调制偏振仪

仪器信息网调制偏振仪专题为您提供2024年最新调制偏振仪价格报价、厂家品牌的相关信息, 包括调制偏振仪参数、型号等,不管是国产,还是进口品牌的调制偏振仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合调制偏振仪相关的耗材配件、试剂标物,还有调制偏振仪相关的最新资讯、资料,以及调制偏振仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

调制偏振仪相关的厂商

  • 北京锦坤科技有限公司是致力于向客户提供精密、准确、稳定、可靠的光电产品和解决方案。 北京锦坤科技有限公司主要生产光相位调制器,空间光调制器,光延迟线,高速光开关,DWDM复用解复用AWG, 偏振分析仪等产品。公司技术方案及产品针对微波信号处理、光信号处理以及光电设备在工业、医学等方面的应用。服务行业和合作单位包括:军工研究及生产单位,通信及广电行业,激光工业及医疗应用,高等院校等。 目前我公司已与多家世界厂商进行着密切的合作,并全权负责这些产品和方案在中国的市场开发、商务操作及售后服务,同时,我们也会根据用户的具体情况和需求,和生产厂商一起为用户制定完善的解决方案。 公司由具备多年行业工作经验、熟悉行业应用并具备创业精神的技术人员、服务人员、营销人员组成,并配合行业内专家协会,积极开展并参加各种相关专业技术交流会、展会、咨询服务、培训、维护等活动。本公司秉承“服务为先,客户至上”的经营理念,坚持专业、周到、细致的服务,不断努力创新,努力为客户提供最优质的产品和服务。
    留言咨询
  • 400-860-5168转4186
    量青光电是一家激光光源,光放大器,光无源器件生产的厂家,同时兼具国外仪器设备的代理与系统集成业务的综合性服务商,总部在上海、香港、美国设有办事处。业务覆盖国内各著名高校、中国科学院所属各研究所、信息产业部所属各研究所、航空工业总公司所属各研究所等不同系统内的研究机构,以及相关领域内的各大生产型公司。经过多年的努力目前公司工厂自主生产的的产品线已经非常丰富,我们生产的产品波长覆盖800-2000nm,包括光无源器件的PLC光分路、光纤跳线、MPO&MTP分支型光纤跳线、FA光纤列阵、光纤透镜、MEMS VOA/光衰减器、机械式光开关/MEMS光开关、C-Lens光纤准直器与大光束准直器、保偏器件与跳线接头的代加工。偏振控制器/激光光源包括,SLD宽带光源、SLD超宽带光源,ASE光源,光纤放大器,SOA半导体放大器等。我司外贸部代理国外一些高端特殊的光电产品,包括特殊光纤/光栅,相位调制器/强度调制器、VCSEL激光器、QCL量子级联激光器、干涉型光纤传感OCT等一系列高端产品公司理念:创新务实 超越自我 追求卓越 主要合作伙伴有美国Wavelength reference公司,美国EOSPACE公司,美国Photodigm公司,新加坡Denselgith公司,加拿大IVG公司,爱尔兰Superlum公司,美国ADtech公司,韩国Raycan公司,美国ULM公司,美国LDX Optonics公司,日本Fiberlabs公司,美国Verrillon公司,美国GPD-IR公司,美国YY Labs公司,德国Innolume公司,德国Vertilas公司,美国Optilab公司,英国Fiberlogix公司,美国Pranalytica公司,德国Piezomechanik GmbH公司,德国ZEIDLGmbH公司 .德国High Finesse公司。
    留言咨询
  • 深圳平治光学有限公司致力于光学镀膜业的发展,专业从事订制透红外亚克力(红色,黑色,茶色)、UV镜、镜头滤镜、CPL偏振片、镀膜加工(单层增透膜、多层增膜、分光膜、高反膜、透面镜加工、平面球、滤光片、滤色片、高反镜、分光镜、增透镜、棱镜、红、蓝、绿、黄、宝石蓝等彩膜;防水膜、防指纹膜、超硬膜、导电膜、非导电膜等功能膜)。产品广泛用于:光学器件及手机,树脂镜片。可以UV镜、手机镜头、手提电脑镜头、各类VGA摄像,高像素镜头、玻璃镜片、玻璃工艺品等进行专业的镀膜;AB彩、七彩、幻彩、幻蓝及各类颜色镀膜。   公司本着技术领先、质量第一、客户至上的原则为广大用户提供满意的服务。无论从内部管理到生产工艺,从市场营销至客户服务都力求精益求精。同时,在经营策略上引进世界最先进的生产设备与检测设备以及最领先的光学理论,使企业不断的推出适合用户需求的新产品。也使企业充满了生机和活力,从而实现品牌的有效扩张、有效管理。
    留言咨询

调制偏振仪相关的仪器

  • 偏振片 400-628-5299
    1.偏振片:通常是指将二向色性物质涂在透明薄片上制成的偏振片,此种偏振片损伤阈值较小,而且无法分离出p偏振光和s偏振光;A. OPSP系列偏振片偏振片(Plastic Sheet Polarizers)选型表:偏振片(Plastic Sheet Polarizers)型号名称尺寸(mm)通光孔径Ф0(mm)波长范围(nm)OPSP12.7偏振片Ф12.7*4mm8.9400-700OPSP25.4偏振片Ф25.4*4mm20.3400-700B. 偏振片(进口)1)偏光板示意图及尺寸图:相关说明: 1.把含有卤化银的玻璃融解,再经过热处理,延伸,研磨和还原工序而制成的偏光器件。其制作过程大致如 下:在热处理工序中沉淀出卤化银粒子,然后把玻璃加热到软化点附近并延伸,这样卤化银粒子就会变成 椭圆形,研磨后再进行氢还原,把卤化银粒子还原为银。 2.玻璃中的银椭圆粒子的长轴方向平行的电场被吸收,具有和其长轴垂直方向的电场的光通过。 3.透过方向:100W/cm2(CW)、6J/cm2、脉冲宽度13ns(脉冲)吸收方向:25W/cm2(CW)、0.1J/cm2、 脉冲宽度13ns(脉冲)有效尺寸(mm)8.5× 8.5PLC系列铬膜分束镜(SIGMA)选型表:型号保护框尺寸(mm)波长范围(nm)最小透过率(%)PLC-10-660ø 30× 6630~70083PLC-10-800ø 30× 6740~86091PLC-10-900ø 30× 6840~96094PLC-10-1060ø 30× 6960~116095PLC-10-1310ø 30× 61275~134598PLC-10-1550ø 30× 61510~1590982)薄膜偏光板示意图及曲线图:相关说明: 1.薄膜偏光板是一种薄膜滤光镜,此膜夹在两块玻璃中间,并安装在一个铝框内; 2.它不仅可以从一个非偏光中提取线偏光,而且,还可以象ND 滤光片一样用作光衰减器; 3.三种波长可选:紫外用(320~400nm);可见光用(400~700nm);近红外用(760~2000nm); 4.使两块偏光板处于通光状态(开),通过一束直线偏光{两块透过率(平行放置)} 使两块偏光板处于 不通光状态(关),没有光通过{两块透过率(正交放置)}。我们称此时的透过率为消光比。薄膜偏光板(SIGMA)选型表:型号使用波长(nm)保护框尺寸(mm)厚度(mm)通光孔径(mm)防反射膜NSPFU-30C320~400Ф30× 62.4ø 24SLAR (双面)SPF-30C-32400~700Ф30× 63ø 24BMAR(双面)SPF-50C-32400~700Ф30× 63ø 44BMAR(双面)SPFN-30C-26760~2000Ф30× 63ø 24SLAR (双面) 3)塑料薄膜偏光板(进口)示意图及曲线图:塑料薄膜偏光板(SIGMA)选型表:型号设计波长(nm)D(mm)T(mm)USP-25.4C-38400~700ø 25.40.8USP-30C-38400~700ø 30.00.8USP-50C-38400~700ø 50.00.8USP-100C-38400~700ø 1000.8C. 超快激光用偏振片(进口)曲线图、示意图及相关参数: 选型表:
    留言咨询
  • A. 激光波长偏振分光立方体:Narrow Band Polarizing Beamsplitter命名规则:OPBS边长-波长型号名称透射率TP反射率RS波长消光比边长OPBS10-488488nm偏振分光立方体>95%>99%488>100:110mmOPBS20-488488nm偏振分光立方体>95%>99%488>100:120mm OPBS10-514514nm偏振分光立方体>95%>99%514>100:110mmOPBS20-514514nm偏振分光立方体>95%>99%514>100:120mm OPBS10-532532nm偏振分光立方体>95%>99%532>100:110mmOPBS20-532532nm偏振分光立方体>95%>99%532>100:120mm OPBS10-632.8632.8nm偏振分光立方体>95%>99%632.8>100:110mmOPBS20-632.8632.8nm偏振分光立方体>95%>99%632.8>100:120mm OPBS10-10641064nm偏振分光立方体>95%>99%1064>100:110mmOPBS20-10641064nm偏振分光立方体>95%>99%1064>100:120mmB. 宽带偏振分光立方体 Broadband Polarizing Beamsplitter命名规则:OBPS边长-波长范围(取微米数)型号名称波长范围透射率TP反射率RS边长OBPS20-0406宽带偏振分光立方体450-680>95%>99%20OBPS20-0608宽带偏振分光立方体650-850>95%>99%20OBPS20-0912宽带偏振分光立方体900-1200>95%>99%20OBPS20-1215宽带偏振分光立方体1200-1550>95%>99%20
    留言咨询
  • XY系列偏振无关液晶空间光调制器--可定制一款偏振无关的纯相位空间光调制器。光能利用效率加倍,工作波长可达1550nm。创新性的LCoS SLM! 姓名:陈工(Jack)电话:(微信同号)邮箱:XY向列型偏振无关空间光调制器美国BNS公司新近推出一款偏振无关的空间光调制器,该产品使用硅基液晶技术,可以用于多个领域,作为基本组件,例如:光纤通信网络,加强型显微成像和高分辨率自适应光学系统。目前,BNS开发的这款产品已经商业化,具有高分辨率,偏振不相关,纯相位调制等特点。这款仪器的独特之处在于克服了使用现有的LCoS和MEMS原理的技术限制和障碍,开启一片新应用领域。偏振无关LCoS vs. 标准LCoS来自通信光纤的光的偏振状态会由于温度或者机械应力的改变而发生变化。而目前主流用于光控制的液晶空间光调制器都是偏振相关的,这就要求在系统设计中加入一连串的额外光学元件来锁定光的偏振态,必然直接影响其光网络的集成度。如果采用偏振无关的液晶空间光调制器,则会省去这些额外光学元器件,让光网络设计更加容易,集成化程度更高!。在显微成像领域,可对所有偏振态进行调制的空间光调制器(SLM),在光的利用效率方面,是一个极大的飞跃。尤其对于如单分子荧光显微镜这样的弱光应用领域,我们的偏振无关空间光调制器具有非凡的应用价值。偏振无关LCoS vs. MEMS模拟MEMS分辨率 — 由于用模拟方式控制许多机械驱动器很复杂,相比LCoS器件,MEMS器件的阵列尺寸很受限制。由于新的灵活带宽组合已经广泛应用于化光网络,MEMS器件的驱动器数量限制,制约了光网络的灵活性。同时,分辨率(像元数量)也是一个问题,在一些较复杂的显微镜,自适应光学(AO)系统应用中,需要复杂的相位全息图或者相位模式图以提取信号信息,例如如数字全息应用。在这些应用中,分辨率(像素数量)也是一个至关重要的因素。使用偏振不相关的LCoS可以很好的避免使用MEMS的缺陷,兼顾设计复杂同时提高使用灵活性。XY偏振无关SLM——光路设计与搭建BNS公司开发的XY向列型偏振无关空间光调制器(PI SLMs),产品设计可实现多功能,用于各种典型光学试验环境中,操作简便。XY向列型PI SLMs可以优化相位调制量,在设定的波长可实现相位阶全段(2π)调制。这款SLMs不论入射光有什么偏振状态,都可实现纯相位调制,可优化光路设计,方便光路搭建。产品特点:256x256分辨率偏振无关,效率加倍模拟寻址控制工作波长可达1550nm应用:光通信,灵活结构光纤网络,加强型显微成像,高分辨率自适应光学
    留言咨询

调制偏振仪相关的资讯

  • 法国JY推出新型MM-16相调制型椭圆偏振光谱仪
    HORIBA Jobin Yvon, 薄膜部推出了新型MM16高精度,高灵敏,低价格的相调制椭圆偏振光谱仪。 其采用液晶调制技术,2048CCD采集光谱,全谱采集时间仅2s钟,同时椭偏仪在可见光波段采用4× 4的Mueller 矩阵进行数据分析,可以精确的对测量复杂折射率材料进行分析,可广泛应用在平板显示,生物,包装和半导体领域。 目前HORIBA Jobin Yvon 在ex-situ和in-situ领域有着一系列的椭偏仪产品,UVISEL,MM16,DigiSel,PZ2000。其组成了一个高性能的椭偏家族。同时HJY公司还有多种配件可选以扩展椭偏仪的功能,如自动样品台,微光斑反射仪,液体池,高低温样品台等。基于Windows的强大软件工作平台DeltaPsi2使椭偏的数据分析变得更加的简单直观, 具体情况请查阅网站 www.jobinyvon.com 电话:021-64479785 传真:021-64479480 E-Mail:jjhjy@jobinyvon.cn
  • 首个使用偏振的超快光处理器面世
    科技日报北京6月19日电 (记者张梦然)据近日发表在《科学进展》上的一篇论文,英国牛津大学研究人员开发了一种使用光的偏振来实现最大化信息存储密度的设备。新研究使用多个偏振通道展开了并行处理,计算密度比传统电子芯片提高了几个数量级。自1958年第一块集成电路发明以来,将更多晶体管封装到特定尺寸的电子芯片中,一直是实现最大化计算密度的首选方法。然而,人工智能和机器学习需要专门的硬件突破现有计算的界限,因此电子工程领域面临的主要问题是:如何将更多功能打包到单个晶体管中?科学家已知不同波长的光不会相互影响,同样,不同偏振的光也不会相互影响。因此,每个极化都可作为一个独立的信息通道,使更多信息可存储在多个通道中,这就大大提高了信息密度。而光子学相对于电子学的优势在于,光在大带宽上速度更快,功能也更强大。新研究的目标就是充分利用光子学与可调谐材料相结合的这些优势,实现更快、更密集的信息处理。鉴于此,十多年来,牛津大学研究人员一直致力于使用光作为计算手段。团队此次开发了一种HAD(混合活性电介质)纳米线,该纳米线使用一种混合玻璃材料,该材料在光脉冲照射时具有可切换的特性,每条纳米线都显示出对特定偏振方向的选择性响应,因此可使用不同方向的多个偏振同时处理信息。利用这个概念,研究人员开发出第一个利用光偏振的光子计算处理器。光子计算通过多个偏振通道进行,纳米线则由纳秒光脉冲调制,与传统电子芯片相比,其计算速度更快,计算密度因此提高了几个数量级。研究人员表示,对于人们希望看到的未来愿景来说,现在仅仅是个开始,这种偏振光子计算处理器结合了电子、非线性材料和复杂计算,已经是一个超级令人兴奋的想法。总编辑圈点   随着传统电子芯片尺寸越来越小,芯片上的晶体管数量接近极限,摩尔定律也日益逼近“天花板”。这些年,科学家和工程师们开始为芯片发展寻找新的“增长点”,利用光子计算便是思路之一。例如,2015年美国科学家研发出用光处理信息的光电子芯片,它依旧使用电子来计算,但是可以直接使用光来处理信息。上述成果则利用了光的偏振特性。这些研究都为芯片迭代升级提供了更多可能。
  • 考虑探测器非理想性的红外偏振成像系统作用距离分析
    在背景与目标红外辐射量差距不大或背景较为复杂等情况下,传统红外成像技术对目标进行探测与识别的难度较大。而红外偏振探测在采集目标与背景辐射强度的基础上,还获取了多一维度的偏振信息,因此在探测隐藏、伪装和暗弱目标和复杂自然环境中人造目标的探测和识别等领域,有着传统红外探测不可比拟的优势。但同时,偏振装置的加入也增加了成像系统的复杂度与制作成本,且对于远距离成像,在红外成像系统前加入偏振装置对成像系统的探测距离有多大的影响,也有待进一步的研究论证。据麦姆斯咨询报道,近期,中国科学院上海技术物理研究所、中国科学院红外探测与成像技术重点实验室和中国科学院大学的科研团队在《红外与毫米波学报》期刊上发表了以“考虑探测器非理想性的红外偏振成像系统作用距离分析”为主题的文章。该文章第一作者为谭畅,主要从事红外偏振成像仿真方面的研究工作;通讯作者为王世勇研究员,主要从事红外光电系统技术、红外图像信号处理方面的研究工作。本文将从分析成像系统最远探测距离的角度出发,对成像系统的探测能力进行评估。综合考虑影响成像系统探测能力的各个因素,参考传统红外成像系统作用距离模型,基于系统的偏振探测能力,建立了红外偏振成像系统的作用距离模型,讨论了偏振装置非理想性对系统探测能力的影响,并设计实验验证了建立模型的可靠性。红外成像系统作用距离建模目前较为公认的对扩展源目标探测距离进行估算的方法是MRTD法。该方法规定,对于空间频率为f的目标,人眼通过红外成像系统能够观察到该目标需要满足两个条件:①目标经过大气衰减到达红外成像系统时,其与背景的实际表观温差应大于或等于该频率下的成像系统最小可分辨温差MRTD(f)。②目标对系统的张角θT应大于或等于相应观察要求所需要的最小视角。只需明确红外成像系统的各项基本参数与观测需求,我们就可以计算出系统的噪声等效温差与最小可分辨温差,进而求解出它的最远探测距离。红外偏振成像系统作用距离建模偏振成像根据成像设备的结构特性可分为分振幅探测、分时探测、分焦平面探测和分孔径探测。其中分时探测具有设计简单容易计算等优点,但只适用于静态场景;分振幅探测可同时探测不同偏振方向的辐射,但存在体积庞大、结构复杂,计算偏振信息对配准要求高等问题;分孔径探测也是同时探测的一种方式,且光学系统相对稳定,但会带来空间分辨率降低的问题;分焦平面偏振探测器具有体积小、结构紧凑、系统集成度高等优势,可同时获取到不同偏振方向的偏振图像,是目前偏振成像领域的研究热点,也是本文的主要研究对象。图1为分焦平面探测系统示意图。图1 分焦平面探测器系统示意图本文仿真的分焦平面偏振探测器,是在红外焦平面上集成了一组按一定规律排列的微偏振片,一个像元对应着一个微偏振片,其角度分别为 0°、45°、90°和135°,相邻的2×2个微像元组成一个超像元,可同时获取到四种不同的偏振态。图1为分焦平面探测系统结构示意图。传统方法认为在红外成像系统前加入偏振装置后,会对系统的噪声等效温差与调制传递函数MTF(f)产生影响,改变系统的最小可分辨温差,进而改变系统的最远探测距离。本文将从偏振装置的偏振探测能力出发,分析成像系统的最小可分辨偏振度差,建立红外偏振成像系统的探测距离模型。我们首先建立一个探测器偏振响应模型,该模型将探测器视为一个光子计数器,光子被转换为电子并在电容电路中累积,综合考虑探测器井的大小、偏振片消光比、信号电子与背景电子的比率以及入射辐射的偏振特性,通过应用误差传播方法对结果进行处理。从噪声等效偏振度(NeDoLP)的定义出发,NeDoLP是衡量偏振探测器探测能力的指标,即探测器对均匀极化场景成像时产生的标准差。对其进行数学建模,进而分析得到红外偏振成像系统的最远探测距离。图2 DoLP随光学厚度变化曲线对于探测器来说,积分时间越长,累积的电荷越多,探测器的信噪比(SNR)就越高,但这种增加是有限度的。随着积分时间的增加,光生载流子有更多的时间被收集,增加信号。然而,同时,暗电流及其相关噪声也会增加。对于给定的探测器,最佳积分时间是在最大化信噪比和最小化暗电流及噪声的不利影响之间取得平衡,为方便分析,我们假设探测器工作在“半井”状态下。通过以下步骤计算红外偏振成像系统最远作用距离:a. 根据已知的目标和背景偏振特性以及环境条件,计算在给定距离下,目标与背景之间的偏振度差在传输路径上的衰减。b. 结合系统的探测器性能参数,确定目标在给定距离下是否可被观察到。如果不能则减小设定的距离。目标被观察到需同时满足衰减后的偏振度差大于或等于系统对应于该频率的最小可分辨偏振度差MRPD,目标对系统的张角θT大于或等于相应观察要求所需要的最小视场角。c. 逐步增加距离,直到目标与背景之间的偏振度差不再满足观察要求。这个距离即为成像系统最远作用距离。τp (R)为大气对目标偏振度随探测距离的衰减函数,可根据不同的天气条件,根据已有的测量数据进行插值,计算出不同探测距离下大气对目标偏振度的衰减,图4. 5给出了根据文献中测量数据得到的偏振度随光学厚度增加衰减关系图。这里给出的横坐标是光学厚度,不同天气条件下,光学厚度对应的实际传播距离与介质的散射和吸收系数有关。综上,我们建立了传统红外成像系统和考虑了偏振片非理想性的红外偏振成像系统的作用距离模型,下面我们将对模型的可靠性进行验证,分析讨论探测器各参数对成像系统探测能力的影响。验证与讨论由噪声等效偏振度的定义可知,其数值越小,代表偏振探测器的性能越优秀。下面我们对影响红外偏振成像系统探测性能的各因素进行讨论,并设计实验验证本文建立模型的正确性。偏振片消光比消光比是衡量偏振片性能的重要参数,市售的大面积偏振片的消光比可以超过200甚至更多。对其他参数按经验进行赋值,从图3可以看到,对于给定设计参数的探测器,偏振片消光比超过20后,随着偏振片消光比的增加,探测器性能上的提升微乎其微。对于分焦平面探测器,为实现更高的消光比,不可避免地要牺牲探测器整体辐射通量。由于辐射通量降低而导致的信噪比损失可能远远超过消光比增加所获得的收益。这一结果同样可以对科研人员研制偏振片提供启发,对需要追求高消光比的偏振片来说,增大透光轴方向的最大透射率要比降低最小透射率更有益于成像系统的性能。图3 偏振片消光比与探测器噪声等效偏振度关系图探测器井容量红外探测器的井容量是指探测器像素在饱和之前能够累积的电荷数量的最大值。井容量是衡量红外探测器性能的一个关键参数,井容量通常以电子数(e-)表示。较大的井容量意味着探测器可以在饱和之前存储更多的电荷,从而能够在更大的亮度范围内准确检测信号。这对于在具有广泛亮度变化的场景中捕获清晰图像至关重要。从图4可以看出,增大探测器井的容量,同样能很好的提高成像系统的偏振探测能力。图4 探测器井容量与探测器噪声等效偏振度关系图然而,井容量的增加可能会导致像素尺寸增大或探测器面积减小,这可能对系统的整体性能产生负面影响。因此,在设计红外探测器时,需要权衡井容量、像素尺寸和其他性能参数,以实现最佳性能。目标偏振度虽然推导出的噪声等效偏振度公式包含目标偏振度这一参量,但目标的偏振度本身对探测器的噪声等效偏振度没有直接影响。NeDolp 是一个衡量探测器性能的参数,它主要受探测器内部噪声、电子学和其他系统组件的影响。然而,目标的偏振度会影响探测器接收到的信号强度,从而影响信噪比(SNR)。从图5也可以看出,探测器的NeDolp受目标的偏振度影响不大。图5 目标偏振度与探测器噪声等效偏振度关系图读取噪声与产生复合噪声比值读取噪声主要来自于探测器的读出电路、放大器和其他电子元件。它通常在整个光强范围内保持相对恒定。产生复合噪声是由光子的随机到达和电荷生成引起的,与光子数成正比。在低光强下,产生复合噪声通常较小;而在高光强下,它会逐渐变大。通过计算读取噪声和产生复合噪声的比值,可以确定系统的性能瓶颈。如果读取噪声远大于产生复合噪声,这意味着系统在低光强下受到读取噪声的限制。在这种情况下,优化读出电路和放大器等元件可能会带来性能提升。如果产生复合噪声远大于读取噪声,这意味着系统在高光强下受到产生复合噪声的限制。在这种情况下,提高信号处理和光子探测效率可能有助于改善性能。从图6可以看出,降低读取噪声与产生复合噪声比值可以有效提升系统偏振探测能力。图6 δ与探测器噪声等效偏振度关系图信号电子比例综合图4~6可以看出,提升β的数值可有效提高探测器的偏振探测能力,由β的定义可知,对于确定井容量的探测器,β的取值主要取决于探测器的各种噪声与积分时间,降低探测器的工作温度、优化探测器结构、减少表面和界面缺陷等途径都可以降低探测器的噪声,调节合适的积分时间也有助于探测系统的性能提升。实验验证根据噪声等效偏振度的定义,利用面源黑体与红外可控部分偏振透射式辐射源创建一组均匀极化场景。如下图7所示,黑体发出的红外辐射,经过两块硅片,发生四次折射,产生了偏振效应,通过调节硅片的角度,即可产生不同线偏振度的红外辐射。以5°为间隔,将面源黑体平面与硅片间的夹角调为10°~40°共七组。每组将面源黑体设置为40℃和70℃两个温度,用国产自主研制的红外分焦平面偏振探测器采取不少于128帧图像并取平均,然后将每组两个温度下相同角度获得的图像作差,以减少实验装置自发辐射和反射辐射对测量结果的干扰,差值图像就是透射部分的红外偏振辐射。对差值图像进行校正和去噪后,即可按公式计算出探测器对均匀极化场景产生的偏振度图像。计算出红外辐射的线偏振度,为减小测量误差,仅取图像中心区域的像元进行分析。该区域像元的标准差就是该成像系统的噪声等效偏振度(NeDoLP)。探测器具体参数如表1所示。图7 实验示意图表1 偏振探测器参数利用本文建立的探测器仿真模型计算出硅片的线偏振度仿真值,公式19计算出硅片线偏振度的理论值,与实验的测量值进行对比,图8展示了三组数据的变化曲线,从图中可以看出,三组数据存在一定偏差,这可能与硅片调节角度误差、面源黑体稳定性、干涉效应、硅片摆放是否平行等因素有关,但在误差允许的范围内,实验验证了偏振探测系统的性能,也证明了本文建立仿真模型的可靠性。NeDoLP测量结果如表2所示。图8 线偏振度理论值、测量值与本文模型仿真值曲线图表2 实验结果从上表可以看到NeDoLP的测量值与仿真值的差值基本能控制在5%以内,实验结果再次印证了本文设计的模型的可靠性。实例计算应用建立的模型对高2.3m,宽2.7m,温度47℃,发射率为1的目标的最远探测距离进行预测,目标差分温度6℃;背景温度27℃;发射率1;目标偏振度30%,背景偏振度1%,使用3.2节中样机的探测器参数,最后,采用文献中介绍的“等效衰减系数-距离”关系的快速逼近法对红外探测系统最远作用距离R进行求解,得到表3的结果。表3 红外成像系统的最远作用距离根据红外探测系统最远探测距离,利用本文第二节提出的方法,得到不同探测概率下红外偏振成像系统最远作用距离结果如表4所示。表4 红外偏振成像系统的最远作用距离所选例子为目标与背景偏振度差异大于其温差,所以在这种探测场景下红外偏振成像系统的探测能力要优于红外成像系统。探测器的参数不同,探测场景与目标的变化都会对模型的结果产生影响,但本文提供的成像系统作用距离模型可为实际探测中不同应用场景下的成像系统选择提供参考。结论针对不同的探测场景,红外成像系统与红外偏振成像系统在最远探测距离方面哪个更有优势并没有定论,探测目标的大小,背景与目标的温差与偏振度差,大气透过率,具体探测器的参数等因素都会对成像系统的最远探测距离产生影响。经实验验证,本文所建立的非理想红外偏振成像系统的响应模型是可靠的,可以用于估算成像系统的最远作用距离,针对不同的探测场景,读者可通过实验确定探测器的具体性能参数,利用仿真软件或实验测量的方式获取探测目标的温度与偏振信息,明确探测环境的具体大气参数,利用模型对红外成像系统与偏振成像系统的最远作用距离进行预估,选择更具优势的成像系统。这项研究获得上海市现场物证重点实验室基金(No. 2017xcwzk08)和上海技术物理研究所创新基金(No. CX-267)的资助和支持。论文链接:http://journal.sitp.ac.cn/hwyhmb/hwyhmbcn/article/abstract/2023041

调制偏振仪相关的方案

调制偏振仪相关的资料

调制偏振仪相关的论坛

  • 【讨论】偏振能量色散型X射线荧光光谱仪

    对这类仪器我有两个问题,请专家给解释一下,谢谢!1、偏振能量色散型X射线荧光光谱仪中使用偏振光的特点(包括优点和缺点)是什么?2、这种偏振光是指光源是偏振光还是产生的荧光是偏振光?

  • 【求助】请教偏振荧光光谱的测量

    假设我的物质没有各项异性,那么 垂直偏振和水平偏振测出来就是0?我看了一下文献,类似的东西即使是膜,各向异性也有0.12,我的做出来象一系列的噪声背景。请问这样正常吗?还是我有什么地方设置得不对。请大家指教。我的一个想法,假如物质有荧光,但是没有各向异性,那么偏振荧光做出来,垂直和水平方向应该至少有一条曲线类似自然光下的荧光光谱。不知道对不对。

调制偏振仪相关的耗材

  • API偏振片
    AP50-007T偏振片偏光膜Ø 较高透射率50%中性灰色线性偏振片Ø 没有硬涂层Ø 三乙酸酯(CTA)基材规格可用性库存面板单片透射率(400-700nm)50%双片光轴平行透射率 (400-700 nm)38%光轴交叉透射率(400-700nm) 10.2%厚度.007" +/-.002"颜色中性灰基质纤维素三乙酸酯磨光双面:光滑,无涂层效率(400-700nm)75.79%环境因素-50°C to 70°CAP42-030T偏振片偏光膜Ø 较高对比度42%中性灰色线性偏振片Ø 没有硬涂层Ø 三乙酸酯(CTA)基材规格可用性库存面板单片透射率(400-700nm)42%双片光轴平行透射率(400-700 nm)34%光轴交叉透射率(400-700nm)0.007%厚度.030" +/-.005"颜色中性灰基质纤维素三乙酸酯磨光双面:光滑,无涂层效率(400-700nm)99.98%环境因素-50°C to 80°CAP42-008T-PSA偏振片和偏光膜Ø 较高对比度42%中性灰色线性LCD偏振片Ø 没有硬涂层 Ø 三乙酸酯(CTA)基材Ø 一侧有光学透明胶(OCA)规格产品代码AP42-008T-PSA描述一侧带有光学PSA的中性灰色线性偏振片可用性库存面板单片透射率 (400-700nm)42%双片光轴平行透射率(400-700 nm)34%光轴交叉透射率(400-700nm)0.007%厚度.0084" (213um) +/- .0012" (30um)颜色中性灰基质纤维素三乙酸酯磨光一侧:平滑,另一侧:OCA效率(400-700nm)99.98%环境因素-50°C to 70°C线性偏振片用途:线性偏振片被广泛用于各种应用中。 线性偏振片是在需要减少反射光导致眩光的应用中的出色解决方案。 相机滤镜,太阳镜和机器视觉系统受益于线性偏光镜的使用。 线性偏振片也可以用于调制光源的强度。 通过将两个偏振片彼此叠置并使一个偏振片彼此相对旋转,一个偏振片可以控制亮度。 机舱窗户和望远镜滤镜是理想的应用。弹性应力分析得益于偏振片的使用。 偏振片可以使用线性或圆形偏振片。 透明塑料在有些压力下会变成双折射(双折射)。其它选项:其他前涂层:无其他基材:PSA经过优化,可与玻璃粘合非偏振光透过单偏振片和平行光轴双偏振片非偏振光透过光轴交叉双偏振片AP42-007T偏振片偏光膜Ø 较高对比度LCD等级42%中性灰色线性可见光偏振片Ø 没有硬涂层Ø 三乙酸酯(CTA)基材规格 产品代码AP42-007T描述中性灰色线性偏振片可用性库存偏光板单片透射率 (400-700nm)42%双片光轴平行透射率(400-700 nm)34%光轴交叉透射率(400-700nm)0.007%厚度.007" +/-.002"颜色 中性灰基质纤维素三乙酸酯磨光双面:光滑,无涂层效率(400-700nm)99.98%环境因素-50°C to 80°C线性偏振片用途:线性偏振片被广泛用于各种应用中。 线性偏振片是在需要减少反射光导致眩光的应用中的出色解决方案。 相机滤镜,太阳镜和机器视觉系统较大地受益于线性偏振片的使用。线性偏振片也可以用于调制光源的强度。 通过将两个偏振片彼此叠置并使一个偏振片彼此相对旋转,一个偏振片可以控制亮度。 机舱窗户和望远镜滤镜是理想的应用。光弹性应力分析得益于偏振片的使用。 偏振片可以使用线性或圆形偏振片。 当像波阻滞器一样受力时,透明塑料会变成双折射(双折射)。 线性或圆形偏振片使观看者可以直观地看到应力图案,如深色或等色条纹所证明的那样。线性偏振片(和圆偏振片)也用于无源3D应用中。 API提供线性和圆形偏光眼镜和投影滤镜。其它选项其他涂层:透明硬质涂层(丙烯酸层压板)和抗反射(玻璃层压板)其他基材:丙烯酸和玻璃非偏振光透过单偏振片和平行光轴双偏振片非偏振光透过光轴交叉双偏振片AP38-030T偏振片偏光膜Ø 消光38%中性灰色线性偏振片Ø 没有硬涂层Ø 三乙酸酯(CTA)基材规格产品代码AP38-030T描述中性灰色线性偏振片可用性库存表单片透射率(400-700nm)38%双片光轴平行透射率(400-700 nm)28%光轴交叉透射率(400-700nm)0.444%厚度.030" +/-.004"颜色中性灰基质纤维素三乙酸酯磨光双面:光滑,无涂层防紫外线93%(虽然大多数紫外线被阻挡,但不建议在太阳镜应用中使用此产品)效率(400-700nm)98.46%环境因素-50°C to 65°C线性偏振片用途:线性偏振片被广泛用于各种应用中。 线性偏振片是在需要减少反射光导致眩光的应用中的出色解决方案。 相机滤镜,太阳镜和机器视觉系统较大地受益于线性偏振片的使用。线性偏振片也可以用于调制光源的强度。 通过将两个偏振片彼此叠置并使一个偏振片彼此相对旋转,一个偏振片可以控制亮度。 机舱窗户和望远镜滤镜是理想的应用。光弹性应力分析得益于偏振片的使用。 偏振片可以使用线性或圆形偏振片。 当像波阻滞器一样受力时,透明塑料会变成双折射(双折射)。 线性或圆形偏振片使观看者可以直观地看到应力图案,如深色或等色条纹所证明的那样。其它选项其他基材:此产品无。 请参阅丙烯酸和玻璃选项。非偏振光透过单偏振片和平行光轴双偏振片非偏振光透过光轴交叉双偏振片 AP38-007T-PSA偏振片偏光膜高消光38%中性灰色线性偏振片没有硬涂层三乙酸酯(CTA)基材一侧有光学透明胶(OCA)规格产品代码AP38-007T-PSA 描述一侧带有光学PSA的中性灰色线性偏振片可用性库存面板单片透射率 (400-700nm)38%双片光轴平行透射率 (400-700 nm)27%光轴交叉透射率(400-700nm)0.017%厚度.007" +/-.002"颜色中性灰基质纤维素三乙酸酯磨光一侧:平滑,另一侧:OCA效率(400-700nm)99.93%环境因素-50°C to 70°C线性偏振片用途:线性偏振片被广泛用于各种应用中。 线性偏振片是在需要减少反射光导致眩光的应用中的出色解决方案。 相机滤镜,太阳镜和机器视觉系统较大地受益于线性偏振片的使用。线性偏振片也可以用于调制光源的强度。 通过将两个偏振片彼此叠置并使一个偏振片彼此相对旋转,一个偏振片可以控制亮度。 机舱窗户和望远镜滤镜是理想的应用。光弹性应力分析得益于偏振片的使用。 偏振片可以使用线性或圆形偏振片。 当像波阻滞器一样受力时,透明塑料会变成双折射(双折射)。 线性或圆形偏振片使观看者可以直观地看到应力图案,如深色或等色条纹所证明的那样。线性偏振片(和圆偏振片)也用于无源3D应用中。 API提供线性和圆形偏光眼镜和投影滤镜。其他选项:其他前表面处理:无其他基材:PSA面经过优化,可层压到玻璃上非偏振光透过单偏振片和平行光轴双偏振片非偏振光透过光轴交叉双偏振片 AP38-006T偏振片偏光膜消光38%中性灰色线性偏振片没有硬涂层三乙酸酯(CTA)基材规格产品代码AP38-006T描述中性灰色线性偏振片可用性库存偏光板单片透射率(400-700nm)38%双片光轴平行透射率(400-700 nm)27%光轴交叉透射率(400-700nm)0.017%厚度.006" +/-.002"颜色中性灰基质纤维素三乙酸酯磨光双面:光滑,无涂层效率(400-700nm)99.93%环境因素-50°C to 70°C线性偏振片用途:线性偏振片被广泛用于各种应用中。 线性偏振片是在需要减少反射光导致眩光的应用中的出色解决方案。 相机滤镜,太阳镜和机器视觉系统较大地受益于线性偏振片的使用。线性偏振片也可以用于调制光源的强度。 通过将两个偏振片彼此叠置并使一个偏振片彼此相对旋转,一个偏振片可以控制亮度。 机舱窗户和望远镜滤镜是理想的应用。光弹性应力分析得益于偏振片的使用。 偏振片可以使用线性或圆形偏振片。 当像波阻滞器一样受力时,透明塑料会变成双折射(双折射)。 线性或圆形偏振片使观看者可以直观地看到应力图案,如深色或等色条纹所证明的那样。线性偏振片(和圆偏振片)也用于无源3D应用中。 API提供线性和圆形偏光眼镜和投影滤镜。其他选项:其他前部饰面:透明硬涂层(丙烯酸层压板)和防反射(玻璃层压板)其他基材:丙烯酸和玻璃非偏振光透过单偏振片和平行光轴双偏振片非偏振光透过光轴交叉双偏振片
  • 偏振测试仪
    偏振测试仪&bull 确定线偏振片和圆偏振片的偏振方向&bull 方便轻巧的手持式设计&bull 验证偏振片校准的理想选择&bull 在确定 LCD 的偏振方向方面表现出众产品介绍TECHSPEC® 偏振测试仪适用于确定未知偏振片的不同特性,如线性偏振片的偏振方向和圆形偏振片的旋转方向。这款易于使用的手持式紧凑型工具兼容所有已安装和未安装的偏振片,其中包含设计用于测试线性偏振光,以及左旋和右旋的圆形偏振光的区域。对于圆形偏振片,本测试仪可识别偏振旋转方向,以及延迟器和线性偏振片的位置。TECHSPEC® 偏振测试仪适用于识别正确偏振片,或验证应用中是否精确对准。为获得最佳效果,请确保在测试之前将所有保护膜从偏振片上取下。注意: 安装偏振测试仪时,建议使用#54-997.订购信息长度 (mm)厚度 (mm)透射率 (%)波长范围 (nm)宽度 (mm)产品编码200.000.7542400 - 70020.00 37-699
  • 红外偏振片
    型号规格:手动及自动控制品牌:美国PIKE美国PIKE公司生产的偏振片适用于多种光谱应用领域,有手动和自动两款供选用。偏振片是插入固定在标准的2"x3"样品架上,与所有的光谱仪完全兼容。偏振的有效范围是直径25mm的区域,除去固定支架的面积,有直径20mm的净光圏。偏振片可以和大多数PIKE附件共同使用,包括80度镜反射,可变角ATR和AGA掠角镜反射附件。如果需要把偏振片固定在其他附件上,请与我们联系。自动偏振片的技术指标和手动控制的完全一样。自动偏振片完全是由计算机控制,胜任以往需要人工控制的许多应用领域。应用AutoPRO软件包设置分析流程,系统可以自动采集所有光谱数据。自动偏振片的精度是+/-0.5度,手动偏振片是+/-2度。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制