抽出炉膛内的氧气,形成洁净的气氛环境。PART.9流量计控制进气流量,支持外部空气自然冷却或惰性气体充入炉膛内冷却。创造更大的经济、社会、人才价值03|可选配件可选配RS-485通讯接口,数据管理软件,实现无纸记录历史数据和升温曲线,校正温度偏离误差,便于设备管理和远程故障诊断分析。理念共鸣、善于学习、德才兼备、尚贤用能04|技术参数1. 电源电压:220V 50Hz / 380V 50Hz2. 控温范围:多个温度段可选,最高可达1800℃(连续工作温度≤1700℃)3. 加热元件:镍铬合金、硅碳棒、硅钼棒等多种选择4. 空载真空度:-0.1Mpa5. 炉膛容积:1~36L,满足不同实验和生产需求靠质量与诚心赢得客户,追求企业价值与客户价值共同成长05|仪器特点在操作真空气氛炉时,请注意以下安全事项:1. 炉膛内最大可承受气压为0.5atm。在向炉膛内通入气体时,请确保气瓶上已安装减压阀,以防止气压过高。2. 炉膛内部气压应维持在0.01-0.02 Mpa之间,避免空气回流进入炉膛内部,从而减少爆炸风险。3. 请勿使用易燃易爆气体,如氢气。氢气在燃烧温度达到400℃时,与空气混合比例达到4.0%-74.2%可能会发生爆炸。以下是一些常用金属的退火和熔点温度的近似值,供您参考:金属退火温度熔点温度铝300-410°C660°C黄铜500-550°C930°C铜371-649°C1084°C金 (24k)200°C1064°C铂700°C1768°C不锈钢1000°C1400-1510°C纯银649°C894°C请注意,上述温度仅供参考,实际操作时应根据具体材料和要求进行调整。确保在操作过程中严格遵守安全规程,以保障操作人员的安全和设备的正常运行。*退火温度是指金属在退火过程中所需的温度范围,熔点温度是指金属从固态转变为液态的温度。以人为本、尽责诚信、创新共赢,奉献社会

立式单双温区真空气氛管式电炉相关的方案

立式单双温区真空气氛管式电炉相关的资料

立式单双温区真空气氛管式电炉相关的试剂

立式单双温区真空气氛管式电炉相关的论坛

  • 【国产好仪器讨论】之天津中环电炉股份有限公司的管式电炉(SK-G06123K)

    http://www.instrument.com.cn/show/Breviary.asp?FileName=C179073%2Ejpg&iwidth=200&iHeight=200 天津中环电炉股份有限公司 的 管式电炉(SK-G06123K)已参加“国产好仪器”活动并通过初审。自上市以来,这款产品已经被多家单位采用,如果您使用过此仪器设备或者对其有所了解,欢迎一起聊聊它各方面的情况。您还可以通过投票抽奖、参与调研等方式参与活动,并获得手机电子充值卡。【点击参与活动】 仪器简介: 一、操作便捷性; 1、气路连接方式采用了快速连接法兰结构。 2、使取放物料过程简化,只需一支卡箍便可完成气路连接,方便操作。 3、取消了复杂的法兰安装过程,减少了炉管因安装造成损坏的可能。 二、结构实用性; 1、加热炉膛有上下两部分组成,其中上部炉膛可整体向后翻转110°,方便取放、观察实验物料,炉膛材料采用优质的多晶莫 来纤维真空吸附制成,节能50%,温场均匀。电热元件采取高电阻优质合金丝0Cr27Al7Mo2。 2、密封法兰采用双环密封技术,有效的提高了炉管两端的气密性。气路具有进出气微量可调功能。 3、两端气路支架,支撑着气路装置。有效消除了气路总成自身的应力,杜绝了因自身应力而造成的炉管损坏。 4、先进的空气隔热技术,结合热感应技术,当炉体表面温升到达50℃时,排温风扇将自动启动,使炉体表面快速降温。 三、使用安全性; 1、炉膛开启自动断电功能,使炉门打开后自动断电。 2、超温保护功能,当温度超过允许设定值后,自动断电及报警。 3、漏电保护功能,当炉体漏电时自动断电。以上功能确保了使用的安全性。 四、控制智能化; 1、电炉温度控制系统采用人工智能调节技术,具有PID调节、模糊控制、自整定功能,并可编制各种升降温程序。 2、国产程序控温系统可编辑50段程序控温,进口程序控温系统可编辑40段程序控温。 3、电炉内配置有485转换接口,可选配专业软件实现与计算机相互连接。完成与单台或多达200台电炉的远程控制、实时追踪、历史记录、 输出报表等功能。 五、周边拓展性; 1、真空控制系统。通过各种真空控制系统,可以实现样品在低、中、高真空环境下进行试验。 2、气体流量控制系统。通过浮子或质量流量控制器调节进气量,以满足用户在不同反应气氛或保护气氛条件下的实验要求。 六、设计独特性; 该设备为专利产品,具有多项独立自主的知识产权专利。外观美观,结构合理,使用方便。 选配:彩色触摸屏; 显示画面有仪表屏、光柱图、实时曲线、历史曲线、数据报表、报警报表等、全中文触摸式操作,功能全面并且使用方便。【了解更多此仪器设备的信息】

  • 显微成像系统的真空压力和气氛精密控制解决方案

    显微成像系统的真空压力和气氛精密控制解决方案

    [align=center][b][img=显微镜探针冷热台的真空压力和气氛精密控制解决方案,600,484]https://ng1.17img.cn/bbsfiles/images/2023/11/202311021102101876_7960_3221506_3.jpg!w690x557.jpg[/img][/b][/align][size=16px][color=#333399][b]摘要:针对目前国内外显微镜探针冷热台普遍缺乏真空压力和气氛环境精密控制装置这一问题,本文提出了解决方案。解决方案采用了电动针阀快速调节进气和排气流量的动态平衡法实现0.1~1000Torr范围的真空压力精密控制,采用了气体质量流量计实现多路气体混合气氛的精密控制。此解决方案还具有很强的可拓展性,可用于电阻丝加热、TEC半导体加热制冷和液氮介质的高低温温度控制,也可以拓展到超高真空度的精密控制应用。[/b][/color][/size][align=center][size=16px][color=#333399][b]====================[/b][/color][/size][/align][size=16px][color=#333399][b][/b][/color][/size][size=18px][color=#333399][b]1. 问题的提出[/b][/color][/size][size=16px] 探针冷热台允许同时进行样品的温控和透射光/反射光观察,支持腔内样品移动、气密/真空腔、红外/紫外/X光等波段观察、腔内电接线柱、温控联动拍摄、垂直/水平光路、倒置显微镜等,广泛应用于显微镜、倒置显微镜、红外光谱仪、拉曼仪、X射线等仪器,适用于高分子/液晶、材料、光谱学、生物、医药、地质、 食品、冷冻干燥、 X光衍射等领域。[/size][size=16px] 在上述这些材料结构、组织以及工艺过程等的微观测量和研究中,普遍需要给样品提供所需的温度、真空、压力、气氛、湿度和光照等复杂环境,而现有的各种探针冷热台往往只能提供所需的温度变化控制,尽管探针冷热台可以提供很好的密闭性,但还是缺乏对真空、压力、气氛和湿度的调节及控制能力,国内外还未曾见到相应的配套控制装置。为了实现探针冷热台的真空压力、气氛和湿度的准确控制,本文提出了相应的解决方案,解决方案主要侧重于真空压力和气氛控制问题,以解决配套装置缺乏现象。[/size][size=18px][color=#333399][b]2. 解决方案[/b][/color][/size][size=16px] 针对显微镜探针冷热台的真空压力和气氛的精密控制,本解决方案可达到的技术指标如下:[/size][size=16px] (1)真空压力:绝对压力范围0.1Torr~1000Torr,控制精度为读数的±1%。[/size][size=16px] (2)气氛:单一气体或多种气体混合,气体浓度控制精度优于±1%。[/size][size=16px] 本解决方案将分别采用以下两种独立的技术实现真空压力和气氛的精确控制:[/size][size=16px] (1)真空压力控制:采用动态平衡法技术,通过控制进入和排出测试腔体的气体流量,使进气和排气流量达到动态平衡从而实现宽域范围内任意设定真空压力的准确恒定控制。[/size][size=16px] (2)气氛控制:采用气体质量流量控制技术,分别控制多种工作气体的流量,由此来实现环境气体中的混合比。[/size][size=16px] 采用上述两种控制技术所设计的控制系统结构如图1所示。[/size][align=center][size=16px][color=#333399][b][img=显微镜探针冷热台真空压力和气氛控制系统结构示意图,690,329]https://ng1.17img.cn/bbsfiles/images/2023/11/202311021103195907_6925_3221506_3.jpg!w690x329.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#333399][b]图1 真空压力和气氛控制系统结构示意图[/b][/color][/size][/align][size=16px] 如图1所示,真空压力控制系统由进气电动针阀、高真空计、低真空计、排气电动针阀、高真空压力控制器、低真空压力控制器和真空泵组成,并通过以下两个高低真空压力控制回路来对全量程真空压力进行精密控制:[/size][size=16px] (1)高真空压力控制回路:真空压力控制范围为0.1Torr~10Torr(绝对压力),控制方法采用上游控制模式,控制回路由进气电动针阀(型号:NCNV-20)、高真空计(规格:10Torr电容真空计)和真空压力程序控制器(型号:VPC20201-1)组成。[/size][size=16px] (2)低真空压力控制回路:真空压力控制范围为10Torr~1000Torr(绝对压力),控制方法采用下游控制模式,控制回路由排气电动针阀(型号:NCNV-120)、低真空计(规格:1000Torr电容真空计)和真空压力程序控制器(型号:VPC20201-1)组成。[/size][size=16px] 由上可见,对于全量程真空压力的控制采用了两个不同量程的薄膜电容真空计进行覆盖,这种薄膜电容真空计可以很轻松的达到0.25%的读数精度。真空计所采集的真空度信号传输给真空压力控制器,控制器根据设定值与测量信号比较后,经PID算法计算后输出控制信号驱动电动针阀来改变进气或排气流量,由此来实现校准腔室内气压的精密控制。[/size][size=16px] 在全量程真空压力的具体控制过程中,需要分别采用上游和下游控制模式,具体如下:[/size][size=16px] (1)对于绝对压力0.1Torr~10Torr的高真空压力范围的控制,首先要设置排气电控针阀的开度为某一固定值,通过运行高真空度控制回路自动调节进气针阀开度来达到真空压力设定值。[/size][size=16px] (2)对于绝对压力10Torr~1000Torr的低真空压力范围的控制,首先要设置进气针阀的开度为某一固定值,通过运行低真空度控制回路自动调节排气针阀开度来达到真空压力设定值。[/size][size=16px] (3)全量程范围内的真空压力变化可按照设定曲线进行程序控制,控制采用真空压力控制器自带的计算机软件进行操作,同时显示和存储过程参数和随时间变化曲线。[/size][size=16px] 显微镜探针冷热台内的真空压力控制精度主要由真空计、电控针阀和真空压力控制器的精度决定。除了真空计采用了精度为±0.25%的薄膜电容真空计之外,所用的NCNV系列电控针阀具有全量程±0.1%的重复精度,所用的VPC2021系列真空压力控制器具有24位AD、16位DA和0.01%最小输出百分比,通过如此精度的配置,全量程的真空压力控制可以达到很高的精度,考核试验证明可以轻松达到±1%的控制精度,采用分段PID参数,控制精度可以达到±0.5%。[/size][size=16px] 对于探针冷热台内的气氛控制,如图1所示,采用了多个气体质量流量控制器来对进气进行精密的流量调节,以精确控制各种气体的浓度或所占比例。通过精密测量后的多种工作气体在混气罐内进行混合,然后再进入探针冷热台,由此可以准确控制各种气体比值。在气氛控制过程中,需要注意以下两点:[/size][size=16px] (1)对于某一种单独的工作气体,需要配备相应气体的气体质量流量控制器。[/size][size=16px] (2)混气罐压力要进行恒定控制或在混气罐的出口处增加一个减压阀,以保持混气罐的出口压力稳定,这对准确控制校准腔室内的真空压力非常重要。[/size][size=18px][color=#333399][b]3. 总结[/b][/color][/size][size=16px] 综上所述,本解决方案可以彻底解决显微镜探针冷热台的真空压力控制问题,并具有很高的控制精度和自动控制能力。另外,此解决方案还具有以下特点:[/size][size=16px] (1)本解决方案具有很强的适用性和可拓展性,通过改变其中的相关部件参数指标就可适用于不同范围的真空压力,更可以通过在进气口增加微小流量可变泄漏阀,实现各级超高真空度的精密控制。[/size][size=16px] (2)本解决方案所采用的控制器也可以应用到冷热台的温度控制,如帕尔贴式TEC半导体加热制冷装置的温度控制、液氮温度的低温控制。[/size][size=16px] (3)解决方案中的控制器自带计算机软件,可直接通过计算机的屏幕操作进行整个控制系统的调试和运行,且控制过程中的各种过程参数变化曲线自动存储,这样就无需再进行任何的控制软件编写即可很快搭建起控制系统,极大方便了微观分析和测试研究。[/size][size=16px] 在目前的显微镜探针冷热台环境控制方面,还存在微小空间内湿度环境的高精度控制难题,这将是我们后续研究和开发的内容之一。[/size][size=16px][/size][align=center][size=16px][color=#333399][b]~~~~~~~~~~~~~~~[/b][/color][/size][/align]

  • 星际空间环境地面模拟:气氛、气压或真空度的精确模拟及控制

    [quote][color=#ff0000]摘要:针对星际空间气氛环境,介绍了地面模拟试验中的气氛、气压或真空度的精确模拟及控制技术,特别介绍了美国标准化技术研究所NIST和上海依阳实业有限公司在这方面所做的研究工作。[/color][/quote][align=center][img]http://p3.pstatp.com/large/5e830001f98c5d356c2a[/img][/align][align=center][color=#ff0000]美国NASA火星探测器[/color][/align][color=#ff0000][b]1. 前言[/b][/color] 航天飞行器和探测器在星际空间中会遇到各种气氛环境,有在深空中的高真空环境,也有在火星大气层中的低压二氧化碳气氛环境。飞行器和探测器中大量使用的防隔热材料在不同气氛和不同气压条件下都会呈现不同特性,因此在隔热材料选择时要准确了解相应气氛条件的材料性能。 防隔热材料经过多年的研究已经初步具备了比较成熟的各种模拟、测试和表征技术,但随着新型高效隔热材料技术的发展,特别是多种阻断传热技术的应用以及低气压使用环境,使得新型绝热材料及元件的热导率更低。如何准确测试评价这些隔热材料在1000℃以上高温和100Pa以上气压环境条件下的有效热导率就成为了目前国内外的一个技术难点。 由于新型高温隔热材料的传热形式是固体导热、气体导热和对流换热以及热辐射等多种形式的耦合传热,传热形式十分复杂,通过理论分析计算获得的有效热导率计算结果往往与实验结果存在很大的偏差,因此对于新型隔热材料的有效热导率测试主要还是依据实验测试结果。 纵观国内外对高温隔热材料有效热导率测试所采用的测试方法基本都集中在稳态热流计法,这主要是因为它是目前可以实现1000℃以上有效热导率测试的唯一成熟有效的技术。美国兰利研究中心1999年研制了一套变气氛压力高温有效热导率测试系统,测试中采用了薄膜热流计测试流经试样的热流密度,试样的冷面温度为室温,试样热面最高温度可达1800℉(约982℃),环境气压控制范围为0.0001~760Torr,正方形试样最大尺寸为边长8in(约203mm)。整个测量装置的有效热导率测量不确定度范围为5.5%~9.9%,在常压环境下对NIST标准参考材料测试的不确定度在5.5%以内。美国兰利研究中心的这篇研究报告给出了几种典型材料随温度和气压变化的有效热导率测试结果,证明了在不同气氛压强范围内对热导率的影响程度的不同。 通过美国兰利研究中心的研究工作从试验上证明了气压对材料热导率有明显的影响,气压(真空度)的控制误差是主要测量误差源,所以在材料热导率测试中要对气压进行准确控制。由此,这就在稳态热流计法热导率测试过程引入了两个控制变量,即除了达到温度恒定条件外,还需要达到气压压强的稳定。 因为温度和气压之间存在相互影响,一般情况下是气压随着温度升降而升降,同时气压下降使得被测试样热导率降低而延长了达到热平衡所需时间,这样就造成整个稳态法热导率测试过程中参数控制的复杂性。 由此可见,在稳态法热导率测量过程中,需要对气压控制的稳定性就行试验研究,摸清气压波动对温度恒定的影响,确定气压的恒定控制精度,并在可易实现的气压控制精度条件下尽可能的缩短气压对温度稳定周期的影响。 我们所研制的热流计法隔热材料高温热导率测试系统就是一个可在变温和变气压环境进行隔热材料热导率测试的设备,可以对温度和气压压强进行控制,因此针对气压对材料热导率测试的影响进行了研究。在气压波动性对材料热导率测试影响方面国内外几乎没有研究工作报道,在我们开展此工作的后期,美国NIST的Zarr等发表了一篇会议论文,文中介绍了NIST在开展直径500mm高温保护热板法热导率测试系统研制过程中所进行的一些气压对热导率影响方面的工作。 本文将对NIST和上海依阳实业有限公司的研究工作做一介绍,尽管两者研究工作的技术指标要求有很大不同,但通过这些研究可以获得很多的借鉴。另外,气压对热导率影响的试验研究,也可以作为其它热导率影响因素(如湿度)测试研究的技术借鉴。[color=#ff0000][b]2. 美国NIST在气压对材料热导率测试影响方面的研究工作2.1. 美国NIST护热板法热导率测试系统简介[/b][/color] 美国NIST多年来一直进行着护热板法热导率测试技术的研究工作,并研制了多套不同尺寸和不同测试温度的护热板法热导率测试系统。最近的研究工作是研制变温变气压环境下试样直径500mm的护热板法高温热导率测试系统,测试系统已经研制完成,如图 2‑ 1所示,正开展一系列的设备考核和试样测试评价工作。 在图 2‑ 1所示的NIST试样直径500mm的护热板法高温热导率测试系统中,热板(1)和冷板(2)由一个圆筒状护热装置(3)包裹,这些部件都悬挂在一个悬臂支撑结构(A)上,整个热导率测量装置放置在一个气氛压强可控的真空试验腔内,真空试验腔体包括一个直立式焊接基座(C)和放置在滚轮支撑架上的一个卧式圆筒腔体(B),(D)为扩散泵,整个测试系统的试验温度范围为280K~340K,真空试验腔的气压控制范围为4Pa至100.4kPa(1个大气压)。NIST研制此设备的目的主要是用于对低热导率标准参考材料进行校准测试。[align=center][img]http://p1.pstatp.com/large/5e7b0003ebf23bc410b6[/img][/align][align=center][color=#ff0000]图 2‑ 1 美国NIST 500mm保护热板法热导率测试系统[/color][/align][b][color=#ff0000]2.2. 气压控制系统[/color][/b] 图 2‑ 2所示的热导率测量装置气压控制系统包含的主要部件有:(a)干燥空气净化发生器(供气系统);(b)真空腔;(c)三个独立可控真空泵系统(11油扩散泵、13机械泵和15隔膜泵)。每个真空泵都由独立的计算机串口控制。[align=center][color=#ff0000][img]http://p3.pstatp.com/large/5e7c00038563ce740831[/img][/color][/align][align=center][color=#ff0000]图 2‑ 2 NIST 测试试样直径500mm护热板法热导率测量装置气压控制结构示意图[/color][/align] 真空系统中采用了三个机械泵来覆盖不同的气压压强范围。在NIST的这套测量装置中,并没有使用到用于超低气压控制的第三级泵(扩散泵)。根据气压范围,真空腔内的气压测量采用了3个薄膜电容规(CDGs)。这些电容薄膜规的三个基本量程为:133kPa(1000torr)、1.33kPa(10torr)和0.0133kPa(0.1torr)。 (1)中等气压:指3.3kPa~107kPa(25torr ~ 800torr)气压范围,可通过采用一个可变速隔膜泵和一个专用控制器将真空腔内的气压控制在此气压范围内。使用隔膜泵将不会使用到气源。 (2)低气压:指0.004kPa~3.3kPa(0.03torr ~ 25torr)气压范围,可通过采用一个机械泵(叶片旋转泵)和一个专用PID控制蝶阀以下游控制形式将真空腔内的气压控制在此气压范围内。 (3)超低气压:指低于0.004kPa(0.03torr)的气压范围,可通过采用一个扩散泵/初级泵系统和一个专用PID控制插板阀以下游控制形式将真空腔内的气压控制在此气压范围内。[b][color=#ff0000]2.3. 控制稳定性[/color][/b] 整个热导率测试系统的控制稳定性是通过图形分析量热计板温度响应来进行考察。图 2‑ 3和图 2‑ 4分别绘出了量热计板温度和真空腔气压随时间的变化曲线,其中左边Y轴为温度坐标轴,右边Y轴为气压坐标轴,X轴表示经历时间(以小时计),图 2‑ 3和图 2‑ 4所示的图中选定了相同的X时间轴(50h)以便于观察对比,量热计温度和真空腔气压的数据采集间隔时间为60s。 量热计板的温度测量采用扩展不确定度(k=2)为0.001K的长杆标准铂电阻温度计(SPRT),真空腔气压测量采用133kPa或1.33kPa量程的薄膜电容规。铂电阻温度计和薄膜电容规以及相应的数据采集系统都分别经过了NIST温度和气压计量部门的校准。 图 2‑ 3显示了从初始温度305.15K(前一个试验温度)到当前控制温度320.15K整个过程中温度随时间的变化过程和稳定性。从图 2‑ 3中可以看出,约在4小时处,在经历一个约0.9K的轻微过冲和近10小时的单调降温过程后,在经历了总共约15个小时后量热计温度达到稳定。在量热计温度稳定测量阶段,即从第24小时到第28小时期间,量热计温度的波动范围为320.1474K~320.1524K,波幅为0.005K,此期间的温度平均值为320.1497K。[align=center][img]http://p3.pstatp.com/large/5e7a00041fc5400d3f33[/img][/align][align=center][color=#ff0000]图 2‑ 3 未进行压强控制情况下,量热计板温度从305.15K控制到320.15K时的温度响应曲线[/color][/align] 在图 2‑ 3中所显示的真空腔气压是未经控制的环境大气气压,从图中可以看出气压有很小的变化。在量热计温度达到稳定测量阶段后,真空腔内的气压平均值为99.53kPa,气压波动范围为99.46kPa~99.58kPa,波幅为0.12kPa。 图 2‑ 4显示了当真空腔气压从前一试验气压突然降低到低气压后整个的量热计温度相应过程和控制稳定性,图中所示的量热计温度控制设定点未发生改变一致控制在320.15K。在开始测试的初期,真空腔气压被抽取到一个固定值0.013kPa,用时15分钟。[align=center][img]http://p1.pstatp.com/large/5e810001cbb901cbaf64[/img][/align][align=center][color=#ff0000]图 2‑ 4 在控制温度为320.15K,气压从0.035kPa控制到0.013kPa过程中温度响应曲线[/color][/align] 需要注意的是在6小时处的气压有一个扰动,但这个气压扰动对量热计温度的影响很小。另外还需要注意的是图 2‑ 4的左边Y坐标轴,与图 2‑ 3相比,图 2‑ 4中放大了温度差,由此可以更清晰的观察量热计温度的变化。 随着气压的突然降低,由于空气导热的减小,通过被测试样的热流量也随之降低,由此造成量热计温度逐渐升高并约在4小时后达到最高点320.8K,这与图 2‑ 3中的温度过冲相似。随后,量热计温度在一个约为22小时的时段内发生了围绕设定点320.15K附近的收敛式振荡,这种振荡现象有些令人惊讶。在43小时到47小时时间段内达到了热平衡,这比图 2‑ 3中所达到的热平衡时间段晚了近20小时。在稳态测量时间范围内,量热计温度的波动范围为320.1476K~320.154K,波幅为0.006K,此期间的温度平均值为320.1506K。[b][color=#ff0000]3. 上海依阳公司对材料热导率测试中实现气氛和气压精确控制[/color][/b] 依阳公司的热导率测试系统采用的是稳态热流计法,试样的热面温度最高为1000℃,试样的冷面温度最低为20℃,气压控制范围为6Pa至100.4kPa(1个大气压)。依阳公司的热流计法热导率测试系统主要应用于防隔热材料在高温和高空环境下的等效热导率测试评价。 在各种稳态法热导率测试设备中会经常用到冷却液冷却的冷板,如果冷板温度低于环境温度,且环境湿度比较大,则会在冷板上形成冷凝水,这将会严重的影响热导率的测量。因此,对于稳态法热导率测量装置来说,不论是不是需要进行气氛压力控制,试验环境中必须是干燥气体则是一个必要试验条件。[b][color=#ff0000]3.1. 气压控制系统[/color][/b] 在依阳公司的热流计法热导率测试系统的气压控制系统中,气压控制系统的整体设计思路与NIST的完全相同,但还是有以下三方面的微小区别:[quote] (1)气压控制范围为6Pa至100.4kPa(1个大气压),所以采用了INFICON公司的两个薄膜电容规气压传感器来覆盖这个气压范围,一个覆盖0.133~133.3Pa,另一个覆盖133.3Pa~133.3kPa。而不是像NIST那样采用了三个气压传感器。 (2)这两个传感器连接到一个INFICON VCC500真空控制器上控制一个数字真空阀INFICON VDE016,数字真空阀与干燥气体系统连接,根据不同的要求自动选择传感器进行气压的定点控制。而不是像NIST那样采用多路控制器进行控制。由于INFICON VCC500真空控制器在定点精确控制上有明显不足,气压控制波动较大,后改用自行研制的气压控制器。 (3)抽气系统仅仅采用了一个机械泵,真空腔体的极限真空度可以达到6Pa,并没有像NIST那样采用了隔膜泵和机械泵。[/quote][color=#ff0000][b]3.2. 气压控制3.2.1. 极限真空时的真空试验腔体的漏率[/b][/color] 真空腔空载情况下开启机械泵,约15分钟后真空腔体内的气压从大气常压降低到6Pa左右后将不再改变。达到极限气压后,此时关闭抽气管路并关闭机械泵,使得真空腔体处于自然状态,同时用数字真空计系统检测真空腔体内真空度的变化情况,由此来确定和考核真空腔体的漏率,检测结果如图 3‑ 1所示。[align=center][img]http://p1.pstatp.com/large/5e7d0002c895b6405a60[/img][/align][align=center][color=#ff0000]图 3‑ 1 停止抽气后真空腔体内的气压变化[/color][/align] 从图 3‑ 1所示的测试结果可以看出,关闭抽气管路后腔体内的气压基本按照线性规律缓慢上升,上升的速度为2.28Pa/h,经过14小时后腔体内的气压从6Pa左右上升到了38Pa左右,整个真空腔体的漏率为0.59m^3Pa/h。[b][color=#ff0000]3.2.2. 真空腔气压控制[/color][/b] 因为采用了两个薄膜电容规气压传感器来覆盖整个气压范围,一个覆盖0.133~133.3Pa,另一个覆盖133.3Pa~133.3kPa,所以针对不同的气压范围进行了相应的控制试验。但在实际压强控制过中发现,INFICON压强控制器的控制效果并不好,气压的波动性较大,因此最终我们采用了自行研制的压强控制系统来进行控制。[color=#ff0000]3.2.2.1.低气压压强控制试验[/color] (1)采用英富康真空控制系统进行低气压压强控制 所谓低气压是指真空腔内的真空度小于133Pa以下的气氛环境,133Pa也是其中一个电容薄膜真空计的最大真空度测量量程。整个低气压压强控制变化过程如图 3‑ 2所示。 试验开始阶段,首先全速抽真空,使得真空腔内的气压快速降低到15Pa左右,然后改变压强设定点为20Pa,控制参数设置为98,此时气压开始在20Pa上下大幅波动,后改变控制参数为1,气压开始逐渐收敛并恒定到20Pa左右。 为了检验加载氮气后对气压控制的影响,当真空腔内气压控制到20Pa后在控制阀的进气口处加载输出的氮气,由于加载的氮气会产生带有一定的压力,减压阀门调整最小刻度,加载后真空腔内的气压在20Pa上下波动较大,无论如何改变控制参数也很难控制稳定。 去除掉加载的氮气后,从新进行恒定气压控制,气压设定点分别为20Pa和10Pa,从图 3‑ 2中的控制曲线可以看出,真空腔内的气压在20Pa上下0.5Pa范围内波动,波动性较小,波动性基本在±2.5%以内。 通过以上试验可以说明为了达到很好的低气压控制的稳定性,加载的氮气压力越低越好。[align=center][img]http://p3.pstatp.com/large/5e7d0002c9e04033cafe[/img][/align][align=center][color=#ff0000]图 3‑ 2 低气压(100Pa以下)控压试验曲线[/color][/align] (2)采用自制真空控制系统进行低气压压强控制 采用自制的真空控制系统进行了初步的气压压强控制试验以后,专门针对低气压(采用1Torr真空计)并接通氮气供气系统进行了进一步考核试验。由于真空腔体的最低气压只能达到0.1Torr左右,所以设计了0.1Torr、0.3Torr、0.6Torr 和0.9Torr 四个气压控制点,整个气压控制过程如图 3-3 所示。[align=center][img]http://p3.pstatp.com/large/5e830001d23bbdd38b1d[/img][/align][align=center][color=#ff0000]图 3‑ 3 压缩氮气接通后的低气压恒定控制曲线[/color][/align] 所从图 3‑ 3所示的气压控制过程可以看出,气压从低点向高点进行恒定控制时,每次向上改变设定点时,都会由于充气使得气压产生超出量程范围的突变,然后再逐渐下降恒定在设定点上。这种现象的产生是由于导入的氮气为带有一定流量和压力的氮气,这个压力容易产生过量的氮气气体导入。 当气压恒定在0.9Torr后,逐渐向下设定气压控制点,气压向下恒定控制变化曲线如图 3‑ 3所示。[color=#ff0000]3.2.2.2.高气压压强控制试验[/color] (1)采用英富康真空控制系统进行高气压压强控制 采用了全开式真空泵抽取外加控制阀控制气压方式,控制阀外接大气,气压控制设定点分别为500Pa和300Pa,整个控制过程的气压变化曲线如图 3-4 所示。[align=center][img]http://p3.pstatp.com/large/5e7b0003f7a4c50b7695[/img][/align][align=center][color=#ff0000]图 3-4 高气压压强控制试验曲线[/color][/align] 从以上高气压控制试验可以看出,采用富士康的VCC 500 真空度的控制是台阶式的变化,而且并不一定能恒定在设定点上,实际恒定点与设定点有一定的偏差,但恒定点的气压很稳定。这种现象需要在实际使用过程中注意。 (2)采用自制真空控制系统首次进行各种气压压强控制试验 采用自制的压强控制器来控制气压变化,首先在控制器上设定5.5Torr进行了PID参数的自整定,自整定完成后分别对设定了17Torr、50Torr、500Torr和100设定点进行控制,整个控制过程中气压随时间变化曲线如图 3‑ 5所示,图 3‑ 6为局部放大后便于观察的变化曲线。 对整个控制过程数据进行分析后得到的结论是:在所有的气压控制点上,气压波动性都小于1%以下。[align=center][img]http://p1.pstatp.com/large/5e7b0003f8579daea883[/img][/align][align=center][color=#ff0000]图 3‑ 5 控制全过程中气压变化曲线[/color][/align][align=center][img]http://p3.pstatp.com/large/5e7a000429b4c4c92e0d[/img][/align][align=center][color=#ff0000]图 3‑ 6 控制过程中部分气压变化曲线(纵坐标缩小后)[/color][/align][b][color=#ff0000]3.2.3. 热流计法高温热导率测试[/color][/b] 为了研究气压波动性对热导率测试的影响,我们在热流计法热导率测试系统上进行了相应的考核试验。被测试样选用耐高温隔热材料,试样热面温度控制在1000℃,水冷板温度控制在20℃,真空腔内的气压控制在50Pa。试验过程中的各个测试参数的响应曲线如图 3‑ 7和图 3‑ 8所示。[align=center][img]http://p3.pstatp.com/large/5e7b0003fc058a0d2773[/img][/align][align=center][color=#ff0000]图 3‑ 7 试样热面和冷面温度响应曲线[/color][/align] 在试验的前4小时,试样热面温度处于恒定控制的初期还没有稳定,而腔体内部气压也没有处于稳定状态,在4.5小时时做了一次控制参数整定后,腔体内部气压很快进入恒定阶段,气压长时间的在50±0.5Pa区间内波动,波动率为±1%。 在控制参数整定过程中,气压波动剧烈,对冷面温度和热流密度的影响严重,从曲线中可以看到有明显的尖峰,但对试样热面温度影响并不大。[align=center][img]http://p3.pstatp.com/large/5e7d0002d4759aee6365[/img][/align][align=center][color=#ff0000]图 3‑ 8 试样厚度方向热流密度和腔体气压响应曲线[/color][/align] 在测试过程进入19个小时后,气压在50Pa处保持±1%的波动,冷面温度和热流密度达到了稳定,这时试样的热面温度为1000.2℃,波动率小于±0.1%;冷面温度为88.9℃,波动率小于±0.5%;热流密度为7928.3W/m^2,波动率小于±0.8%,计算获得的试样有效热导率为0.2611W/mK。[b][color=#ff0000]4. 结论[/color][/b] 通过以上试验可以得出以下结果: (1)两个结构的气压控制研究和试验证明,气氛压强对材料的热导率性能会产生明显的影响。 (2)在变温和变真空测试过程中,优先控制的是热面温度,正确的操作顺序是先在超过100Pa以上的气氛下将热面温度控制恒定在设定温度上,然后再进行不同气压设定点下的测量。因为气压可以很快的达到平衡,如果在热面温度还未恒定前先恒定了气压,则热面温度的恒定会需要很长时间。 (3)将气压波动控制在±1%,气压的波动将对材料的热导率影响不大,而且气压控制也不需要昂贵的控制设备。[b][color=#ff0000]5. 参考文献[/color][/b] (1) Kamran Daryabeigi. Effective Thermal Conductivity of High Temperature Insulations for Reusable Launch Vehicles. NASA/TM-1999-208972, 1999 (2)R. R. Zarr and W. C. Thomas, Initial Measurement Results of the NIST 500mm Guarded Hot Plate Apparatus Under Automated Temperature and Pressure Control. 31st International Thermal Conductivity Conference & 19th International Thermal Expansion Symposium, Proceedings: Thermal Conductivity 31/ Thermal Expansion 19, pp. 195 - 204[img=,640,20]http://ng1.17img.cn/bbsfiles/images/2018/02/201802011921102118_2230_3384_3.gif!w640x20.jpg[/img]

立式单双温区真空气氛管式电炉相关的耗材

  • 电炉丝
    电炉丝是用途最广泛、用量最大的发热材料。它的缺点是工作状态下自身处于很高的温度下(炽热状态),在空气中容易发生氧化反应而烧断;从电热能量转换方面来分析,由于产生部分可见光而使能量损耗;电炉丝往往以螺旋状态使用,通电时会产生感抗效应。 电热合金是将电能转化成热能的功能性合金材料,它的的最高温度可达1400度,在冶金、机械、石化、电气、建筑、军工、家电等领域中用于制造各种电热元件。目前,电热合金材料已成为一种重要的工程合金材料。 电热合金主要用于制造工作温度在500-1400度范围的电热元件。按其金相组织结构可以分镍鉻、镍鉻铁奥氏合金和铁鉻铝铁素体合金。两大合金材料产品。本公司电热合金产品具有高电阻率、熔点高、热膨胀系数小、高温抗氧化性能优异、化学稳定性好、表面负荷高、高温强度好、冷热加工和成型性好、安装维修性能好等优点...各项指标均达到瑞典康泰尔(KANTHAL)合金水平,品质一流! 特点 镍铬高电阻电热合金材质:cr20ni80、cr15ni60、材质:铁铬铝高电阻电热合金材质: 0cr25al5、0cr21a16nb、0cr27al7mo2、HRE 电炉丝为各种马弗炉,管式炉,窑炉等的常用加热元件。 注:根据用户要求的丝径,管径,材料,温度,阻值,形状,使用温度及图纸加工成型。 电热合金元件的特点 一.铁铬铝电炉丝特点是: ①使用温度高,如0Cr27Al7Mo2和HRE在大气中的最高使用温度可达1400℃; 熔点可以达到1520℃,各项技术指标可以和进口电热合金相媲美。 ②使用寿命长; ③允许的表面负荷大; ④抗氧化性能好,其氧化后生成AI2O3膜具有良好的抗化性和高电阻率; ⑤比重小于镍铬合金; ⑥电阻率高; ⑦抗硫性好; ⑧价格低于镍铬合金; ⑨缺点是随着温度升高,表现有塑性,高温下的强度低。 二.镍铬电炉丝的特点是: ①高温下的强度高; ②长期使用后再冷下来,材料不会变脆; ③充分氧化后的镍铭合金其辐射率比铁铬铝合金高; ④无磁性或者弱磁性; ⑤除硫气氛外,有较好的耐腐蚀性。
  • 欣维尔双排管真空气体分配器(实心节门塞)m3
    欣维尔双排管真空气体分配器(实心节门塞)m3
  • 马弗炉热电偶
    马弗炉,高温炉,箱式炉,台车炉,退火炉,管式炉,升降路中的热电偶有K型、S型、R型 B型…等等不同规格,两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。 热电偶测温的应用原理 热电偶是工业上zui常用的温度检测元件zhi一。其优点是: 测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。 测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶zui低可测到-269℃(如金铁镍铬),zui高可达+2800℃(如钨-铼)。 构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度,对于热电偶的热电势, 应该注意以下基本概念: 热电偶的热电势是热电偶两端温度函数的差,而不是热电偶两端温度差的函数; 热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关; 当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这热电偶的热电势仅是工作端温度的单值函数。   常用热电偶丝材及其性能 1、铂铑10-铂热电偶(S型,也称为单铂铑热电偶)Orton使用的就是这种热电偶 该热电偶的正极成份为含铑10%的铂铑合金,负极为纯铂;它的特点是: 热电性能稳定、抗氧化性强、宜在氧化性气氛中连续使用、长期使用温度可达1300℃,超达1400℃时,即使在空气中、纯铂丝也将会再结晶,使晶粒粗大而断裂; 精度高,它是在所有热电偶中,准确度等级zui高的,通常用作标准或测量较高的温度; 使用范围较广,均匀性及互换性好; 主要缺点有:微分热电势较小,因而灵敏度较低;价格较贵,机械强度低,不适宜在还原性气氛或有金属蒸汽的条件下使用。 2、镍铬-镍硅(镍铝)热电偶(K型) 该热电偶的正极为含铬10%的镍铬合金,负极为含硅3%的镍硅合金(有些国家的产品负极为纯镍)。可测量0~1300℃的介质温度,适宜在氧化性及惰性气体中连续使用,短期使用温度为1200℃,长期使用温度为1000℃,其热电势与温度的关系近似线性,价格便宜,是目前用量zui大的热电偶。 K型热电偶是抗氧化性较强的jian金属热电偶,不适宜在真空、含硫、含碳气氛及氧化还原交替的气氛下裸丝使用;当氧分压较低时,镍铬极中的铬将择优氧化,使热电势发生很大变化,但金属气体对其影响较小,因此,多采用金属制保护管。 K型热电偶的缺点: 热电势的高温稳定性较N型热电偶及贵重金属热电偶差,在较高温度下(例如超过1000℃)往往因氧化而损坏; 在250~500℃范围内短期热循环稳定性不好,即在同一温度点,在升温降温过程中,其热电势示值不一样,其差值可达2~3℃; 负极在150~200℃范围内要发生磁性转变,在室温至230℃范围内分度值往往偏离分度表,尤其是在磁场中使用时往往出现与时间无关的热电势干扰; 长期处于高通量中系统辐照环境下,由于负极中的锰(Mn)、钴(Co)等元素发生蜕变,使其稳定性欠佳,致使热电势发生较大变化。 3、镍铬硅-镍硅热电偶(N型) Orton的低温膨胀仪上使用的就是这种热电偶 该热电偶的主要特点是:在1300℃以下调温抗氧化能力强,长期稳定性及短期热循环复现性好,耐核辐射及耐低温性能好,另外,在400~1300℃范围内,N型热电偶的热电特性的线性比K型偶要好;但在低温范围内(-200~400℃)的非线性误差较大,同时,材料较硬难于加工。 4、铂铑30-铂铑6热电偶(B型) 该热电偶的正极是含铑30%的铂铑合金,负极为含铑6%的铂铑合金,在室温下,其热电势很小,故在测量时一般不用补偿导线,可忽略冷端温度变化的影响;长期使用温度为1600℃,短期为1800℃,因热电势较小,故需配用灵敏度较高的显示仪表。 B型热电偶适宜在氧化性或中性气氛中使用,也可以在真空气氛中的短期使用;即使在还原气氛下,其寿命也是R或S型的10~20倍;由于其电极均由铂铑合金制成,故不存在铂铑-铂热电偶负极上所有的缺点、在高温时很少有大结晶化的趋势,且具有较大的机械强度;同时由于它对于杂质的吸收或铑的迁移的影响较少,因此经过长期使用后其热电势变化并不严重、缺点价格昂贵。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制