推荐厂家
暂无
暂无
太阳能电池(光电材料)I-V特性测试系统 目前,石油、天然气等不可再生能源价格的居高不下,使得人类对太阳能电池(光电材料)的研究开发进入了一个新的阶段,国内很多实验室和科研院校也都加紧了对太阳能电池材料(光电材料)的研究和开发。 太阳能电池(光电材料)测试作为太阳能电池(光电材料)研究开发的一个环节,至关重要,需要专业的测试系统来完成。针对当前人们对太阳能电池材料(光电材料)的研究和开发,以及太阳能电池(光电材料)研究人员搭建太阳能电池(光电材料)测试系统的耗时耗力,我公司特推出太阳能电池(光电材料)测试系统,并已在很多太阳能电池材料(光电材料)研究、测试实验室广泛使用。 一、我公司太阳能电池(光电材料)测试系统的优势: 1. 技术服务全面 我公司始终把客户需求摆在首要位置,针对客户特殊需求量身定做,为客户提供全套解决方案,终身提供技术服务,为客户节省了搭建太阳能电池(光电材料)测试系统所消耗的时间和人力物力,同时也得到了客户的一致好评。 2. 针对性强 凭借雄厚的光电技术知识和行业经验,针对不同类型的太阳能电池(光电材料)以及客户对测试系统的不同需求,我公司对太阳能电池(光电材料)测试系统也做出了相应的调整,以达到较好的测试效果。目前,针对硅太阳能电池、多元化合物为材料的太阳能电池、功能高分子材料制备的大阳能电池、纳米晶太阳能电池等不同的太阳能电池,我公司也都搭建了不同的测试系统。 3. 性价比高 我公司太阳能电池(光电材料)测试系统采用国外知名公司仪器集成,信噪比高,性能稳定,技术先进,对太阳能电池(光电材料)的测试过程实现自动化,过程简单方便,测试结果在行业内也会具有一定的权威性和说服力。同时,我公司推出的整套太阳能电池(光电材料)测试系统具有很高的性价比。 4. 成熟的太阳能电池(光电材料)测试系统 凭借测试系统的高性价比以及全面的技术服务,我公司太阳能电池(光电材料)测试系统已在国内很多单位的实验室投入使用,包括清华大学等知名大学、国家权威的太阳能计量单位、中国科学院等研究机构以及众多的太阳能相关企业,经过大量客户对我公司太阳能电池(光电材料)测试系统的使用,证明了我公司的太阳能电池(光电材料)测试系统的成熟。 二、太阳能电池(光电材料)光谱响应测试系统简介 太阳能电池(光电材料)光谱响应测试,或称量子效率QE(Quantum Efficiency)测试,或光电转化效率IPCE (Monochromatic Incident Photon-to-Electron Conversion Efficiency) 测试等,广义来说,就是测量光电材料的光电特性在不同波长光照条件下的数值,所谓光电特性包括:光生电流、光导等。我公司的光谱测试系统由宽带光源、单色仪、信号放大模块、光强校准模块、计算机控制和数据采集处理模块组成。我们可以与用户密切协作,根据用户需要测试的样品的类型、测试指标、测试条件,设计和组建最适合每个客户测试需要的系统。 三、太阳能电池I-V特性测试系统简介 我公司太阳能电池I-V特性测试系统主要用来测试太阳能电池的I-V特性等。光源光谱和强度特性可模拟各种条件下的太阳光谱(AM0、AM1.0、AM1.5、AM1.5Global、AM2.0、AM2.0Global),稳定性高,均匀性好,均可达到A类标准,多种光照射面积尺寸;样品台可控温;高精度表头、可调负载和配套软件组成的系统能够通过计算机对测试参数进行设置,并且读取数据,在计算机内进行数据处理,绘制I-V和曲线和显示其它参数并打印输出;系统还可根据客户的具体情况和特殊需求进行相应的系统扩展太阳能电池(光电材料)IPCE/QE/量子效率/光谱响应测试系统 太阳能电池测试行业长期的经验,使得我公司太阳能电池(光电材料)IPCE/QE/量子效率/光谱响应测试系统始终处于行业领先位置。符合IEC, JIS, ASTM标准规定,我公司太阳能电池(光电材料)IPCE/QE/量子效率/光谱响应测试系统具有很高的稳定性和重复性。 作为光伏器件厂商和科研工作者,为了获得高效的产品,就需要一套高性能太阳能电池(光电材料)IPCE/QE/量子效率/光谱响应测试系统来帮助完成产品改进。我公司太阳能电池(光电材料)IPCE/QE/量子效率[font=宋体, MS So
一个国际科研团队撰文指出,他们使用无机配位体替代有机分子来包裹量子点并让其表面钝化,研制出了迄今转化效率最高的胶体量子点太阳能电池。据美国物理学家组织网9月18日报道,一个国际科研团队在最新一期的《自然-材料学》杂志上撰文指出,他们使用无机配位体替代有机分子来包裹量子点并让其表面钝化(不易与其他物质发生化学反应),研制出了迄今转化效率最高(达6%)的胶体量子点(CQD)太阳能电池。吸光纳米粒子量子点是纳米尺度的半导体,其能捕捉光线(既可吸收可见光,也可吸收不可见光)并将其转化为能源。人们可将其喷洒到包括塑料在内的柔性材料表面,制造出比硅基太阳能电池更便宜、更经久耐用的太阳能电池。而且,胶体量子点电池的理论转化效率可高达42%,超过硅基太阳能电池31%的理论转化率。今年7月,多伦多大学的科学家研制出了转化效率为4.2%的胶体量子点太阳能电池。胶体量子点太阳能电池研制领域最大的挑战在于如何使量子点紧密结合在一起,因为量子点之间的距离越大,转化效率越低。然而,量子点通常由多出其1—2纳米的有机分子包裹,在纳米尺度上,这有点大,而有机分子是制造胶体的重要成分。为此,加拿大多伦多大学、沙特阿拉伯阿卜杜拉国王科技大学、美国宾夕法尼亚州立大学的科学家们开始考虑使用无机配位体来让量子点紧紧依附在一起,以尽可能节省空间。结果,科学家们不使用“庞大”的有机分子也获得了胶体的特征。“我们在每个量子点周围包裹了一单层原子,它们将量子点包裹成非常紧密的固体。”该研究的领导者、多伦多大学电子与计算机工程系博士后唐江(音译)表示。研究合作者、宾夕法尼亚州立大学的约翰-艾斯拜瑞说:“最新研究表明,我们能剔除电荷陷阱——电子陷入的位置。量子点紧密地结合在一起以及消除电荷陷阱,双管齐下使电子能快速且平滑地通过太阳能电池。”美国国家可再生能源实验室委派的实验室证实,新研制出的胶体量子点太阳能电池不仅电流达到了最高值,高达6%的整体能量转化效率也创下了纪录。“最新研究表明,无机配位体在构建实用设备方面具有强大的作用。”量子点太阳能电池研制领域的领导者、芝加哥大学教授德米特里·塔拉品说,“新的表面化学为我们制造高效且稳定的量子点太阳能电池铺平了道路,也将对其他利用胶体纳米晶体制造的电子和光电耦合设备产生影响。全无机方法的好处包括能显著改善电子的运输速度,让设备更加稳定等。”
研制高效的低成本的太阳能电池是全球共同面临的巨大挑战。染料敏化太阳能电池因其具有成本低廉、工艺简单、可小型化、环境友好等优点,展现出广阔的产业化前景。而实现太阳能电池高转化效率的首要途径是尽可能提高太阳光的利用率,这就要求电池电极能最大限度地捕捉太阳发出的各种光线,并实现高效的光电转换。新材料的研发为提升太阳能电池的效率提供了新思路。黑磷,作为一种具有二维层状结构的直接带隙半导体材料,展现出优异的光电性能,被广泛视为新的“超级材料”,在半导体工业、光电器件、光学探测、传感器、光热治疗等多个领域展现出巨大的潜在应用价值。近期研究发现,大小仅为几个纳米的黑磷量子点还具有很高的近红外消光系数,可实现近红外光的高效吸收。近期,中国科学院深圳先进技术研究院喻学锋研究员与中南大学杨英副教授以及肖思副教授等合作,创新性地将黑磷量子点应用于构筑染料敏化太阳能电池的光阴极。团队利用黑磷量子点的近红外强吸收和高光电转换能力,将黑磷量子点沉积于多孔导电聚苯胺薄膜表面,制备出可红外光响应的光阴极,与光阳极形成互补的光吸收,将器件的光吸收范围扩展至可见-红外波段,从而组装成可双面进光的准固态染料敏化太阳能电池。电池性能测试结果表明,沉积黑磷量子点后光阴极实现了对低能红外光子的充分利用,并有效增加了器件的光生载流子浓度,从而将太阳能电池的光电转换效率提高了20%。该研究成果表明黑磷在太阳能电池、光伏器件等领域的巨大应用潜力。相关论文发表在AdvancedMaterials(DOI: 10.1002/adma.201602382),并被选为当期封面故事。巨纳集团低维材料在线商城91cailiao.cn,专注材料服务,主要销售以低维材料为代表的相关的实验室耗材和工具,比如各类二维材料(包括狄拉克材料),一维材料,零维材料,黑磷BP,石墨烯,纳米管,HOPG,天然石墨NG,二硫化钼MoS2,二硒化钼MoSe2,二硫化钨WS2,hBN氮化硼晶体,黑磷,二碲化钨WTe2,二硫化铼ReS2,二硒化铼ReSe2量子点,纳米线,纳米颗粒,分子筛,PMMA.....积极为广大科研院所提供更加优异的低维材料,推动新型材料的研究。