光纤寻障仪

仪器信息网光纤寻障仪专题为您提供2024年最新光纤寻障仪价格报价、厂家品牌的相关信息, 包括光纤寻障仪参数、型号等,不管是国产,还是进口品牌的光纤寻障仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光纤寻障仪相关的耗材配件、试剂标物,还有光纤寻障仪相关的最新资讯、资料,以及光纤寻障仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

光纤寻障仪相关的厂商

  • 深圳市荣邦光纤设备制造有限公司位于广东省深圳市龙华新区观澜大道,是一家专业从事全套光纤跳线生产线设备及配件的研发,生产与销售的高新技术企业。本公司成立于2007年,由多年从事光纤设备研发领域的专业技术人才所组建。目前拥有员工50人,生产车间 1800m2。各类生产设备齐全,有日本进口三菱慢走丝2台, CNC电脑锣3台,CNC数控车床4 台,全自动高精密磨床5台,自动车床 2台,数控铣床4 台等多台设备。经过多年的努力,公司在光纤全自动剪缆机,全自动陶瓷插芯压接机,光纤研磨机,精密研磨夹具,离心脱泡机,全自动注胶机,光纤恒温固化炉,超声波清洗机,一次成型压接机,插回损测试仪,400倍高清光纤端面检测仪,3D干涉仪等设备的研发,生产领域均具备了较强的实力,在行业中一直以品质卓越,价格适中及售后服务完善而深得广大用户的一致信赖与好评!目前与公司保持合作关系的客户数量有300多家,年销售额达到3000万人民币,规模位居专业光纤跳线设备生产厂家全国前列。
    留言咨询
  • 东莞市勋威检测仪器有限公司是一家致力于“为对广大企业的原材料和产品的各项性能指标进行检测评估”之质量检测仪器、材料物性实验仪器的生产、研发、销售、服务为一体的专业生产商。产品涵盖制鞋、皮革、橡胶、塑胶、化工等众多产业所有可能的品检范畴。为材料开发、物性试验、教学研究、品保管制、进料检验提供可靠保证。 公司严把质量关,产品皆采用进口元器件,本着“质量第一、信誉至上”的宗旨,以产品过硬的质量,合理的价格,齐全的品种和真诚守信赢得客户。坚持科技创新,致力于开发新品,吸收改进先进的工艺流程,建立完善的质量保障体系。公司产品均严格采用ISO、ASTM、BS、DIN、EN、GB、JIS、……等世界规范,并提供相关的测试标准和完善的服务,以满足不同行业应用的需求,其产品在广泛运用各类大中小企业生产实验使用外,也为广大大中专院校、科研单位在实验教学、技术研发提供了数据支持和硬件保障。专业的生产制造技术,最优质的售后服务。我们用心经营每一个日子,兢兢业业、精益求精。我们期盼自己不断壮大的同时也推动行业的技术进步,提升客户产品的质量竞争力,为振兴民族检测仪器和试验机产业做出自己的贡献。勋威全体同仁随时欢迎关联企业和个人来电、来函或莅临参观指
    留言咨询
  • 上海嘉慧光电子技术有限公司,成立于1998年,是一家以研究、制造、销售光纤工程测试仪表、台式光纤测试仪表、光无源器件、光缆施工及清洁工具,并提供多种领域光纤测试解决方案的高新技术企业。 公司先后通过了德国TUV的ISO9001系列质量认证、上海市高新技术企业认证、EMC认证,ROHS认证,并在技术开发和应用领域取得了多项技术**。 公司产品已广泛应用于国内各大运营商、工程公司、运维公司和光器件厂商,同时也赢得了来自南北美、欧洲、东亚、及东南亚等海外客户的认可和信任。 目前公司的主要产品有光纤工程仪表产品(如光功率计、PON光功率计、光源、光时域反射仪(OTDR)、可视激光光源、光万用表、光纤识别仪、光话机、光纤 寻障仪、数显可调光衰减器),台式仪表产品(台式光功率计、各类台式稳定光源、多通道综合测试仪(含PDL测试功能)、插回损测试仪、ASE光源),光纤 无源器件产品(如耦合器、连接器、适配器、衰减器),光纤光缆清洁、施工及抢修工具产品。并提供光纤工程测试、FTTx网络测试等多种光纤测试解决方案, 以及FTB分路器测试系统、PLC分路器生产检测系统、光纤连接器测试、耦合监控等工业生产控制解决方案。 在未来嘉慧公司将积极进取,全力以赴地提供优质的产品和服务,为客户创造成功和价值。公司将始终坚持“以人为本、开拓创新、奉献社会、永续经营”的理念,不断深入光纤通讯产业领域的研究和开发,与合作伙伴们携手共进,一起开创更加辉煌的局面。
    留言咨询

光纤寻障仪相关的仪器

  • 矿用本安型光纤寻障仪YXG60 YXG60 矿用本安型光纤寻障仪(以下简称“仪器”)用于煤矿井下光纤设备的 检测、抢修等 作业。 本仪器采用 OTDR 原理,集成强大的分析软件,可以快速精确的检测出光纤光 缆故障点的位 置与类型。 该仪器适用于基于 FTTx 及接入网的工程施工和维护中的故障定位。 YXG60 矿用本安型光纤寻障仪执行标准:Q/ZRKS 001-2019 《YXG60 矿用本安型光纤寻 障仪标准》。在防爆性能方面严格遵守 GB 3836.1-2010 《爆炸性环境 第 1 部 分;设备 通用 要求》 和 GB 3836.4-2010《爆炸性环境 第 4 部分:由本质安 全型“i”保护的设备》的有关 规定 二、主要功能 测试光纤长度,确定故障点位置; 测试光纤两个节点间的距离; 光纤修复状况检 测。 三、主要技术指标 供电电压及功耗 本安参数:寻障仪采用三节 R6P.AA 1.5V 碳性锌-锰干电池串联,电池组标称电压 DC4.5V。 本安参数:Uo:5.19V DC,Io:2.3A。 技术指标 a)测量范围:反射事件:60000m(≥1dB); b)距离准确度(反射事件):±真值的
    留言咨询
  • 福禄克FLUKE VisiFault光纤可视化故障定位仪定位光纤、发现故障、验证连通性和极性。可以找出紧弯头、断开、坏接头等可见故障加速端到端光纤检查轻松确认极性和识别光纤具有连续和闪烁两种模式人性化设计的机箱可以承受摔落、冲击和震动支持2.5mm和1.25mm SFF接头两节AA电池的使用时间超过80小时在当今快节奏的工作场所中,更大限度地提高生产效率是至关重要的。无论是在安装新的光纤链路时,还是在排除现有网络故障时,越快找到故障的位置,您就能越快排除故障。但是当您面对一个集成了光纤、连接器和跳线的复杂网络时,这就说起来容易,做起来难了。您可使用Fluke Networks的光纤可视化故障定位仪VisiFault光纤连通性测试仪诊断和修复简单的光纤链路问题。激光式VisiFault可视故障定位仪是一款光缆连通性测试仪,可对光纤进行定位,验证光缆连通性和极性。该电缆连通性测试仪可以帮助查找电缆、连接器和接头中的断点。连续和闪烁模式有利于更加方便地确定问题。可与 2.5mm 和 1.25mm 连接器兼容,为连接提供方便。结构牢固,满足现场测试的苛刻要求。此可视故障定位仪的电池续航时间长,可使用数小时。
    留言咨询
  • 特价包邮奥博森whlekl3光纤型故障指示器 醴陵奥博森电气厂生产的whlekl3光纤型故障指示器目前高压线缆的大量使用,使得线缆的故障率也相应的增加。特别在多条线缆供电系统中,如出现越级保护跳闸时,将难以判断具体的故障电缆,有时甚至要将所有电缆全部拆除做耐压试验后才能正确判断故障电缆。其工作量大、实施困难、是难以想象的。对此有必要设计一种新型的检测设备,实时的对各供电回路进行监控。当线路发生故障时,能提示或直接显示故障电缆。对提高工作效率,迅速恢复供电有着十分重要的意义。whlekl3光纤型故障指示器详见实物图:技术参数:适用电压等级: 6-35KV适用负荷: 0-600A适用导线电流: I≤1000A适用导线线径: 25mm2≤d≤400mm2动作响应时间: 0.06S≤T≤3S静态功耗: ≤10uw动作复位时间: 6、12、24、36小时可选使用环境温度: -400C≤T≤+750C动作次数: 4000次接地故障启动值: 20A短路故障启动值: 800A外形尺寸及端子接线图主机尺寸:长*宽*高:97mm*48mm*78mm;开口尺寸:91.5mm(公差:+0.3)X43.5mm(公差:+0.3)组成:主机一个,短路传感器三个,接地传感器一个,光纤四根。 同类型号:AB-JD-I,AB-JD-III,XKDL-3,XKDL-1,XKDL-2,BMGZ-IIA,BMGZ-IV,BMGZ-I,BMGZ-IIIA,BMGZ-II,BMGZ-IIIIB,CBDL-2JG,CBDL-1JT,CBDL-JDG,CBDL-1DX-Y,CBDL-2DT,CBDL-2DG,CBDL-1JX,CBDL-2JX,CBDL-1DT,CBDL-1JG,CBDL-1DG,CBDL-JDX,CBDL-2JT,CBDL-2DH,CBDL-1DX,CBDL-2DX,DS-JDG,DS-JD,DS,2DG,DS-2DG,DS-1DX,DS-2DX,DS-JDSX,DS-JDX,ekl1,EKL3.1,ekl-3.1,ekl-4,TYPE,EKL3,EKL3,EKL-5,EKL-3,EKL1-2,EKL-2,EKL2,EKL4,GY-2PD-F,GY-2PD-G,GY-2PE-M2,GY-2PJ-F,GY-1PD-FG,GY-1PE-FG,GY-1PD-F,HR-1PE-F,HR-1GE-F,HR-2PJ-M,HR-2PE-LT,HR-2PD-G,HR-2PJ-G,HR-1PD-F,HR-2PJ-FG,HR-1PD-FG,HR-1PE-FG,HR-2PE-M,HR-2PE-CT,HR-2PD-FG,HR-2PJ-F,HR-2PD-F,HSJL-IIIB,HSJL-IIIA,HSJL-IV,LPK1-C,LPK2-B,LPK2-A,LPK1-E0,LPK1-A,LPK2-C,sefi-3.2
    留言咨询

光纤寻障仪相关的资讯

  • 惯性寻北仪专用光纤陀螺关键技术及制作
    成果名称 惯性寻北仪专用光纤陀螺关键技术及制作 单位名称 北京大学 联系人 马靖 联系邮箱 mj@labpku.com 成果成熟度 □研发阶段 □原理样机 □通过小试 □通过中试 &radic 可以量产 成果简介: 采用光纤陀螺作为核心部件的惯性寻北仪是一种自主指示方位的高精度惯性仪器,利用它可以测得的地球自转角速率值及加速度计测得的陀螺仪与水平面夹角,从而得到载体的基线与真北方向的夹角。光纤陀螺仪是陀螺仪家族中的新星,它是全固态系统,没有任何运动部件,因此具有耐冲击、抗振动、工作寿命长、维护成本低等一系列优点。这些都是其它传统陀螺仪无法比拟的。光纤寻北陀螺测斜仪是一种新型的测量井斜的数字化仪器,可广泛应用于工程、水文、水电、煤矿、冶金、油田、地质等测井领域。主要针对磁性矿地区及在钢铁管类钻管中测量钻孔斜度和方位而设计。 本项目的主要研究内容是:采用全光纤结构研制高精度的寻北陀螺仪,这项技术填补了国内的空白,具有国际领先水平。研究与开发内容包括:1)光纤陀螺仪总体设计;2)光路设计及制作;3)电路设计及制作;4)DSP系统设计及调试;5)软件开发及调试;6)光纤陀螺仪系统联调;7)光纤陀螺仪性能指标测试评估、优化。目前项目已成功制得多个样机,并在国内7家单位以及英国、挪威的石油、地质勘探仪器制造企业得到应用,产生了良好的经济效益和社会效益。 应用前景: 光纤陀螺仪是陀螺仪家族中的新星,它是全固态系统,没有任何运动部件,因此具有耐冲击、抗振动、工作寿命长、维护成本低等一系列优点。本项目采用全光纤结构研制高精度的寻北陀螺仪,这项技术填补了国内的空白,具有国际领先水平。
  • 南京天光所研制泰国阶梯光栅光纤光谱仪完成装调出光
    2014年10月15日,中国科学院南京天文光学技术研究所一行7人赴泰国国家天文台(Thai National Observatory,TNO)进行泰国中色散阶梯光栅光纤光谱仪(MRES)的现场安装,经过2周多的紧张工作,顺利完成光谱仪光、机、电的调试及和望远镜的联调,并对泰国运行人员进行了全面培训,与泰方人员一起进行了试观测和性能测试。   2012年建成的泰国国家天文台,建有口径2.4米的全自动反射望远镜&mdash &mdash 泰国国家望远镜(Thai National Telescope,TNT)。TNT装备有各种成像探测器,为拓展科学目标,TNO委托南京天光所为TNT研制了中色散阶梯光栅光纤光谱仪(MRES),2014年5月份进行了出厂验收,10月份进行现场安装和测试观测。   泰国中色散阶梯光栅光纤光谱仪光谱分辨率R为15000,波长覆盖为390nm~890nm,通光效率好于30%。装调测试中对于V波段13.8星等的天体(USNOA2-1200-00955)进行了试观测,一小时曝光观测的信噪比好于100。该光谱仪是我国自主研制出口的第一台专业天文观测研究用光谱仪。   2014年10月24号MRES出光后泰方和中方工作人员合影   与望远镜接口耐焦单元的现场安装和测试   MRES出光光谱
  • 全球光纤市场 中国市场占据49%份额
    光纤权威研究机构CRU表示,今年以来西欧、美国、巴西和俄罗斯等主要光纤市场增长疲软,而中国市场继续强劲增长,从2011年占全球份额的46%增长到2012年前三季度的49%,而且预计2012年第四季度仍将保持这个态势。   换言之,中国光纤市场份额2012年预计将占全球市场的49%。   2012年前三季度全球光缆销量1.77亿芯公里,相比去年同期的1.59亿芯公里,增长了11%。裸光纤的产量是1.92亿芯公里,这意味着,今年全球光纤总产量将超过2.5亿芯公里。   今年美国在“刺激法案”的带动下,电信开支增长有令人鼓舞的迹象。美国AT&T、中国三大运营商和欧盟运营商将在11月下旬批准90亿欧元(115亿美元)的电信开支。   从中国光纤厂商今年上半年的财报来看,上半年中国光纤一直处于供应紧张的状态,这种状态将一直延续到下半年。同时,自2010年中国光纤厂商掀起扩产风潮以来,光纤产能已经逐步释放。

光纤寻障仪相关的方案

光纤寻障仪相关的资料

光纤寻障仪相关的论坛

  • 海洋光纤光谱全国巡回讲座的施行有利于光纤光谱的普及

    海洋光纤光谱全国巡回讲座的施行有利于光纤光谱的普及。看到大家如此感兴趣,我觉得可以按区域划分办几次光纤光谱仪的学术交流会暨体验活动,然后邀请各个片区的相关实验单位工作人员参加,这样大家可以就近来实地了解一下光纤光谱仪。貌似许多仪器都这么做了,效果特别的理想,参会的可以领取个优盘或者鼠标什么的礼品,这样宣传效果特别好,不知道这个意见如何啊?需要版主和光纤光谱领导们讨论了,也希望各位版友们热烈讨论。龙年,给光纤光谱出招,让光纤光谱不仅仅飞到火星,要像巨龙一样腾飞到整个宇宙啊。

  • 【求助】询红外光纤厂商

    我做近红外在线用,因为现场的原因需要光纤长度大于20m,原来的供应商不能提供大于20m的铠装光纤,所以在这里请问下,有没有用过可信好一点的光纤供应或是光纤加工商,在这里推荐下,先谢谢你了

  • 【求助】急寻高频温度传感光纤一根

    我用的是培安的微波消解仪,我们主要用来做萃取,不过消极也可以做。现在我们的高频温度传感光纤坏了。不过培安的服务感觉不怎么好,货发过来就不管了,也没保质期,一天都没,也就是说货当天过来就坏了,也不关他们事,东西又很贵还这样!我想找根光纤代替,哪位高手帮我推荐一根!这是其原件的型号和介绍:314305 RTP-300+ Temperature probe (to 250 °C) with slide-in connector,可以在培安的网站中中看到图片! http://www.pynnco.com/Equipment_Consumable/MARS/HP-500_Temperature_and_Pressure_Control_Accessories.html

光纤寻障仪相关的耗材

  • 热膨胀芯(TEC)光纤跳线
    热膨胀芯(TEC)光纤跳线特性热膨胀芯增大了模场直径(MFD),便于耦合不仅更容易进行自由空间耦合,还能保持单模光纤的光学性能工作波长范围:980 - 1250 nm或1420 - 1620 nm光纤的TEC端镀有增透膜,以减少耦合损耗库存的光纤跳线:2.0 mm窄键FC/PC(TEC)到FC/PC接头2.0 mm窄键FC/PC(TEC)到FC/APC接头具有带槽法兰的?2.5 mm插芯到可以剪切的裸纤如需定制配置,请联系技术支持Thorlabs的热膨胀芯(TEC)光纤跳线进行自由空间耦合时,对位置的偏移没有单模光纤那样敏感。利用我们的Vytran® 光纤熔接技术,通过将传统单模光纤的一端加热,使超过2.5 mm长的纤芯膨胀,就可制成这种光纤。在自由空间耦合应用中,光纤经过这样处理的一端可以接受模场直径较大的光束,同时还能保持光纤的单模和光学性能(有关测试信息,请看耦合性能标签)。TEC光纤经常应用于构建基于光纤的光隔离器、可调谐波长的滤光片和可变光学衰减器。我们库存有带TEC端的多种光纤跳线可选。我们提供两种波长范围:980 nm - 1250 nm 和1460 nm - 1620 nm。光纤的TEC端镀有增透膜,在指定波长范围内平均反射率小于0.5%,可以减少进行自由空间耦合时的损耗。光纤的这一端具有热缩包装标签,上面列出了关键的规格。接头选项有2.0 mm窄键FC/PC或FC/APC接头、?2.5 mm插芯且可以剪切熔接的裸光纤。?2.5 mm插芯且可以剪切的光纤跳线具有?900 μm的护套,而FC/PC与FC/APC光纤跳线具有?3 mm的护套(请看右上表,了解可选的组合)。我们也提供定制光纤跳线。更多信息,请联系技术支持。 自由空间耦合到P1-1550TEC-2光纤跳线光纤跳线镀有增透膜的一端适合自由空间应用(比如,耦合),如果与其他接头端接触,会造成损伤。此外,由于镀有增透膜,TEC光纤跳线不适合高功率应用。清洁镀增透膜的接头端且不损坏镀膜的方法有好几种。将压缩空气轻轻喷在接头端是比较理想的做法。其他方法包括使用浸有异丙醇或甲醇的无绒光学擦拭纸或FCC-7020光纤接头清洁器轻轻擦拭。但是请不要使用干的擦拭纸,因为可能会损坏增透膜涂层。Item #PrefixTECEnd(AR Coated)UncoatedEndP1FC/PC (Black Boot)FC/PCP5FC/PC (Black Boot)FC/APCP6?2.5 mm Ferrule with Slotted FlangeScissor CutCoated Patch Cables Selection GuideSingle Mode AR-Coated Patch CablesTEC Single Mode AR-Coated Patch CablesPolarization-Maintaining AR-Coated Patch CablesMultimode AR-Coated Patch CablesHR-Coated Patch CablesStock Single Mode Patch Cables Selection GuideStandard CablesFC/PC to FC/PCFC/APC to FC/APCHybridAR-Coated Patch CablesThermally-Expanded-Core (TEC) Patch CablesHR-Coated Patch CablesBeamsplitter-Coated Patch CablesLow-Insertion-Loss Patch CablesMIR Fluoride Fiber Patch Cables耦合性能由于TEC光纤一端的纤芯直径膨胀,进行自由空间耦合时,它们对位置的偏移没有标准的单模光纤那样敏感。为了进行比较,我们改变x轴和z轴上的偏移,并测量自由空间光束耦合到TEC光纤跳线和标准光纤跳线时的耦合损耗(如右图所示)。使用C151TMD-C非球面透镜,将光耦合到标准光纤和TEC光纤。在980 nm 和1064 nm下,测试使用1060XP光纤的跳线和P1-1060TEC-2光纤跳线,同时,在1550 nm下,测试使用1550BHP光纤的跳线和P1-1550TEC-2光纤跳线。通过MBT616D 3轴位移台,让光纤跳线相对于入射光移动。 下面的曲线图展示了所测光纤跳线的光纤耦合性能。一般而言,对于相同的x轴或z轴偏移,TEC光纤跳线比标准跳线的耦合损耗低。而在x轴或z轴偏移为0 μm 时,标准跳线与TEC跳线的性能相似。总而言之,这些测试结果表明,TEC光纤对光纤位置的偏移远远没有标准光纤那样敏感,同时还能在zui佳光纤位置保持相同的耦合损耗。请注意,这些测量为典型值,由于制造公差的存在,不同批次跳线的性能可能有所差异。测量耦合性能装置的示意图。上图显示了用于测量耦合性能的测试装置。1060XP标准光纤和P1-1060TEC-2热膨胀芯光纤之间的耦合性能比较图。1060XP标准光纤和P1-1060TEC-2热膨胀芯光纤之间的耦合性能比较图。11550BHP标准光纤和P1-1550TEC-2热膨胀芯光纤之间的耦合性能比较图。 损伤阀值激光诱导的光纤损伤以下教程详述了无终端(裸露的)、有终端光纤以及其他基于激光光源的光纤元件的损伤机制,包括空气-玻璃界面(自由空间耦合或使用接头时)的损伤机制和光纤玻璃内的损伤机制。诸如裸纤、光纤跳线或熔接耦合器等光纤元件可能受到多种潜在的损伤(比如,接头、光纤端面和装置本身)。光纤适用的zui大功率始终受到这些损伤机制的zui小值的限制。虽然可以使用比例关系和一般规则估算损伤阈值,但是,光纤的jue对损伤阈值在很大程度上取决于应用和特定用户。用户可以以此教程为指南,估算zui大程度降低损伤风险的安全功率水平。如果遵守了所有恰当的制备和适用性指导,用户应该能够在指定的zui大功率水平以下操作光纤元件;如果有元件并未指定zui大功率,用户应该遵守下面描述的"实际安全水平"该,以安全操作相关元件。可能降低功率适用能力并给光纤元件造成损伤的因素包括,但不限于,光纤耦合时未对准、光纤端面受到污染或光纤本身有瑕疵。关于特定应用中光纤功率适用能力的深入讨论,请联系技术支持。Quick LinksDamage at the Air / Glass InterfaceIntrinsic Damage ThresholdPreparation and Handling of Optical Fibers空气-玻璃界面的损伤空气/玻璃界面有几种潜在的损伤机制。自由空间耦合或使用光学接头匹配两根光纤时,光会入射到这个界面。如果光的强度很高,就会降低功率的适用性,并给光纤造成yong久性损伤。而对于使用环氧树脂将接头与光纤固定的终端光纤而言,高强度的光产生的热量会使环氧树脂熔化,进而在光路中的光纤表面留下残留物。损伤的光纤端面未损伤的光纤端面裸纤端面的损伤机制光纤端面的损伤机制可以建模为大光学元件,紫外熔融石英基底的工业标准损伤阈值适用于基于石英的光纤(参考右表)。但是与大光学元件不同,与光纤空气/璃界面相关的表面积和光束直径都非常小,耦合单模(SM)光纤时尤其如此,因此,对于给定的功率密度,入射到光束直径较小的光纤的功率需要比较低。右表列出了两种光功率密度阈值:一种理论损伤阈值,一种"实际安全水平"。一般而言,理论损伤阈值代表在光纤端面和耦合条件非常好的情况下,可以入射到光纤端面且没有损伤风险的zui大功率密度估算值。而"实际安全水平"功率密度代表光纤损伤的zui低风险。超过实际安全水平操作光纤或元件也是有可以的,但用户必须遵守恰当的适用性说明,并在使用前在低功率下验证性能。计算单模光纤和多模光纤的有效面积单模光纤的有效面积是通过模场直径(MFD)定义的,它是光通过光纤的横截面积,包括纤芯以及部分包层。耦合到单模光纤时,入射光束的直径必须匹配光纤的MFD,才能达到良好的耦合效率。例如,SM400单模光纤在400 nm下工作的模场直径(MFD)大约是?3 μm,而SMF-28 Ultra单模光纤在1550 nm下工作的MFD为?10.5 μm。则两种光纤的有效面积可以根据下面来计算:SM400 Fiber:Area= Pi x (MFD/2)2 = Pi x (1.5μm)2 = 7.07 μm2= 7.07 x 10-8cm2 SMF-28 Ultra Fiber: Area = Pi x (MFD/2)2 = Pi x (5.25 μm)2= 86.6 μm2= 8.66 x 10-7cm2为了估算光纤端面适用的功率水平,将功率密度乘以有效面积。请注意,该计算假设的是光束具有均匀的强度分布,但其实,单模光纤中的大多数激光束都是高斯形状,使得光束中心的密度比边缘处更高,因此,这些计算值将略高于损伤阈值或实际安全水平对应的功率。假设使用连续光源,通过估算的功率密度,就可以确定对应的功率水平:SM400 Fiber: 7.07 x 10-8cm2x 1MW/cm2= 7.1 x10-8MW =71 mW (理论损伤阈值) 7.07 x 10-8cm2x 250 kW/cm2= 1.8 x10-5kW = 18 mW (实际安全水平)SMF-28 UltraFiber: 8.66 x 10-7cm2x 1MW/cm2= 8.7 x10-7MW =870mW (理论损伤阈值)8.66 x 10-7cm2x 250 kW/cm2= 2.1 x10-4kW =210 mW (实际安全水平)多模(MM)光纤的有效面积由纤芯直径确定,一般要远大于SM光纤的MFD值。如要获得zui佳耦合效果,Thorlabs建议光束的光斑大小聚焦到纤芯直径的70 - 80%。由于多模光纤的有效面积较大,降低了光纤端面的功率密度,因此,较高的光功率(一般上千瓦的数量级)可以无损伤地耦合到多模光纤中。 Estimated Optical Power Densities on Air / Glass InterfaceaTypeTheoretical Damage ThresholdbPractical Safe LevelcCW(Average Power)~1 MW/cm2~250 kW/cm210 ns Pulsed(Peak Power)~5 GW/cm2~1 GW/cm2a. 所有值针对无终端(裸露)的石英光纤,适用于自由空间耦合到洁净的光纤端面。b. 这是可以入射到光纤端面且没有损伤风险的zui大功率密度估算值。用户在高功率下工作前,必须验证系统中光纤元件的性能与可靠性,因其与系统有着紧密的关系。c. 这是在大多数工作条件下,入射到光纤端面且不会损伤光纤的安全功率密度估算值。插芯/接头终端相关的损伤机制有终端接头的光纤要考虑更多的功率适用条件。光纤一般通过环氧树脂粘合到陶瓷或不锈钢插芯中。光通过接头耦合到光纤时,没有进入纤芯并在光纤中传播的光会散射到光纤的外层,再进入插芯中,而环氧树脂用来将光纤固定在插芯中。如果光足够强,就可以熔化环氧树脂,使其气化,并在接头表面留下残渣。这样,光纤端面就出现了局部吸收点,造成耦合效率降低,散射增加,进而出现损伤。与环氧树脂相关的损伤取决于波长,出于以下几个原因。一般而言,短波长的光比长波长的光散射更强。由于短波长单模光纤的MFD较小,且产生更多的散射光,则耦合时的偏移也更大。为了zui大程度地减小熔化环氧树脂的风险,可以在光纤端面附近的光纤与插芯之间构建无环氧树脂的气隙光纤接头。我们的高功率多模光纤跳线就使用了这种设计特点的接头。曲线图展现了带终端的单模石英光纤的大概功率适用水平。每条线展示了考虑具体损伤机制估算的功率水平。zui大功率适用性受到所有相关损伤机制的zui低功率水平限制(由实线表示)。确定具有多种损伤机制的功率适用性光纤跳线或组件可能受到多种途径的损伤(比如,光纤跳线),而光纤适用的zui大功率始终受到与该光纤组件相关的zui低损伤阈值的限制。例如,右边曲线图展现了由于光纤端面损伤和光学接头造成的损伤而导致单模光纤跳线功率适用性受到限制的估算值。有终端的光纤在给定波长下适用的总功率受到在任一给定波长下,两种限制之中的较小值限制(由实线表示)。在488 nm左右工作的单模光纤主要受到光纤端面损伤的限制(蓝色实线),而在1550 nm下工作的光纤受到接头造成的损伤的限制(红色实线)。对于多模光纤,有效模场由纤芯直径确定,一般要远大于SM光纤的有效模场。因此,其光纤端面上的功率密度更低,较高的光功率(一般上千瓦的数量级)可以无损伤地耦合到光纤中(图中未显示)。而插芯/接头终端的损伤限制保持不变,这样,多模光纤的zui大适用功率就会受到插芯和接头终端的限制。请注意,曲线上的值只是在合理的操作和对准步骤几乎不可能造成损伤的情况下粗略估算的功率水平值。值得注意的是,光纤经常在超过上述功率水平的条件下使用。不过,这样的应用一般需要专业用户,并在使用之前以较低的功率进行测试,尽量降低损伤风险。但即使如此,如果在较高的功率水平下使用,则这些光纤元件应该被看作实验室消耗品。光纤内的损伤阈值除了空气玻璃界面的损伤机制外,光纤本身的损伤机制也会限制光纤使用的功率水平。这些限制会影响所有的光纤组件,因为它们存在于光纤本身。光纤内的两种损伤包括弯曲损耗和光暗化损伤。弯曲损耗光在纤芯内传播入射到纤芯包层界面的角度大于临界角会使其无法全反射,光在某个区域就会射出光纤,这时候就会产生弯曲损耗。射出光纤的光一般功率密度较高,会烧坏光纤涂覆层和周围的松套管。有一种叫做双包层的特种光纤,允许光纤包层(第二层)也和纤芯一样用作波导,从而降低弯折损伤的风险。通过使包层/涂覆层界面的临界角高于纤芯/包层界面的临界角,射出纤芯的光就会被限制在包层内。这些光会在几厘米或者几米的距离而不是光纤内的某个局部点漏出,从而zui大限度地降低损伤。Thorlabs生产并销售0.22 NA双包层多模光纤,它们能将适用功率提升百万瓦的范围。光暗化光纤内的第二种损伤机制称为光暗化或负感现象,一般发生在紫外或短波长可见光,尤其是掺锗纤芯的光纤。在这些波长下工作的光纤随着曝光时间增加,衰减也会增加。引起光暗化的原因大部分未可知,但可以采取一些列措施来缓解。例如,研究发现,羟基离子(OH)含量非常低的光纤可以抵抗光暗化,其它掺杂物比如氟,也能减少光暗化。即使采取了上述措施,所有光纤在用于紫外光或短波长光时还是会有光暗化产生,因此用于这些波长下的光纤应该被看成消耗品。制备和处理光纤通用清洁和操作指南建议将这些通用清洁和操作指南用于所有的光纤产品。而对于具体的产品,用户还是应该根据辅助文献或手册中给出的具体指南操作。只有遵守了所有恰当的清洁和操作步骤,损伤阈值的计算才会适用。安装或集成光纤(有终端的光纤或裸纤)前应该关掉所有光源,以避免聚焦的光束入射在接头或光纤的脆弱部分而造成损伤。光纤适用的功率直接与光纤/接头端面的质量相关。将光纤连接到光学系统前,一定要检查光纤的末端。端面应该是干净的,没有污垢和其它可能导致耦合光散射的污染物。另外,如果是裸纤,使用前应该剪切,用户应该检查光纤末端,确保切面质量良好。如果将光纤熔接到光学系统,用户首先应该在低功率下验证熔接的质量良好,然后在高功率下使用。熔接质量差,会增加光在熔接界面的散射,从而成为光纤损伤的来源。对准系统和优化耦合时,用户应该使用低功率;这样可以zui大程度地减少光纤其他部分(非纤芯)的曝光。如果高功率光束聚焦在包层、涂覆层或接头,有可能产生散射光造成的损伤。高功率下使用光纤的注意事项一般而言,光纤和光纤元件应该要在安全功率水平限制之内工作,但在理想的条件下(ji佳的光学对准和非常干净的光纤端面),光纤元件适用的功率可能会增大。用户首先必须在他们的系统内验证光纤的性能和稳定性,然后再提高输入或输出功率,遵守所有所需的安全和操作指导。以下事项是一些有用的建议,有助于考虑在光纤或组件中增大光学功率。要防止光纤损伤光耦合进光纤的对准步骤也是重要的。在对准过程中,在取得zui佳耦合前,光很容易就聚焦到光纤某部位而不是纤芯。如果高功率光束聚焦在包层或光纤其它部位时,会发生散射引起损伤使用光纤熔接机将光纤组件熔接到系统中,可以增大适用的功率,因为它可以zui大程度地减少空气/光纤界面损伤的可能性。用户应该遵守所有恰当的指导来制备,并进行高质量的光纤熔接。熔接质量差可能导致散射,或在熔接界面局部形成高热区域,从而损伤光纤。连接光纤或组件之后,应该在低功率下使用光源测试并对准系统。然后将系统功率缓慢增加到所希望的输出功率,同时周期性地验证所有组件对准良好,耦合效率相对光学耦合功率没有变化。由于剧烈弯曲光纤造成的弯曲损耗可能使光从受到应力的区域漏出。在高功率下工作时,大量的光从很小的区域(受到应力的区域)逃出,从而在局部形成产生高热量,进而损伤光纤。请在操作过程中不要破坏或突然弯曲光纤,以尽可能地减少弯曲损耗。用户应该针对给定的应用选择合适的光纤。例如,大模场光纤可以良好地代替标准的单模光纤在高功率应用中使用,因为前者可以提供更佳的光束质量,更大的MFD,且可以降低空气/光纤界面的功率密度。阶跃折射率石英单模光纤一般不用于紫外光或高峰值功率脉冲应用,因为这些应用与高空间功率密度相关。MFD定义模场直径的定义模场直径(MFD)是对在单模光纤中传播的光的光束尺寸的一种量度。它与波长、纤芯半径以及纤芯和包层的折射率具有函数关系。虽然光纤中的大部分光被限制在纤芯内传播,但仍有极小部分的光在包层中传播。对于高斯功率分布,MFD是指光功率从峰值水平降到1/e2时的直径。MFD的测量通过在远场使用变孔径法来完成MFD的测量。在光纤输出的远场处放置一个通光孔径,然后测量强度。在光路中放置连续变小的通光孔径,测量每个通光孔径下的强度水平;然后以功率和孔径半角(或数值孔径)的正弦为坐标作图得到数据。使用彼得曼第二定义确定MFD,该数学模型没有假设功率分布的特定形状。使用汉克尔变换可以从远场测量值确定近场处的MFD大小TEC光纤跳线,980 nm - 1250 nmItem #Fiber TypeOperating WavelengthMode Field DiameteraAR CoatingbMax AttenuationcNAdCladding/Coating DiameterConnectorsJacketTECStandardTECStandardP1-1060TEC-21060XP980 - 1250 nm12.4 ± 1.0 μm6.2 ± 0.5 μm850 - 1250 nm≤2.1 dB/km @980 nm≤1.5 dB/km @ 1060 nm0.070.14125 ± 0.5 μm /245 ± 10 μmFC/PC (TEC) to FC/PC?3 mmFT030-YP5-1060TEC-2TEC光纤跳线,1460 - 1620 nm,镀增透膜,FC/PC(TEC)到FC/APC,2 mP6-1550TEC-2TEC光纤跳线,1460 - 1620 nm,镀增透膜,?2.5 mm插芯(TEC)到裸纤,2 m
  • 全光纤麦克尔逊干涉仪MFI
    全光纤迈克逊干涉仪-MFI Michelson Fiber Interferometer产品介绍:量青光电提供的美国Optiphase公司全光纤迈克逊干涉仪(Fiber Michelson Interferometer)不但可以用来作为精密的测试测量仪器,还可以应用在精密的干涉传感系统。光纤干涉仪内部采用PZ1小尺寸光纤拉伸器(参见 PZ1光纤拉伸器产品资料),内置的PZT通过前面板的BNC连接器驱动。全 光纤迈克逊干涉仪标准产品的工作波长从1064nm到1550nm。每个光纤干涉仪都具有“零米”光路偏差的设计,用于方便用户根据不同的测试应用来改变 光路延迟长度。标准产品的延迟光纤长度为50米,我们能够根据用户的实际要求提供各种定制的光纤干涉仪,请联系我们的销售人员.产品参数:参数单位指标产品型号MFI-10-50MFI-13-50MFI-15-50工作波长nm106413101550调制常数rad/V2.52.01.6两臂光路失配长度(无延迟)m0m0m0m两臂光路失陪长度偏差cm+/-10cm+/-10cm+/-10cm调制器接口BNCBNCBNC光纤类型HI-1060(或指定)SMF-28eSMF-28e光路接口FC/APCFC/APC FC/APC最大功率承受能力mW250250250封装尺寸(长x宽x高)mm260x160x90260x160x90260x160x90重量kg~2.7~2.7~2.7可定制的延迟范围m0.5m ~1000m标准产品的延迟长度m50光纤连接器FC/APC产品应用:激光器相位噪声测试激光器频率噪声测试干涉型光纤传感系统模拟科研实验室应用应用列举:1. 激光器相位/频率噪声测试(1)被测试的激光器经过衰减器后输入到光纤干涉仪,干涉仪的光路失配(光路差)可以由用户选择采用或者控制延迟线圈(延迟线圈)来设定。OPD-4000解调输 出电压应用到PZ1光纤拉伸器的BNC接口上,作为PZ1光纤拉伸器的驱动电压。OPD-4000的相位解调输出可以选择数字信号输出或者模拟信号输出, 数字信号输出通过PC进行后续处理,模拟信号通过信号分析仪进行分析。2. 激光器相位/频率噪声测试(2)被测试的激光器经过衰减器后输入到光纤干涉仪,干涉仪的光路失配(光路差)可以由用户选择采用或者控制延迟线圈(延迟线圈)来设定。通过为PZ1型光纤拉伸 器BNC接口提供控制电压保持其处于正交偏置(Quadrature Bias)。输出光信号由光接收机接收处理,输出信号进一步处理。3.光纤干涉仪传感器模拟(3)输入光信号代表干涉型光纤传感器的光源。选择合适的延迟光纤线圈,延迟长度作为需要模拟的传感器的长度。输出光信号通过光接收器件到信号分析仪进行处理分析。订货信息:MFI-10-50: 1064nm光纤迈克逊干涉仪MFI-13-50: 1310nm光纤迈克逊干涉仪MFI-15-50: 1550nm光纤迈克逊干涉仪
  • 光纤光谱仪
    光纤光谱仪1产品简介XS11639-350-1050-25 是一款光谱范围为 350nm-1050nm 的光纤光谱仪。检测 器采用滨松红外增强型 CCD 线阵传感器,16-bit A/D 采样和 75%的量子效率为光 谱仪提供高信噪比和大的动态范围。高度集成的电路和紧凑的结构设计保障该系 列光谱仪良好的通信速度和波长热稳定性,能够在 0-40℃实现可靠稳定的拉曼 光谱测量,适用于 OEM 各种应用要求,广泛应用在海关物项识别、药品快检、珠 宝鉴定等多个领域。2产品外观及结构3产品特点:➢ 检测范围广:350nm1050nm;➢ 高分辨率:分辨率4产品参数项目值探测器Hamamatsu S11639光谱范围350nm-1050nm像素2048狭缝宽度25μm光谱分辨率~1.5nm信噪比300:1波长准确性0.5nmA/D 采样16bit暗噪声50 RMS(100ms)动态范围1300:1@100ms积分时间4ms-65 s连接器USB Mini尺寸75×63.5×31.5mm重量200g5应用领域➢ 紫外可见近红外吸收➢ 地物光谱 ➢ 水质分析➢ 荧光测量➢ HPLC6光谱仪波长准确性、线宽7.测试条件:➢ 光源:HG-1(汞氩气体放电灯)➢ 光纤:200μm 6.2 测试数据7.测试数据7汞氩灯响应曲线8.测试条件:➢ 光源:HG-1(汞氩气体放电灯)➢ 光纤:200μm,积分时间:1ms8.测试图:8. 氘钨灯响应曲线8.1 测试条件:➢ 光源:氘钨灯➢ 光纤:105μm,积分时间:1ms 8.2 测试图:9. 光谱响应稳定性9.1 测试条件:➢ 在氚钨灯光源 655.65nm 处,设置积分时间 1ms,预热十分钟, 间隔 1min 采集一次,连续采集 200 次➢ 光纤:105μm 9.2 测试结果:➢ 测试平均值:20091.83,波动 P-P 值:365.12 ➢ RMS:0.33%其他型号型号光谱范围XS11639-200-400-25200nm-400nmXS11639-200-850-25200nm-850nmXS11639-350-1050-25350nm-1050nmXS11639-520-700-25520 nm -700nmXS11639-530-840-25530nm-840nmXS11639-630-940-25 630nm-940nmXS11639-670-950-25560 nm -960nmXS11639-790-1050-25790nm-1050nm
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制