食品中矿物油分析二维色谱联用系统

仪器信息网食品中矿物油分析二维色谱联用系统专题为您提供2024年最新食品中矿物油分析二维色谱联用系统价格报价、厂家品牌的相关信息, 包括食品中矿物油分析二维色谱联用系统参数、型号等,不管是国产,还是进口品牌的食品中矿物油分析二维色谱联用系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合食品中矿物油分析二维色谱联用系统相关的耗材配件、试剂标物,还有食品中矿物油分析二维色谱联用系统相关的最新资讯、资料,以及食品中矿物油分析二维色谱联用系统相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

食品中矿物油分析二维色谱联用系统相关的厂商

  • 400-827-8086
    上海仪真分析仪器有限公司(仪真分析)是专业从事于仪器研发、生产、销售、服务于一体的现代化企业,为环境监测、食品安全、石油化工、地质调查、能源材料和临床检测等分析实验室提供样品前处理到分析测试全方位解决方案。仪真分析拥有一流的由多位留学博士、硕士和具备专业技能的技术开发及服务团队,为中国客户提供多方位的技术服务。我们致力于市场研究与应用开发,将世界领先的分析技术及行业标准与中国发展相结合,开发出本土化的解决方案。我们的解决方案包括:水质及土壤烷基汞全自动分析系统重金属湿法消解全自动石墨消解平台挥发性有机物全自动水土吹扫捕集系统全自动LC-GC二维在线检测食品中矿物油全自动食品中新型污染物监测平台对3-氯丙醇酯、缩水甘油酯、塑化剂、二噁英等实现样品前处理和检测ICP-MS仪器高端进样器及激光剥蚀系统基于XRF的便携式、实验室及在线石油化工产品的元素分析水质及土壤合规监测常规参数的全自动分析系统环境空气/固定污染源、土壤水质,氢气杂质,臭氧消耗层物质/温室气体和食品安全/风味领域VOCs的分析检测等公司的管理理念、研发实力、销售网络和技术支持得到多个全球仪器生产商的广泛认可。仪真分析得到知名仪器公司Brooks Rand Inc., Seal Analytical,Entech,Spark Holland , Axel Semrau , LCTech , XOS , Teledyne Cetac 等公司在大中国区的独家授权,做为其增值供应商,负责集成与中国分析应用相关的仪器以及整体解决方案。 目前公司总部设在上海,在香港,北京设有办事处,为国内广大客户提供优质的服务,位于上海的实验室,为国内广大客户提供专业的全自动检测应用方案及培训基地。
    留言咨询
  • 山东中煤工矿物资集团五公司 座落在济宁市市中心,位于孔孟之乡,美丽的微山湖畔,交通十分便利。京杭大运河和京沪铁路、京九铁路纵贯南北、兖石铁路和济新铁路横穿东西,又是104、105国道和327国道的交汇处,通讯发达、交通便利、人杰地灵、矿产资源分布广、品种多、储量大,是全国八大煤炭基地之一,已探明的储量200多亿吨。兖矿集团、淄博矿业、肥城矿业、枣庄矿业、新汶矿业、临沂矿业、济宁矿业、里能矿业、裕隆矿业等大型矿业集团相继落户于济宁周边,是闻名全国的煤炭基地。
    留言咨询
  • 南京仁华色谱科技应用开发中心是专业从事色谱仪器技术和应用研究开发、生产经营和服务的高科技企业,同时代理和配套国内外先进分析仪器。公司致力于气相色谱分析方案整体解决的研究,为客户从售前仪器选型咨询、分析方法开发、仪器安装调试、使用人员技术培训、售后技术支持等全方位提供交钥匙式一揽子价廉质优的服务,让客户真正“买得放心,用得安心”,彻底免除仪器使用的后顾之忧。  公司自2004年成立以来业绩不断扩大,成功完成了多项色谱分析方案的开发与应用:油品及馏份油模拟蒸馏气相色谱分析系统,燃气(包括天然气、液化石油气、人工煤气、合成燃气等)专用气相色谱分析及热值测定系统,炼厂气专用气相色谱分析系统,煤制甲醇催化制轻烃汽油气相色谱分析系统,大气中痕量笑气N2O专用气相色谱分析系统,大气中非甲烷总烃和苯系物分析系统,汽油中甲乙醇含量气相色谱分析系统,高纯氢微量杂质和纯度色谱分析系统,食品级二氧化碳中微量苯及其他芳烃含量气相色谱分析系统,有机化工产品中微量水份含量专用气相色谱分析系统(带反吹功能),工业级六氟化硫SF6过程控制及产品质量分析专用气相色谱系统,电子级八氟丙烷CF8过程控制及产品质量分析专用气相色谱系统,精丙烯、精乙烯全分析气相色谱系统,二甲醚气相色谱分析系统,沼气气体成份及沼液中有机酸气相色谱分析系统,矿井气气相色谱分析系统,加氢脱硫催化剂性能评价气相色谱分析系统,储油罐中油气含量在线分析气相色谱系统、秸秆等生物质高温汽化气体成份在线气相色谱分析系统等等。  多年来,公司成功运用国内技术领先的GC9890系列气相色谱仪为许多客户单位解决了各种应用分析课题,得到了广大在用客户的好评。目前公司与中国石油大学、东南大学、南京中医药大学、南京农业大学、南京林业大学、西南石油大学、中国矿业大学、南京工业大学、中科院南京土壤研究所、江苏省农业科学研究院、安徽省产品质量监督检验研究院等科研院所均有良好的合作,从而赢得了高等院校、质检、科研机构、特种气体、环保、石化、化工、化肥、煤矿、制药、食品、电力、酿酒等众多领域客户的青睐。 由于GC9890B/A气相色谱仪等效采用了安捷伦公司5890气相色谱仪核心技术,许多用过安捷伦公司气相色谱仪的用户使用我公司产品也觉驾轻就熟,所以客户逐年增多。  公司拥有一支经验丰富、素质过硬的技术队伍,不乏具有长年在仪器生产、分析应用方面的高级工程师和专业技术人员,为客户仪器的顺利使用提供了强有力的技术保障。“诚信、守诺、服务社会”是我们的信念,“质量第一、信誉第一、真诚服务求发展”是我们的宗旨;为您服务,我们以此为荣;您的满意是我们不懈的追求,热忱欢迎您的惠顾。
    留言咨询

食品中矿物油分析二维色谱联用系统相关的仪器

  • 5D来啦!分离跨入新时代! 5D Ultra-e系统是岛津独有的特色分离系统的再次绽放,基于双柱箱的全二维色谱技术结合超快速三重四极杆型气相色谱质谱联用仪GCMS-TQ8040,同时系统前端搭载HPLC在线分离系统,提升全二维色谱分离能力的同时体系自动化程度大幅提高,分析效率卓越改进。5D Ultra-e是目前可以提供最更高分离度和更高选择性的分析系统,是超复杂化合物分离分析强有力的对应工具。 什么是5D? 5-Dimensional色谱系统=HPLC+1stGC+2ndGC+MS/MS(2D) 5D Ultra-e系统由HPLC(Prominence),液相-气相传输接口(自动进样器AOC-5000 Plus和OPTIC-4PTV),全二维气相色谱(GC-2010Plus和ZX-2调制解调器)以及三重四极杆型气相色谱质谱联用仪(GCMS-TQ8040)四个单元组成。 5D是怎么工作的? 样品首先通过HPLC中色谱柱进行分离,随后AOC-5000 Plus自动进样器只将目标馏分注入至OPTIC-4PTV气相进样口,样品通过装有ZX-2调制解调器的双柱箱全二维气相色谱系统进行分离,最后通过GCMS-TQ8040进行高灵敏度检测。整个分析过程通过5D Solution软件统一控制,所得数据结果过ChromSquare 2D软件进行解析分析。5D系统应用在哪里? LC-GC×GC-MS/MS是复杂样品分析的利器 针对复杂样品的定性和定量分析,如石油化工行业(油品中烷烃、烯烃和芳烃类组分的族组成分析等)、食品安全(植物油等)和复杂环境样品中有毒有害物质的测定等。植物油中矿物油含量的分析 2008年,欧盟委员会规定了乌克兰向日葵油中矿物石蜡(MOSH)的限量值为50 mg/Kg煤焦油分析
    留言咨询
  • Metrohm 燃烧炉-离子色谱联用系统 开启分析领域的新纪元。传统固态和高粘度样品分析方法(氧弹燃烧法)需要耗费大量人力,燃烧炉离子色谱联用系统可以取代传统方法,实现全自动分析,并且能够同时检测卤素和硫。由于可以在非常短时间内得到非常好的实验结果,因此燃烧炉离子色谱联用系统可以保证样品检测的高效性。原理在全自动分析过程中,样品先在氩气或者氦气氛围下在燃烧炉中热分解,随后被氧气氧化,所得气体产物会在吸收液中被吸收,之后吸收液样品进入离子色谱进行分析。燃烧炉离子色谱联用系统优势1.将一切可燃物质纳入离子色谱分析的范围2.可以同时检测卤素和硫元素3.可以同时对不同类型卤素的含量分别进行定量分析4.完全符合针对无卤产品的非常新的检测方法(RoHS,WEEE,&hellip &hellip .)5.样品检测通量高6.高准确度,高精确度,高稳定性7.可通过MagIC NetTM魔术师色谱工作站进行仪器控制和数据处理,并且所有信息可显示在同一个检测报告中。8.火焰传感器可确保样品能够在短时间内得到充分的燃烧。9.符合FDA和GLP标准。10.基于Metrohm公司独有的单标多点校正技术(MiPT),只需要一个标准品即可进行标准曲线绘制。11.只需一套自动进样系统,即可实现固体和液体样品的全自动进样。应用领域瑞士万通离子色谱与燃烧炉的联用系统,使得只要是能够燃烧的样品,均可通过燃烧炉离子色谱联用系统进行分析,因此该技术可在众多领域得到应用,例如:在原料,中间产物和之后产品的品质控制方面。而在环保方面,检测结果可以满足各种法规和标准的要求,如:DIN EN 228,IEC 60502-1,RoHS,WEEE等。以下领域和产品可以通过燃烧炉离子色谱联用系统进行检测:1.环保 油,废塑料,玻璃,活性炭 2.电子元件 电路板,树脂,电缆,绝缘材料 .3.燃料 汽油,煤油,原油,燃料油,煤炭,催化剂 4.塑料 聚合物,如聚乙烯,聚丙烯5.染料 色素,油漆6.医药 原料,中间产物,成品应用题目燃烧炉离子色谱联用技术测定S-苄基硫脲盐酸盐燃烧炉离子色谱联用技术测定高浓度RoHS指令标准分析参考物质(ERM-EC681k)燃烧炉离子色谱联用技术分析燃料中硫微波燃烧样品结合单标多点校正技术分析卤素燃烧炉离子色谱联用技术测定高粘性油样燃烧炉离子色谱联用技术分析残留溶剂燃烧炉离子色谱联用技术电缆绝缘材料燃烧炉离子色谱联用技术DMF-甲醇混合物燃烧炉离子色谱联用技术分析脱盐原油燃烧炉离子色谱联用技术测定高浓度RoHS指令标准分析参考物质(ERM-EC680k)燃烧炉离子色谱联用技术分析营养油中的氯浸出实验、燃烧炉离子色谱联用技术分析乳胶和PVC手套燃烧炉离子色谱联用技术分析燃煤燃烧炉离子色谱联用技术分析土壤、沉积物和岩石燃烧炉离子色谱联用技术分析表面活性剂中的氟化物燃烧炉离子色谱联用技术分析药物中碘燃烧炉离子色谱联用技术分析纤维素和矿物油燃烧炉离子色谱联用技术分析彩色显示器材料燃烧炉离子色谱联用技术分析对苯二甲酸燃烧炉离子色谱联用技术分析钛金属粉末燃烧炉离子色谱联用技术分析不同类型燃煤样品燃烧炉离子色谱联用技术测定地质对照品中的氟和氯
    留言咨询
  • 天然提取物中通常包含多酚类、类胡萝卜素类、黄酮类和脂类等结构类似物,它们的差异可能仅仅体现在双键的数量或位置、烷基侧链的长度不同。传统的一维液相色谱仪系统无法达到足够的分离效率来充分地分离这样的混合物。因此,通过全二维液相色谱将两种独立的分离模式结合起来(比如正相和反相),经一次分析,就能够全面而充分地分离此类混合物。Nexera-e通过对第一洗脱液进行精细馏分捕集可以达到最大可能的峰容量,并且凭借其双样品环交替切换设计,连续地将所有馏分在线注入第二维系统。Nexera-e结合日本岛津公司的二维液相色谱阵容,使得主要推向制药和临床市场的Co-Sense系列(可用于生物样本分析(BA)或用于杂质分析)颇具特色。由于能对复杂基质的样品进行全面的分析,Nexera-e非常适用于各种研究领域和应用领域,包括蛋白水解、食品和天然提取物。(1) 增强型分离和高速分析的卓越性能Nexera-e具有出色的峰容量,远远超越了普通的液相色谱,从而使得该系统能够对自然提取物和其他复杂基质中的结构类似物进行高效分离。传统全二维液相色谱系统在第一维系统使中用低流速,在第二维系统运用具有快速分析周期的超快速分析。Nexera-e系统中,LC-30AD输液泵可以为第一和第二维液相色谱分析提供广泛的分离参数。10mL的微体积柱塞确保为第一维分析在低流速时提供稳定的液流,同时在第二维分析中,世界级的130 MPa系统耐受压力可以保证在使用亚2微米填料色谱柱进行超快速及超高压分析时,提供1-3 mL/min的稳定液流。此外,即使某个化合物在从第一维液相导入第二维液相时被切割成多个馏分,LC-30AD出色的保留时间重现性依旧能够确保可靠的数据分析。同时,Nexera-e系统中两个循环使用的样品环内部体积差别极小,可从最大程度上保证数据的重现性。(2) 对目标混合物进行可靠的分析:高灵敏度液相色谱-质谱联用法和二极管列阵检测器Nexera-e可以和高灵敏度的LC/MS/MS、LCMS-IT-TOF以及SPD-M30A联用。LCMS-8030/8040/8050拥有一流的灵敏度,通过其超速的正/负离子切换(UFswitching)和和超快速扫描(UFscanning)而轻松快捷地分析结构类似物。流通池光程长为85 mm的光电二极管阵列检测器SPD-M30A能够对微量成分进行高灵敏度分析。(3) 轻松分析大量数据:ChromSquare软件Nexera-e全二维液相色谱数据分析软件——ChromSquare LC′LC,采用交互式用户界面,使用户一看便能获得每个“点”的详细信息。ChromSquare软件可在同一屏幕上显示等高线图(一般视图和放大视图),MS/MS谱图和第二维分析所得MS谱图。因此,在等高线图显示区选中的线点信息和MS谱图及色谱图一起显示,便于查看和分析数据。由于结合了两种分离模式,收集在样品环中来自第一维液相色谱仪的馏分,可能会在第二维分析中充当样品溶剂。在这种情况下,分离及/或色谱峰形可能由于溶剂效应而变形。用于生成Nexera-e方法的LC′LC辅助软件,包含一个自动梯度功能。这使得在第一维梯度洗脱的基础上,创建或改变第二维梯度洗脱参数变得简单。这样很好的解决了第二维色谱中各成分的分离和色谱峰形的难题。
    留言咨询

食品中矿物油分析二维色谱联用系统相关的资讯

  • 矿物油分析最新进展-德国奶粉事件分析方法解读
    10月25日,中国中央电视台CCTV 13“新闻直播间”报道了“德机构称部分婴幼儿奶粉检出矿物油残留”的食品安全新闻。中国安捷伦科技与仪真分析多年前就关注矿物油食品安全问题,并与欧洲保持同步,将欧洲最新的矿物油分析解决方案提供到国内。目前,国内已经有多家用户在使用此分析系统。导读中央电视台所称的德机构,实际上是德国著名的公益检测机构foodwatch。他们最近在德国、法国和荷兰随机抽样了16种罐装婴儿配方奶粉和婴儿奶制品,分析是否含有矿物油残留。并在2019年10月24日,公布了其检测方法和结果。以下是该报告中使用的分析方法的解读。1分析方法参照欧盟JRC(联合研究中心)方法:在线LC-GC-FID二维色谱联用法定量,检测限0.5 mg/kg;使用GC*GC-TOF联用法定性。2参与分析的实验室3家经过认可的实验室。3实验前处理用氧化铝除去MOSH干扰物、环氧化去除MOAH测量干扰。4实验结果4.116种受试产品中,有15种产品的MOSH/POSH含量高于0.5mg/kg的定量限,在5 mg/kg以上至8.4 mg/kg的范围内有4个样品。4.216份样本中,有8份(50%)检测到MOAH阳性,含量范围为0.5mg/kg至3.0mg/kg。阳性产品中MOAH含量表明它们受到了未完全纯化的矿物油的污染。4.3使用GC*GC-TOF分析技术对MOAH阳性物质中相应的标记物质和物质组的阳性结果进行分析验证,证明了污染物来自矿物或化石来源。4.4矿物油污染来源不能完全确定,可能来自生产链,也可能来自包装材料。虽然此次抽检的产品是从德国市场取样,但是这些奶粉工厂生产的产品是否也销售至需求量庞大的中国市场,是一个值得探究的问题。虽然中国目前奶粉的各项检测指标中,并没有关于芳香烃类矿物油(MOAH)的抽检。但作为事件的扩展,这些企业的中国方面也正对国内配供的婴幼儿配方奶粉做出安全的保证。矿物油矿物油(MOH)是以石油、煤或天然气为原料,经过加工提炼,获得的一类碳原子个数不同的烃类混合物,常见的碳数在C10-C50之间。外观类似日常的油脂,但又不来自于动物或植物。为了和动植物油脂有所区别,故称矿物油。常见的矿物油种类繁多,可能是燃料油、润滑油、白油、蜡油和除尘剂等等。随着产品的大量使用,矿物油逐渐渗入到我们的食物链中。矿物油的毒性和法规根据毒理程度,矿物油目前被分成两类,一类是由直链、支链或环烷烃组成的饱和烃类矿物油(MOSH),另一类是含有苯环的芳烃类矿物油(MOAH)。研究表明,碳数在C16-C35之间的饱和烃类矿物油(MOSH)在体内不易被代谢,在组织中出现蓄积现象,长期食用会在淋巴结、肾脏和肝脏等组织内蓄积。芳香烃类矿物油(MOAH),常含有一个至多个苯环,含有多于三个苯环的MOAH被认为可能具有致突变和致癌性。德国联邦风险评估研究所(BfR)明确要求用于食品包装的接触材料 MOSH 迁移量小于 2mg/kg, MOAH 小于 0.5mg/kg。2017 年,欧盟发布了关于“监测食品以及食品接触材料和物品中矿物油烃类”的建议性指导文件,指出矿物油可以通过环境污染、收获和食品生产等残留在食品中。矿物油分析解决方案(Chronec LC-GC-FID)矿物油检测长期以来一直是非常有挑战的难点,首先要将样品中矿物油与复杂的介质分离,再通过气相色谱检测。由于矿物油无处不在,获得干净的仪器很重要。为了达到足够的灵敏度,需要大体积进样技术。由于矿物油中MOSH和MOAH的毒性不同,欧盟要求必须分开定量。矿物油在2011年被报道发现以来,欧洲的分析化学家经过多年努力,终于实现了矿物油可靠分析方法(在线LC-GC-FID)。方法初始,分析仪器由科学家自行搭建而成。仪器可靠性和耐用性方面一般。欧洲著名的仪器方法集成公司德国Axel Semrau公司,在5个博士组成的硬件和软件攻关团队集体努力下,实现了可靠性和耐用性非常高的分析系统。系统组成和特点如下:系统清洁和改装技术,去除背景使用液相色谱和硅胶柱将矿物油从介质(油脂等)中分离;部分溶剂蒸发技术保证450ul的样品在气相色谱中的分析,满足超低量分析;双通道双FID技术对MOSH和MOAH同时定量检测(它们分别是成千上万的混合物),节省分析时间;全自动氧化铝和全自动环氧化技术,进一步提高样品分析灵敏度与准确度;具有馏分收集功能,可以由GC*GC-QTOF对MOAH定性分析,确定来源;可使用LC-GC*GC-TOF 联用直接对矿物油各成分进行定性分析;软件Chronect可以兼容市场上所有主要品牌的LC和GC,无缝对接。Chronect 矿物油分析系统用户Chronect矿物油分析系统在欧美已经成功拥有了超过70家用户,包括BfR (德国联邦风险评估研究所),Eurofins(欧陆科技),德国SGS,德国IFP实验室, 费列罗(Ferrero)等著名欧洲食品检测实验室。本次foodwatch使用的3家独立实验室均使用Axel Semrau的分析系统:在线LC-GC-FID定量和GC*GC*TOF 定性。或许有被模仿,但AS在矿物油分析的专业性从未被超过,AS公司技术的矿物油分析方案的检测限为0.5 mg/kg。仪真分析和安捷伦中国仪真分析历来密切关注食品卫生安全的动态,为消费者提供咨询、建议及检测决方案。德国Axel Semrau公司选择了仪真分析作为大中国区的合作伙伴,授权并传授了其矿物油分析系统的设立,改装和分析技术。仪真是中国安捷伦科技的合作伙伴(VAR),首先共同推出安捷伦液相和气相色谱平台上的构建的Online-LC/GC-双通道FID+MS全自动矿物油检测方案,完全符合欧盟标准方法,并被国标或行标,如粮油系统行标-矿物油在油脂中的检测(草案),以及矿物油在大米中的检测(草案)作为推荐方案,被多位中国用户成功使用,食品企业未雨绸缪,已经建立内部监控计划,以可靠的数据应对突发事件。德中合作的矿物油分析实验室(仪真分析和北京理化分析测试中心共享实验室)已经于2019年8月正式揭牌,成为国内科研检测人员研究矿物油分析方法的平台。揭牌过程由仪器信息网全程跟踪报道(https://www.instrument.com.cn/netshow/SH101203/news_492242.htm)。欢迎光临2019.10.30-31的北京CIFSQ仪真分析展台或者2019.11.5-8 布拉格RAFA2019的Axel Semrau展位,有矿物油全自动分析系统及其它食品分析热点仪器展出。 请联系仪真分析或安捷伦科技,获取更多产品信息。
  • 合力推动中国矿物油分析发展 ——“矿物油分析测试技术研究合作实验室”揭牌仪式 暨矿物油分析技术最新进展学术交流
    p style=" text-indent: 2em " strong 仪器信息网讯 /strong 2019年8月27日,北京市理化分析测试中心与德国Axel Semrau公司的“矿物油分析测试技术研究合作实验室”揭牌仪式暨矿物油分析技术最新进展学术交流成功召开。北京市科学技术研究院副院长刘清珺、北京市粮食和物资储备局副局长阎维洪、中国分析测试协会汪正范、北京市科学技术研究院技术转移处处长郭鲁钢和科研处副处长李彦雪,北京市理化分析测试中心副主任高峡、研究员武彦文,以及德国Axel Semrau公司执行总监Dr. Andreas Bruchmann、仪真分析仪器有限公司技术总监朱丽敏、安捷伦大中华区战略规划总监何峻等20多人参加了合作实验室揭牌仪式和矿物油分析技术最新进展学术交流活动。& nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/b6953265-6131-47f1-a5c3-6ed3461420f3.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p style=" text-align: center " span style=" font-size: 14px " strong 活动现场 /strong /span /p p style=" text-indent: 2em " 从各自未来发展战略需求出发,北京市理化分析测试中心与德国Axel Semrau公司成立了“矿物油分析测试技术研究合作实验室”。合作实验室将开展仪器应用、方法培训与标准验证等方面的工作。双方希望通过合作,优势互补,共同推动液相色谱-气相色谱联用的矿物油分析技术在中国的本土化应用,特别是食品中矿物油的测定方法标准的建立,为中国食品安全出力,为未来具备矿物油在国内食品中分布的筛查、降低膳食中有害物质含量等,提供技术储备和方法支持。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/9933b358-d5da-4070-9b37-c1a9fae3b75a.jpg" title=" 1_副本.jpg" alt=" 1_副本.jpg" / /p p style=" text-align: center " strong style=" font-size: 14px text-indent: 2em " 北京市科学技术研究院副院长刘清珺博士 /strong /p p style=" text-indent: 2em " 北京市科学技术研究院是北京市属的大型多学科高水平科研机构,立足应用基础研究、战略高技术研究、重大公益研究和科技服务发展定位。刘清珺简介了北京科学技术研究院的六大中心三大平台的概况,其中检测分析与测试平台即以北京市理化分析测试中心为主,形成了仪器设备开放共享的新型运行机制,加强应用研究、高新技术研究和重大科技攻关,不断提高科研开发和自主创新能力,形成竞争领先优势。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/32d335da-719a-4300-bcce-9dcd20990b76.jpg" title=" 6.jpg" alt=" 6.jpg" / /p p style=" text-indent: 2em text-align: center " strong span style=" font-size: 14px " 北京市理化分析测试中心副主任高峡博士 /span /strong /p p style=" text-indent: 2em " 经过近40年的发展,北京市理化分析测试中心成为了首都地区唯一的综合性分析科学研究机构、最大的开放共享分析测试平台。目前,中心综合实力在全国地方分析测试中心中位居第2,进入全国第三方理化分析检测机构前10名,中心连续四年实现经济总量超亿元。 /p p style=" text-indent: 2em " 北京市理化分析测试中心围绕着食品药品安全、环境监测、材料分析、生物技术、国产科学仪器应用示范等主要领域开展分析测试科学研究和技术服务工作,形成了食品药品质量安全检测技术、水土气环境监测与检测技术、未知物成分分析与鉴别技术等技术品牌。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/0b03a027-e367-49f7-b0ba-6fe69288b4a0.jpg" title=" 13.jpg" alt=" 13.jpg" / /p p style=" text-indent: 2em text-align: center " span style=" font-size: 14px " strong 德国Axel Semrau公司执行总监Dr.Andreas Bruchmann /strong /span /p p style=" text-indent: 2em " 在过去的35年里,Axel Semrau及其员工一直致力于样品制备、色谱、化学合成以及应用优化工作站的开发、销售和支持。Axel Semrau公司正在开发自己的硬件和软件,以便能够提供独特、强大的食品分析特别是粮油在线全自动样品前处理和多维色谱联用的解决方案。Axel Semrau的目标是以优秀的应用解决方案结合基于自身开发的优秀软件而闻名于世。此外,Axel Semrau这个名字将与卓越的客户服务和客户关系密切相关,包括客户、供应商或合作伙伴。 /p p style=" text-align: center " span style=" font-size: 12px " strong /strong /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/f6d8ceb5-aea2-41d4-9b9b-d88b2fbf10f7.jpg" title=" 16.jpg" alt=" 16.jpg" / /p p style=" text-align: center " span style=" font-size: 14px " strong 仪真分析仪器有 span style=" font-size: 14px " 限公司技术 /span 总监朱丽敏博士 /strong /span br/ /p p style=" text-indent: 2em " 上海仪真分析仪器有限公司(仪真分析)成立于2005年,具备研发、集成、生产、代理、销售和技术服务的仪器供应商,为环境监测、食品安全和临床检测等分析实验室提供样品前处理到分析测试全方位解决方案。仪真分析的技术团队由多位留学博士及硕士和专业培训的工程师组成,在上海、北京及广州设有主要的办公室,上海设有研发试验和培训实验室。 /p p style=" text-indent: 2em " & nbsp 仪真分析与Axel Semrau& nbsp 公司合作,应用Axel Semrau的软件平台,与仪器公司合作开发适合中国应用的包含软件与硬件的解决方案。2018年,仪真分析成为了安捷伦VAR合作伙伴,推出食品中矿物油检测的解决方案。 /p p style=" text-align: center " span style=" font-size: 12px " strong /strong /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/01eab20c-b922-482a-83d1-c1dbb5245aaf.jpg" title=" 14.jpg" alt=" 14.jpg" / /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/0e392f1d-f066-4b4e-8bda-3353c882bbce.jpg" title=" 8.jpg" alt=" 8.jpg" / /p p style=" text-align: center " span style=" font-size: 14px " strong 德国Axel Semrau公司执行总监Dr. Andreas Bruchmann和 /strong /span br/ /p p style=" text-align: center " span style=" font-size: 14px " strong 北京市理化分析测试中心副主任高峡签署合作协议 /strong /span /p p style=" text-align: center " span style=" font-size: 12px " strong /strong /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/c7422c93-8773-442a-aab6-d804de491c30.jpg" title=" 11.jpg" alt=" 11.jpg" / /p p style=" text-align: center " span style=" font-size: 14px " strong 北京市粮食和物资储备局副局长阎维洪和北京市科学技术研究院副院长刘清珺为合作实验室揭牌 /strong /span /p p style=" text-align: center " span style=" font-size: 12px " strong /strong /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/1af6c700-d21b-4b3a-b7f4-7965fe8fad38.jpg" title=" 12.jpg" alt=" 12.jpg" / /p p style=" text-align: center " span style=" font-size: 14px " strong 向北京市理化分析测试中心武彦文、仪真分析仪器有限公司技术总监朱丽敏颁发证书仪式 /strong /span /p p style=" text-align: center " span style=" font-size: 12px " strong /strong /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/c9d190e2-168a-4fa8-8006-67e474ec655a.jpg" title=" 9_副本.jpg" alt=" 9_副本.jpg" / img src=" https://img1.17img.cn/17img/images/201908/uepic/2afede2e-9415-477f-a40c-f07069dcadb9.jpg" title=" 7_副本.jpg" alt=" 7_副本.jpg" style=" max-width: 100% max-height: 100% " / /p p style=" text-align: center " span style=" font-size: 14px " strong 嘉宾致辞(北京市科学技术研究院技术转移处处长郭鲁钢、中国分析测试协会汪正范、安捷伦大中华区战略规划总监何峻) /strong /span br/ /p p span style=" font-size: 12px " strong /strong /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/df342eba-ec56-4282-9c99-c4b7f9944b3f.jpg" title=" 2_副本.jpg" alt=" 2_副本.jpg" / /p p style=" text-align: center " span style=" font-size: 14px " strong 北京市科学技术研究院科研开发处副处长李彦雪主持活动 /strong /span /p p style=" text-indent: 2em " 矿物油源于石油,是C10~C50的烃类化合物的总称,主要包括直链、支链烷烃和烷基取代的环状饱和烷烃(MOSH)以及烷基取代的芳香烃(MOAH)两个类型,而如今普遍认为MOAH 具有可能致癌和致突变的隐患,而 MOSH(特别是C16~C35) 容易在身体器官中积累并可能造成损伤,所以对矿物油的检测显得至关重要。 /p p style=" text-indent: 2em " 近年来,食品中的矿物油污染问题备受关注。食品接触材料特别是回收或再生包装纸中的残留油墨,食品原料在收割、晾晒、加工过程中接触的发动机润滑油、未完全燃烧的汽油、轮胎和沥青碎屑,食品加工使用的白油,以及环境污染等,都是食品中矿物油污染的主要来源。然而,由于组成复杂、数量巨大、基质干扰严重,使得矿物油的检测是行业公认的技术难题。德国联邦风险评估研究所(BfR)明确要求用于食品包装的接触材料MOSH迁移量小于2mg/kg, MOAH小于0.5mg/kg。2017年,欧盟发布了关于“监测食品以及食品接触材料和物品中矿物油烃类”的建议性指导文件,指出矿物油可以通过环境污染、收获和食品生产等残留在食品中。随后,欧盟推出了EN16995矿物油分析方法,大力推动欧盟内部或输欧食品中矿物油污染调查。北京理化分析测试中心的武彦文团队从2015年开始开展矿物油分析方法的研究,目前其开发的方法及测试水平均已步入国际前列。 /p p style=" text-indent: 2em " 合作实验室揭牌仪式后,与会人员就矿物油分析技术最新进展展开了学术交流。德国Axel Semrau公司执行总监Dr. Andreas Bruchmann、北京市理化分析测试中心武彦文博士分别就国内外矿物油分析研究进展及标准制定等内容进行了分享。关于该项技术的推广应用与会者进行了热烈的讨论,期待互相合作、共同推动该技术的进一步发展。 /p p style=" text-align: center " span style=" font-size: 14px " strong /strong /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/1d28b593-14b0-4622-8649-727425cb392f.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: center " span style=" font-size: 14px " strong 国际矿物油分析技术的最新进展 /strong /span br/ /p p style=" text-align: center " span style=" font-size: 14px " strong 德国Axel Semrau公司执行总监Dr. Andreas Bruchmann /strong /span /p p style=" text-indent: 2em " Axel Semrau公司优化了原始 LC-GC 方法,成功推出CHRONECT LC-GC 食品中矿物油分析系统,与欧盟方法EN16995完全一致,通过特殊的阀设置将LC和GC分离互相结合,使得在一次分析中测定 MOSH 和MOAH 馏分成为可能。 /p p style=" text-indent: 2em " 通过独立的大体积进样系统进行GC进样,进样量可达450μL;2通道GC进行两次平行和正交分离,随后进行FID检测。因此,样品中MOSH和MOAH含量的结果在30分钟后即可获得。CHRONOS软件控制采样、LC、GC、阀门连接,从而构成对方法和样品制备的完全自动控制。该解决方案应用于快速检测不同基质中的矿物油污染物,如化妆品、食品、油脂、饲料和包装材料。 /p p style=" text-align: center " span style=" font-size: 14px " strong /strong /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/cf5aa040-5566-482d-bd91-2ef1bdd54e52.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p style=" text-align: center " span style=" font-size: 14px " strong 我国矿物油分析方法的研究进展 /strong /span br/ /p p style=" text-align: center " span style=" font-size: 14px " strong 北京市理化分析测试中心武彦文博士 /strong /span /p p style=" text-indent: 2em " 气相色谱-氢火焰离子化检测器(GC-FID)是目前公认的矿物油检测方法,FID对所有烃类化合物的响应几乎完全一致,可以无需标准品对照对矿物油进行准确定量。但同时也存在着对鼓包峰的灵敏度仅为尖峰的百分之一、作为通用检测器也意味着没有选择性这两大需要解决的问题。而On-line HPLC-GC技术,由于HPLC柱的填料颗粒小、柱效高,分离效率好;LC-GC将分离、浓缩和测定联为一体,避免了人工操作,自动化程度高,方法重现性好等优点,使得LC-GC成为了测定矿物油的理想技术。 /p p style=" text-indent: 2em " 北京市理化分析测试中心武彦文研究员于2015年开始了矿物油分析方法的研究。2018年国内第一台“全自动在线LC-GC二维色谱联用矿物油分析系统”落户武彦文的实验室,使得她的研究实现了由手动向全自动化的转变。 /p p style=" text-indent: 2em " 仪器安装使用不到两个月的时候,武彦文团队即参加了国际能力验证,获得了“with great success”的成绩。经过1年多的时间,武彦文团队在将国际先进分析方法本土化实现的同时,在样品前处理方面,尤其是在提取技术方面实现了多项创新。短短的时间内,该团队已经发布了10多篇高水平论文,并且计划制定3项方法标准。如:行标“粮油检验& nbsp 大米中矿物油的测定”,采用了SPE结合普通GC以及HPLC-GC联用的方法;行标“粮油检验& nbsp 动植物油脂中饱和烃和芳香烃矿物油的测定”采用了HPLC-GC联用的方法。除了食用油中矿物油污染物的研究,武彦文团队还进行了婴幼儿配方乳粉、巧克力和咖啡中的矿物油分析等研究工作。下一步,武彦文计划在继续拓展不同基质食品中矿物油研究的同时,还将开展将该方法应用于环境领域的探索工作。 /p p style=" text-align: center " span style=" font-size: 12px " strong /strong /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201908/uepic/b7041e77-aee3-4026-8ae1-d55b1986d51e.jpg" title=" 15.jpg" alt=" 15.jpg" / /p p style=" text-align: center " span style=" font-size: 14px " strong 合影 /strong /span /p p strong 附录 /strong : /p p style=" text-indent: 2em " 北京市理化分析测试中心(理化中心)成立于1979年,隶属于北京市科学技术研究院,是公益性大型综合分析测试科学事业机构,围绕着食品药品安全、环境监测、材料分析、生物技术等主要领域开展分析测试科学研究和技术服务工作。理化中心坚持以分析测试为核心业务,以公益技术支持、公共技术服务和科学技术创新为立足点的发展定位,依靠高素质的分析方法开发与检验检测队伍,采用先进的分析测试技术和手段,为全社会提供全方位多层次的分析测试服务。 /p p style=" text-indent: 2em " 德国Axel Semrau公司致力于开发,销售和支持样品制备和色谱自动化专业解决方案的,如在线SPE,以及LC,LCMS,GC和GCMS其他高效前端解决方案,还包括基于LC-GC和GCMS-系统的应用优化的工作站。Axel Semrau公司开发的产品如专业色谱软件解决方案和LC-GC系统,已在全球上市和销售。 /p p style=" text-indent: 2em " 上海仪真分析仪器有限公司(仪真分析)是一家专业的,具备研发,集成,生产,代理,销售和技术服务的仪器供应商,为环境监测、食品安全和临床检测等分析实验室提供样品前处理到分析测试全方位解决方案。仪真分析拥有一流的由多位留学博士及硕士和专业培训的工程师组成的技术团队,销售团队覆盖大中国区的整个区域;致力于市场研究与应用开发,将世界领先的分析技术与行业标准与中国分析技术发展相结合,将先进分析技术及解决方案本土化。 /p p style=" text-align: right "   采访撰稿编辑:刘丰秋 /p p span style=" text-indent: 2em " /span br/ /p p br/ /p
  • 油+油,鬼见愁|食用油中矿物油检测难点一文解读
    仪器信息网讯2024年7月17日,食用油中矿物油的检测——Easy选型直播活动圆满落幕!本次活动由仪器信息网携手上海仪真分析仪器有限公司(以下简称“仪真分析”)联合主办,特别邀请了矿物油检测领域的资深专家,深入探讨了食用油中矿物油检测的技术动态及未来趋势,并展示了全自动矿物油分析解决方案及真机操作。此次线上活动现场累计超4000人观看,专家互动答疑环节观众提问踊跃。主题圆桌——食用油中矿物油检测技术难点及发展趋势近期,“罐车混用”事件再次引发公众对食品油安全的深切关注,使得“矿物油”问题成为社会焦点。在此背景下,本次论坛紧密追踪热点话题,专门设立了“食用油中矿物油检测技术及其未来发展趋势”的圆桌讨论环节。此环节特别邀请到在矿物油检测领域深耕多年的北京市科学技术研究院分析测试研究所矿物油分析测试研究室武彦文研究员和仪真分析仪器有限公司技术总监朱丽敏博士两位行业专家,共同探讨矿物油检测技术、食用油中矿物油的检测难题以及矿物油检测技术所面临的挑战,圆桌论坛主持由仪器信息网编辑蔡小芳担任。圆桌对话矿物油(MOH)源自石油与合成油,主要包含饱和烃(MOSH)及芳香烃(MOAH)两部分,它们或容易蓄积在人体,或有致癌和致畸毒性。矿物油会通过环境污染、种(养)殖采收、生产加工、包装储存等多种途径迁移进入食物,给人类健康带来风险。北京市科学技术研究院分析测试研究所矿物油分析测试研究室武彦文研究员对于开展矿物油分析研究工作的契机,武彦文老师分享到:当初我在研究食用油脂时发现,我国矿物油污染物的分析技术与国外差距很大,特别是由于我国的标准方法远远落后于国外,给油脂企业特别是出口企业造成很大困扰。于是,她迅速转变科研方向,开启矿物油分析测试技术的研发工作。她首先研读了几乎所有相关文献,发现我国在这个细分领域的研究几乎处于空白,不仅在理论理解上偏差,检测仪器也相去甚远,因此她开启了“精彩”的矿物油分析研究之路。仪真分析仪器有限公司技术总监朱丽敏博士仪真分析在矿物油检测始于对食品新型污染物检测技术的关注。2015年,朱丽敏博士在瑞士参观了一家专注于矿物油检测的实验室,意识到国内在该领域缺乏成熟的解决方案。2018年,仪真分析便凭借其技术实力和良好的商业信誉,获得了德国Axel Semrau公司的青睐,成为其在中国地区的独家技术合作伙伴。达成合作后,仪真分析坚持将技术本土化,来更好地满足中国客户的需求。2018年,仪真分析成功改装了第一台本土化的LC-GC在线分析平台,并将其推广到国内市场。获得了国家粮油检测部门、国际食品企业和第三方检测机构的广泛认可,并成功应用于食用油、食品接触材料、婴幼儿配方奶粉多个细分领域。两位老师在分享了开启矿物油检测的契机后,针对矿物油分析检测技术和食用油中矿物油检测难点展开讨论。武老师指出,矿物油分析检测技术包括GC-FID、LC-GC、GCxGC-MS等,其中LC-GC被誉为“金方法”,尤其适用于复杂样品如食用油,并通过在线溶剂挥发技术实现大体积进样,提高灵敏度。但食用油中矿物油检测仍面临诸多挑战,如样品基质复杂、干扰物众多、谱图解析困难、标准品缺乏和溯源难度大等。为解决上述难点,研究人员和企业积极探索解决方案,例如LC-GC全自动分析平台、在线净化技术、LC-GC-MS/MS、数据库建设和标准化等方法。在谈到矿物油分析检测未来的发展趋势,朱博士认为,矿物油检测技术正朝着更精细的成分分析、标准化方法和精确溯源的方向发展。将通过LC-GC-MS/MS联用技术将毒性更强的MOAH实现更精确的定性和定量分析;针对不同食品基质,如婴幼儿配方奶粉和食用油,将制定标准化的检测方法,以确保结果的可比性和一致性;此外,建立和完善矿物油溯源数据库,并开发先进的溯源技术,将有助于实现对矿物油来源的精准定位,从而更好地保障食品安全。精彩报告——《全自动矿物油分析解决方案》报告人:上海仪真分析仪器有限公司高级产品经理 张鸿矿物油检测长期以来一直是非常有挑战的难点,首先要将样品中矿物油与复杂的介质分离,再通过气相色谱检测。由于矿物油无处不在,获得干净的仪器很重要。为了达到足够的灵敏度,需要大体积进样技术。矿物油在2011年被报道发现以来,欧洲的分析化学家经过多年努力,终于实现了矿物油可靠分析方法(在线LC-GC-FID)。仪真分析在过去的20多年来一直关注食品分析方面的研究,在2018年开始涉足矿物油检测,并推出了全自动在线LC-GC二维色谱联用矿物油分析系统。全自动矿物油分析系统全自动矿物油分析系统以其卓越的性能优势显著提升了矿物油检测效率和质量。系统采用了清洁和改装技术,有效去除了背景干扰,确保了分析结果的准确性。通过液相色谱和硅胶柱的高效分离技术,矿物油能够从油脂等复杂介质中被精确提取。部分溶剂蒸发技术保证了样品在气相色谱中的超低量分析,而双通道双FID技术则实现了对MOSH和MOAH的同时定量检测,大大缩短了分析时间。全自动氧化铝和全自动环氧化技术的应用,也进一步增强了样品分析的灵敏度和准确度。最后,软件的兼容性能够与市场上所有主要品牌的LC和GC实现无缝对接,为用户提供了极大的便利。最后,张鸿还介绍了仪真分析的FAT/SAT服务,仪真分析提供的FAT服务(Factory Acceptance Test)确保了在实验室内使用标样对系统进行彻底测试,以确认其良好运行。在完成测试并拆卸包装后,仪真分析能够保证用户现场快速安装并投入试用。SAT服务(Site Acceptance Test),仪真分析提供详细的产品安装准备条件书,其中包括化学试剂的选择和前处理的准备工作等。仪真分析还为用户提供培训,详细讲解矿物油分析过程中的注意事项,确保用户能够熟练操作并维护系统。真正实现交钥匙工程!真机演示——走进仪真分析,进一步体验上机操作除了精彩纷呈的专家讲座和深入浅出的技术解析,本次直播活动还特别设置了“真机演示”环节,张鸿老师带领观众走进仪真分析,亲身感受全自动矿物油分析平台的强大功能。平台选用性能优良的安捷伦气液相色谱部件给客户带来了更好的体验,仪真分析和安捷伦的专家强强联合在现场进行专业讲解,详细介绍了系统各个组件的功能和工作原理,并针对观众可能遇到的操作疑问进行解答。精彩内容之外,直播间还进行了丰富多样的互动抽奖活动,贴心的准备了精美礼品回馈积极参与答题互动的用户们,也将直播间的热度推向高潮。

食品中矿物油分析二维色谱联用系统相关的方案

  • LC-GC法检测食品源矿物油中的芳香烃和饱和烷烃总含量
    LC-GC系统联用的技术优势,为我们提供了简单的样品制备和富集手段,同时可以获得最佳的灵敏度和分辨率。LC-GC技术通常对样品中的化合物基团使用正 相液相色谱法(NPLC)进行选择性的分离,之后通过大体积进样的方式将目标物转移至GC进行后续分离检测。LC-GC联用技术已经在食品、香精香料、石油化工和工业样品、环境、药物以及生物样品等领域得到了成功的应用。多年来,科学家们使用LC- GC系统建立了许多有效的应用方法,著名的应用包括:食品中的矿物油和多环芳烃(Mineral oils, PAHs in Foods),质量评估橄榄油中的甲基酯、乙基酯和蜡酯(Methyl, ethyl and wax esters in olive oils),生物柴油中间馏分物中的脂肪酸甲酯(FAMES in middle distillates of Biodiesel blends)等。其中最值得一提的是由著名的瑞士苏黎世食品监督局的首席化学家Koni Grob博士使用LC-GC系统开发的分离检测食品矿物油中的饱和烷烃(MOSH)和芳香烃(MOAH)的方法。该方法使用正相LC分离MOSH和MOAH组分,通过大体积 进样的方式将感兴趣的组分转移至GC进行进一步的分离检测,这为我们检测对人体有害的食品矿物油来源(包装材料、机器润滑油、灰尘吸附物、脱模剂、黄麻纤 维、受污染的动物饲料等)提供了快速有效的手段。
  • 水体和土壤中矿物油的常用测量方法-气相色谱法
    本试验方法采用程序升温式气相色谱法测定柴油、机油、固体等矿物油中的碳组分,以毛细管柱分离,FID检测,选用其中几个特征色谱峰作为矿物油的有效成分峰,以内标法定量。
  • 煤制油罐车混装食用油?迪马科技助力食用油中矿物油的检测
    目前关于植物油中矿物油的检测主要参考欧洲标准DIN EN 16995:2017-08,基于植物油和以植物油为基础的食品的在线HPLC-GC-FID分析测定矿物油饱和烃(MOSH)和矿物油芳烃(MOAH)。通过在线HPLC-GC-FID对植物油脂中的饱和烃和芳香烃(从C10到C50)进行测定。检测的样品类型是植物油、蛋黄酱、人造黄油等以植物油为基础的食品。迪马科技始终关注食品安全,针对食用油中矿物油的检测以及食用油检测标准中的多个项目均有完整的解决方案,可供广大分析工作者参考。

食品中矿物油分析二维色谱联用系统相关的资料

食品中矿物油分析二维色谱联用系统相关的试剂

食品中矿物油分析二维色谱联用系统相关的论坛

  • 在线全二维矿物油分析系统

    [align=center][b]包装材料和食物中矿物油的检测方法[/b][/align]矿物油是石油原油经过物理分离(蒸馏,萃取),化学转化(加氢反应,裂解,烷基化和异构化)过程形成的烃类化合物,包括由直链,支链及环状饱和烃矿物油(MOSH)以及聚芳烃化合物组成的的芳香烃矿物油(MOAH)两大类[sup][/sup]。食物中矿物油问题由来已久,严重损害人们的身体健康和造成大量的经济损失。1981年世界最大的食品中毒案就是因误食被矿物油污染的菜籽油引起的。1999年8月,广州肇庆发生一起参杂液体石蜡的食用油,引发集体食物中毒事件,中毒人数多达700人;2008年,震惊国际的乌克兰10万吨葵花籽油被不明来源的矿物油污染事件,导致乌克兰葵花籽油被禁止出口欧盟国家。前几年,我国出现的“毒大米”和“毒瓜子”事件都是由于抛光引起的矿物油污染事件。2017年3月,海天,老干妈等矿物油超标事件,引发了国内对矿物油危害的关注[sup][/sup]。[b]1 食品中矿物油的来源[/b]食品中矿物油污染主要有三种方式。第一,食品接触材料中矿物油的迁移[sup][/sup]。食品接触材料导致的食品中矿物油污染情况最为严重,而接触材料中矿物油的来源主要是回收纸或再生包装中残留的胶印油墨的连接料,脱模剂,塑料包装中的润滑剂,蜡纸,麻袋包装中的粘合剂等。第二,食品加工过程中使用矿物油作为加工助剂。如我国GB2760-2011中规定矿物油和白油可作为加工助剂(润滑剂,消泡剂,脱模剂等)用于油脂,糖果,膨化食品和豆制品等的生产。第三,环境污染。食品从原料的收割,晾晒到加工过程中接触到才有发动机的润滑油,没有完全燃烧的汽油,轮胎和沥青的碎屑以及不洁净空气等,都会使食品收到矿物油污染[sup][/sup]。[b]2 矿物油的毒理学[/b]研究表明,C16-C35的饱和烃矿物油(MOSH)会蓄积在人体的各种组织和器官中,如皮下腹部脂肪组织,肠系膜淋巴结,脾脏,肝脏等[sup][/sup]。MOSH呈中低等毒性,大量蓄积容易引发微粒肉芽肿,诱发浆细胞瘤形成,改变免疫功能或诱发自身免疫反应,高剂量的长链MOSH甚至是肿瘤的启动因子[sup][/sup]。芳香烃矿物油(MOAH)可能含有可致癌的多环芳烃,已有研究表明对于男性的肝脏和女性的子宫具有较强的致癌作用[sup][/sup]。工业用的矿物油被人误食后,对人体造成的危害主要油急性中毒和慢性中毒,急性中毒严重时会引发油脂性肺炎,慢性中毒可引发皮炎,神经衰弱综合征等[sup][/sup]。[b]3 矿物油的相关法规和每日允许摄入量建议[/b]随着矿物油毒理学数据的不断披露,国际上陆续开展了人群膳食烃类矿物油暴露风险评估和立法工作。2005年,瑞士颁布Verordmung 817.023,21,2005法规,规定矿物油MOAH迁移量11[/td][td=1,1,179]≧500[/td][/tr][tr][td=1,1,256]矿物油(中低粘度)一级[/td][td=1,1,155]0~10[/td][td=1,1,223]8.5~11[/td][td=1,1,179]450~500[/td][/tr][tr][td=1,1,256]矿物油(中低粘度)二级[/td][td=1,1,155]0~0.01[/td][td=1,1,223]7.0~8.5[/td][td=1,1,179]400~480[/td][/tr][tr][td=1,1,256]矿物油(中低粘度)三级[/td][td=1,1,155]0~0.01[/td][td=1,1,223]3.0~7.0[/td][td=1,1,179]300~400[/td][/tr][/table][/align]4. [b]矿物油检测方法研究现状[/b]目前国内还未明确食品中矿物油的限量要求和检测方法,主要是由于检测方法的限制。关于食品中矿物油的定量检测,国内较先进的方法为使用离线[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]-氢火焰离子化检测器(SPE-GC-FID)检测。但其缺点是检出限高,选择性和灵敏度差。随着对矿物油危害的重视,国内越来越多的学者重视矿物油检测方法的研究。如广东省检疫检验局检验技术中心,用SPE-GC-FID检测食品包装中矿物油,其最低检出限为7.79mg/kg(表1中MOSH的迁移限制为2mg/kg,无法满足),且只能检测矿物油中的MOSH[sup][/sup]。北京理化中心开发了银离子固相萃取-程序升温大体积进样-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法检测巧克力中的MOSH,因为采用的是离线萃取方法,人为影响特别大,重现性差[sup][/sup]。中国食品发酵工业研究院国家食品质量监督检验中心也采用离线SPE-GC-FID对食用植物油中的MOSH定量分析。并且自制SPE复合柱净化。由于自制的净化柱存在一定差异,进一步降低了实验重现性[sup][/sup]。总之,国内目前开发的矿物油检测方法,具有三大检测技术难题。一,采用离线检测方法,这种方法人为误差较大,实验重现性差,很难实现稳定,快速,准确的矿物油检测。二,具有局限性,只能检测矿物油中的MOSH,无法检测MOAH。三, 检出限太高,难以满足国际颁布的相关标准。国际上公认理想的食品中矿物油的检测方法是在线联用LC-GC检测技术,其大体积,不分流的GC进样方式能够更好的富集矿物油,降低检出限。LC-GC-FID在线联用检测矿物油的特点是可以将矿物油中的MOSH和MOAH分离,同时可以将样品提取液中的使用油脂,胡萝卜素,角鲨烯,以及植物中的天然奇数碳烷烃等干扰矿物油测定的物质分离除去,实现矿物油的富集。避免了人工样品前处理,加快了分析速度,提高了分析效率;降低了样品损失和遭受污染的风险,从而提高分析方法的可靠性和重现性[sup][/sup]。目前在许多应用方法中均使用了在线全二维LC-GC联用技术。特别是K.Grob博士和Maurus Biedermann[sup][/sup]使用了Brechubuhler AG公司生产的LC-GC仪器对矿物油进行检测,推动了矿物油检测方法的发展。Luigi Mondelo撰写的文章,Online Coupled LC-GC: Theory and Applications。详细解释了LC-GC在线联合方法的理论和应用。Brechubuhler AG公司的在线全二维矿物油分析系统(LC-GC)不仅可以突破一次进样检测矿物油中MOSH和MOAH两类物质的技术壁垒。而且检出限极低,一般情况为0.6ppm,在对米中矿物油的检测低至0.24ppm。同时,它通过在线富集,避免离线检测时的人为误差,提高实验重现性。下图是使用LC-GC检测矿物油色谱图[sup][/sup]。[align=center] [/align][img=,692,440]file:///C:/Users/Anne/AppData/Local/Temp/ksohtml/wpsE2B6.tmp.jpg[/img] [align=center]图1. 回收纸板中MOSH和MOAH[/align][align=center]从上到下的三张图分别为:LC色谱图中的MOSH和MOAH;GC色谱图中的MOSH;GC色谱图中的MOAH[/align][align=center][img=,692,441]file:///C:/Users/Anne/AppData/Local/Temp/ksohtml/wpsE2C8.tmp.jpg[/img] [/align][align=center]图2. 大米样品中MOSH的检出限为0.24ppm[/align][align=left] [/align][align=left] [/align][align=left] [/align][align=left] [/align][align=left] [/align][align=left] [/align][b]参考文献[/b][align=left] World Health Organization Evaluation of certain food additives.Geneva: WHO,2002[/align][align=left] EFSA Panel on Contaminants in the Food Chain. Scientific Opinion on Mineral Oil Hydrocarbons in Food . 2012[/align][align=left] BarpL, KornauthC, WuergerT, RudasM, BiedermannM, ReinerA, ConcinN, GrobK. FoodChem. Toxicol., 2014, 72: 312-321[/align][align=left] GrobK. J.Verbr. Lebensm., 2014, 9:231-219[/align][align=left] 固相萃取-大体积进样-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法定量分析油茶籽油中的矿物油. 刘玲玲,武彦文,李冰宁,汪雨,杨一帆,祖文川,王欣欣. 分析化学. 2016,44(9):1419-1424[/align][align=left] MondelloL, ZoccaliM, PurcaroG, FranchinaFA, SciarroneD, MoretS, ConteL, TranchidaPQ.J. Chromatogr.A, 2012, 1259:221-226[/align][align=left] Vollmera, Birdermannm, Grudbckf, IngenhoffJE, BiedermannBremS, AltkoferW, GrobK. Eur. Food. Res. Technol., 2011,232:175-182[/align][align=left] 银离子固相萃取-程序升温大体积进样-[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法定量分析市售巧克力中的饱和烷烃矿物油.李冰宁,刘玲玲,张贞霞,武彦文. 分析化学,2017,45(4):514-520[/align][align=left] 矿物油超标危害有多严重 海天,老干妈等油辣椒产品卷入. 周子荑,中国商报。2017(P05)[/align][align=left] 食品中烃类矿物油的污染情况及迁移研究进展. 杨春艳, 柯润辉, 安红梅, 王丽娟, 黄新望, 尹建军, 宋全厚. 食品与发酵工业, 2017, l43:258-264[/align][align=left] 警惕化妆品美丽背后的伤害.王本进. 首都医药, 2005(11): 26-27[/align][align=left] 食用植物油参入矿物油的鉴别. 白满英,李芳,魏义勇. 中国油脂, 2001, 26(3): 64-65[/align][align=left] Fifty-ninth report of the WHO Expert Committee on Food Additives: Evaluation of certain food additives . Geneva: WHO, 2002[/align][align=left] SPE-GC-FID法检测食品包装纸中的矿物油.李克亚, 钟怀宁, 胡长鹰, 陈燕芬, 王志伟. 食品工业科技, 2015, 19(048): 281-285[/align][align=left] SPE-PTV-GC-FID法定量分析食用植物油中的饱和烃类矿物油.杨春艳, 张九魁, 柯润辉, 王烁, 尹建军, 宋全厚.中国食品添加剂, 2018(1): 165-174[/align][align=left] Enrichment for reducing the detection limits for the analysis of mineral oil in fatty foods . Michael Zurfluh,Maurus Biedermann,Koni Grob. Journal für Verbraucherschutz und Lebensmittelsicherheit . 2014 (1) [/align][align=left] On-line coupled high performance liquid chromatography-gas chromatography for the analysis of contamination by mineral oil. Part 2: Migration from paperboard into dry foods: Interpretation of chromatograms . Maurus Biedermann,Koni Grob. Journal of Chromatography A . 2012[/align][align=left] Determination of mineral oil paraffins in foods by on-line HPLC-GC-FID: lowered detection limit contamination of sunflower seeds and oils . Katell Fiselier,Koni Grob. European Food Research and Technology . 2009 (4) [/align][align=left] On-line HPLC-GC-FID for the evaluation of the quality of olive oils through the methylethyl and wax esters. Maurus Birdermann, Carlo Mariani, Urs Hofstetter.[/align][align=left] Mineral oil, PAHs in food, Maurus Birdermann,Koni Grob[/align][align=left] MOSH MOAH Application note, Philippe Mottay, Brechubuhler AG.[/align]

  • 【原创大赛】全二维气相色谱法测定食品接触纸、纸板和纸制品中的矿物油

    【原创大赛】全二维气相色谱法测定食品接触纸、纸板和纸制品中的矿物油

    [align=center][b]全二维[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定食品接触纸、纸板和纸制品中的矿物油[/b][/align][align=center]吴肖肖 杨洋(南京质检NQI)[/align][b]摘要:[/b]建立全二维[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]法测定食品接触纸、纸板和纸制品中的矿物油,并对样品进行了分析。[b] 关键字:[/b]全二维[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url] 矿物油 调制器[b] 1、引言[/b] 矿物油是石油提炼过程的副产物,分为饱和烃矿物油(MOSH)和芳香烃矿物油(MOAH),主要存在于油墨、回收纸制品和石蜡中,作为连接料溶剂和脱模剂,可经过小肠和肝脏代谢为脂肪酸和脂肪醇,长期蓄积在人体的肝脏、肾脏、脾脏和肠系膜淋巴结。研究显示,印刷的回收纸中矿物油含量会明显提高,最高可达3800 mg/kg;印刷的回收纸盒纸板中的矿物油迁移到食品的最高含量为100 mg/kg。在食品包装用纸质材料中,由回收成分或油墨代入的矿物油作为一类风险物质已受到广泛关注。 全二维[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]是利用两根性质不同的色谱柱,将第一维柱的流出物质重进样到第二维色谱柱中进行再次进行分离,从而极大提高峰容量和分辨率,同时也提高灵敏度。[b]2、实验部分2.1仪器与设备[/b] [url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]器:安捷伦7890B ,FID检测器 固态热调制器:雪景科技SSM1800(HV系列调制柱) 数据处理软件:雪景科技Canvas 1.0.12.6[b]2.2 试样的制备(迁移试验)[img=,674,468]http://ng1.17img.cn/bbsfiles/images/2017/08/201708251559_01_3048281_3.png[/img]2.3 色谱条件色谱柱:[/b]一维色谱柱:HP-5, 30 m × 0.25 mm × 0.25 μm,1.8mL/min 二维色谱柱:DB-17, 2m × 0.18 mm ×0.18 μm,7.5mL/min进样口温度:280oC进样量:1 μL分流比:1:1柱箱温度:60oC ,保持2 min,5oC/min,至310oC ,保持10 min调制器进口端温度程序:+ 30 oC调制器出口端温度程序:+100 oC调制器冷区温度:-30 oC ,保持32 min,5oC/min,至 70oC,保持10 min调制周期:6 sec[b]3、结果[img=,642,263]http://ng1.17img.cn/bbsfiles/images/2017/08/201708251601_01_3048281_3.png[/img][img=,644,256]http://ng1.17img.cn/bbsfiles/images/2017/08/201708251601_02_3048281_3.png[/img][img=,617,346]http://ng1.17img.cn/bbsfiles/images/2017/08/201708251601_03_3048281_3.png[/img][img=,621,327]http://ng1.17img.cn/bbsfiles/images/2017/08/201708251601_04_3048281_3.png[/img][/b]

  • 食品包装材料中矿物油的迁移

    食品包装材料中矿物油的迁移前段时间,一德国民间食品监察组织对当地20多款零食进行了测试,在三大知名品牌旗下的几款巧克力、牛轧糖中检测到了可致癌物芳香烃矿物油。其中,某主打巧克力品种中矿物油芳香烃含量最高,达1.2mg/kg。那么,矿物油是何方圣神,真的有这么可怕吗?请看下文。矿物油  矿物油是什么,跟平常吃的植物油动物油有什么区别呢?矿物油(MOH,mineral oil)是原油经过物理分离(蒸馏、萃取)和化学转化(加氢反应、裂解、烷基化、和异构化)过程形成的烃类混合物,包括由直链、支链及环状组成的饱和烃矿物油(MOSH, mineral oil saturated hydrocarbons)及由聚芳香烃化合物组成的芳香烃矿物油(MOAH, mineraloil aromatic hydrocarbons)。植物油与动物油的主要成分是脂肪酸的甘油酯,跟矿物油的组成几乎完全不同。矿物油的毒性  矿物油是低毒性物质(EFSA2012),经口LD(半数致死量)大于5000mg/kg。研究表明,含有MOAH的矿物油可致突变,特别是包含多于三个苯环的多环芳烃矿物油具有致癌性(皮肤上皮肿瘤)。  由于碳数小于10的矿物油烃类在室温或者更高温下容易挥发,所以不容易在食品残留而引起食品污染,而碳数大于50的矿物油烃类因不能被人体消化吸收,所以不会对人体的健康造成影响。因此目前重点关注矿物油的烃类碳数主要集中在C10-C50。矿物油主要经过小肠和肝脏代谢为脂肪酸和脂肪醇,但也不能排除其在人体内的蓄积。矿物油主要蓄积在人体的肝脏、肾脏和肠系膜淋巴结。研究表明,具有生物蓄积作用的矿物油碳数主要集中在C24,矿物油烃类碳数范围是从C16-C35。

食品中矿物油分析二维色谱联用系统相关的耗材

  • 气相色谱柱〖Select Mineral Oil 矿物油分析〗
    气相色谱柱〖Select Mineral Oil 矿物油分析〗 .安捷伦(Agilent) 色谱科 瓦里安(Varian) SGE 毛细柱 毛细管柱 金属毛细柱 保护柱 惰性 手性 极性 耗材. 在许多环境实验中,矿物油分析是一项日常的工作,样品需要过滤。因此需要简单可靠的色谱方法,以缩短分析时间。Varian Select Mineral Oil色谱柱是一种合适的温度稳定性键合色谱柱,最适合于矿物油快速分析。温度稳定达400℃,在10分钟内可分析C4-C40烃类。色谱柱的高温稳定性允许快速烘烤老化色谱柱。 为了优化进样性能,请务必使用如下专用的4米长保留间隙。 特点: ◆ 稳定的非极性键合固定相,是矿物油分析的最佳选择 ◆ 最高操作温度375/400℃ ◆ 快速分析矿物油,用于DIN H53和DIN-EN-ISO9377-2方法 产品应用: 专用于矿物油总烃的分析。 应用范围:C5-C40 烃类化合物 气相色谱柱〖Select Mineral Oil 矿物油分析〗 Tmax-iso/Tmax-prog 325/350 ℃, Tmin &ndash 60 ℃ 0.10 1 CP7491 0.32 15 0.10 3 CP749103 内径(mm) 长度(m) 膜厚(&mu m) 数量/包装 部件号 0.32 15 0.32 15 0.10 6 CP749106 气相色谱柱〖Select Mineral Oil 矿物油分析〗不锈钢柱 Tmax-iso/Tmax-prog 325/350 ℃, Tmin &ndash 60 ℃ 内径(mm) 长度(m) 膜厚(&mu m) 数量/包装 部件号 0.32 15 0.1 N/A CP7493 保留间隙 内径(mm) 长度(m) 膜厚(&mu m) 数量/包装 部件号 0.53 4 N/A 3 CP8015
  • Select Mineral Oil 矿物油分析专用柱
    毛细管柱 Select Mineral Oil 矿物油分析专用柱许多环境实验室中,石油烃分析是一项日常的工作,需要对许多样品进行筛查。因此需要一种简单可靠的色谱方法,以获得最短的分析时间。Agilent J&W Select Mineral Oil 色谱柱满足这一需求,它具有稳定的非极性键合固定相,尤其适用于矿物油快速分析。温度上限可达 375/400 °C,并根据 DIN H53 和 DIN-EN-ISO 9377-2 方法提供快速分析。由于 Select Mineral Oil 的温度稳定性,您在 10 分钟内即可分析 C4-C40 烃类。色谱柱的高温稳定性允许快速烘烤老化色谱柱。注意:为了优化进样性能,请使用专用的 4 米长保留间隙管(部件号:CP8015)。
  • 矿物油分析-Rtx-MineralOil色谱柱
    Rtx-Mineral Oil 色谱柱(熔融石英). 满足DIN EN ISO 9377-2:2000要求的专用柱。. 矿物油快速筛选的最佳柱尺寸。. 连接固定相的表层保证了使用寿命长、坚固性,在400 °C保持稳定。根据DIN EN ISO 9377-2: 2000,Rtx-矿物油固定相和柱的尺寸都非常适合快速分析从固体和水样品中提取的矿物油。0.10μm柱是这种方法的金标准,然而当大量样品注射时,0.10μm柱可把C10从溶剂的峰中彻底分离。跟行业普遍标准相比,Rtx-Mineral Oil柱上连接的独特表层,即使在很高的温度下,都保证了柱的使用寿命。这些独特的柱能够在380°C(等温线)到400°C(可程序化的)环境下使用,而且每个柱都单独的测试,从而确保能在极端的条件下能有非凡的表现。IDdf温度限度15米0.32 mm0.10 μm-60 to 380/400 °C180790.15 μm-60 to 380/400 °C180740.30 μm-60 to 380/400 °C18075
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制